Algebraic Semantics for Uncertainty and Vagueness

18th - 20th May 2011

Palazzo Genovese, Salerno - Italy

On involutive Fle-Algebras

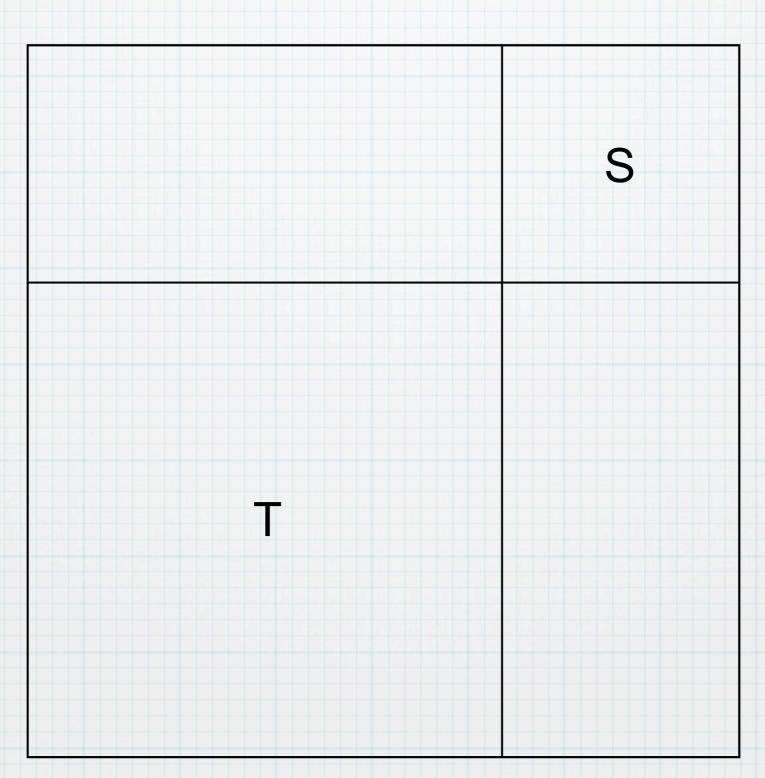
S. Jenei, Univ. of Pécs, JKU H. Ono JAIST

Terminology

- * Commutative partially ordered monoids will be referred to as uninorms.
- * Uninorms which are integral (resp. dually integral) will be referred to as t-norms (resp. t-conorms).

e

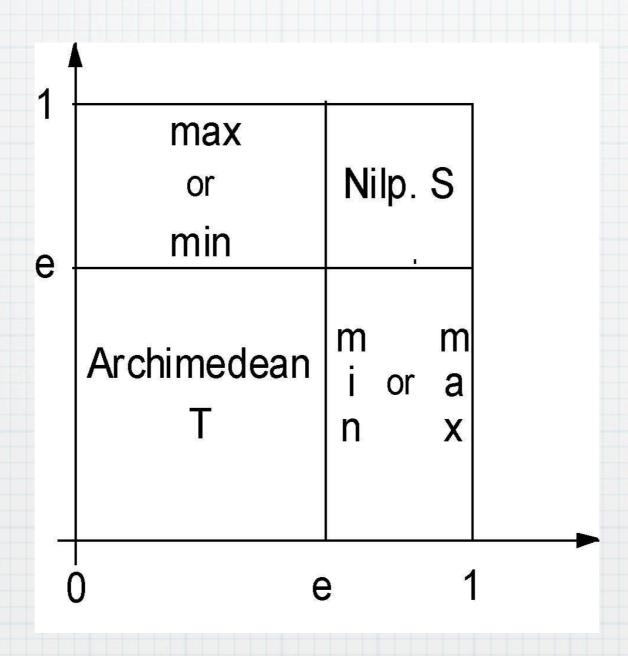


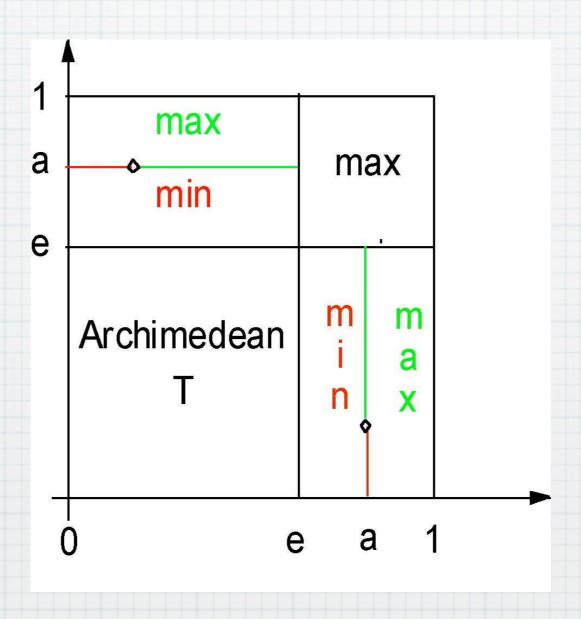


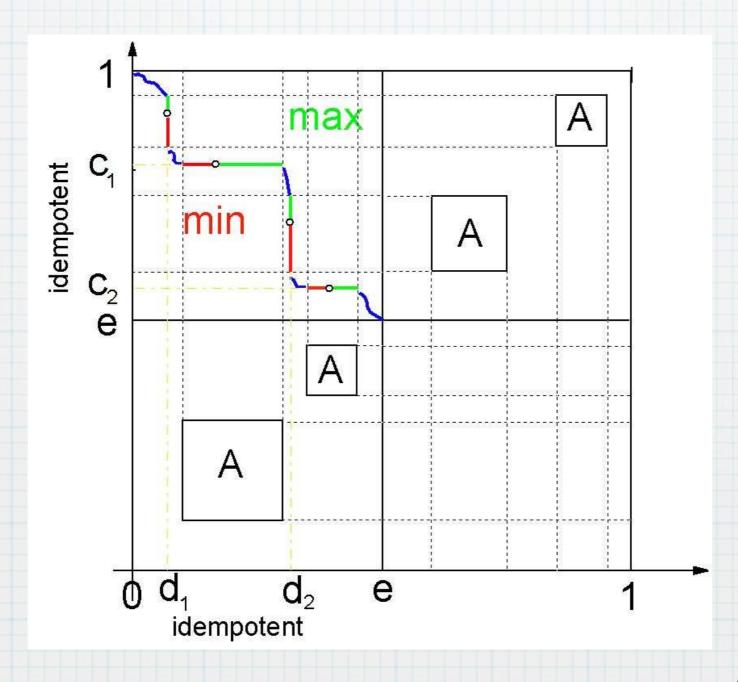
What is known about uninorms?

e

	S
T	

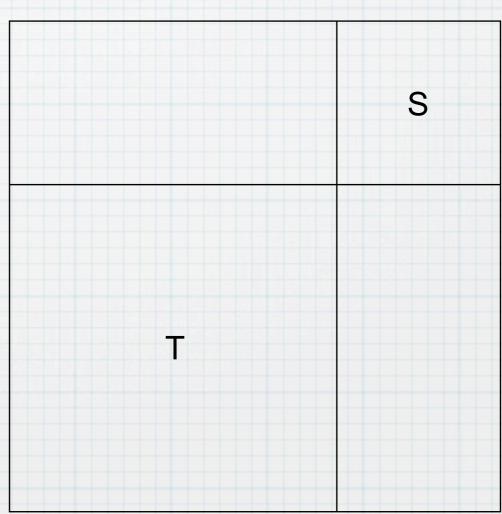


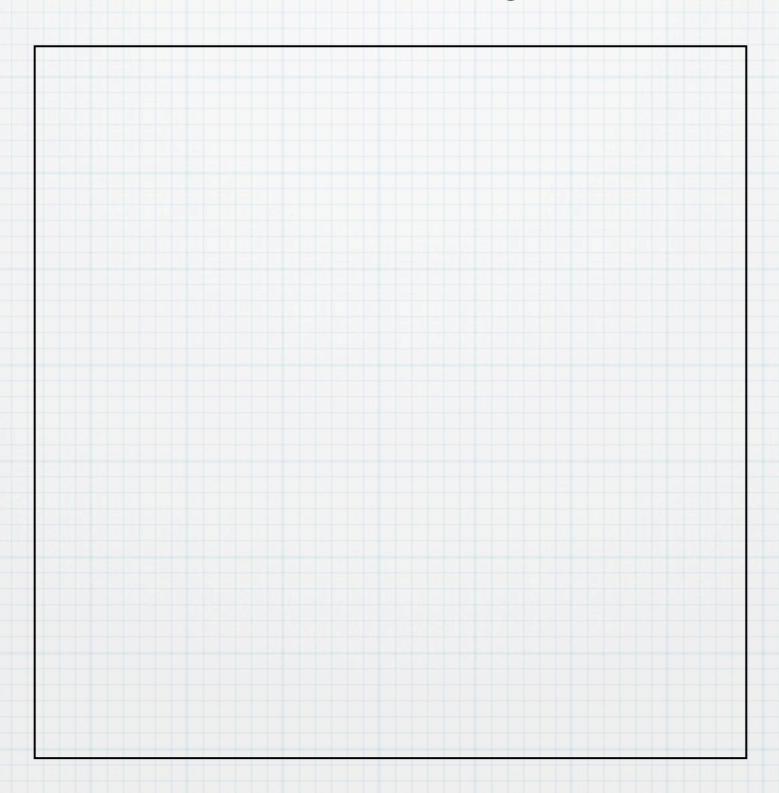


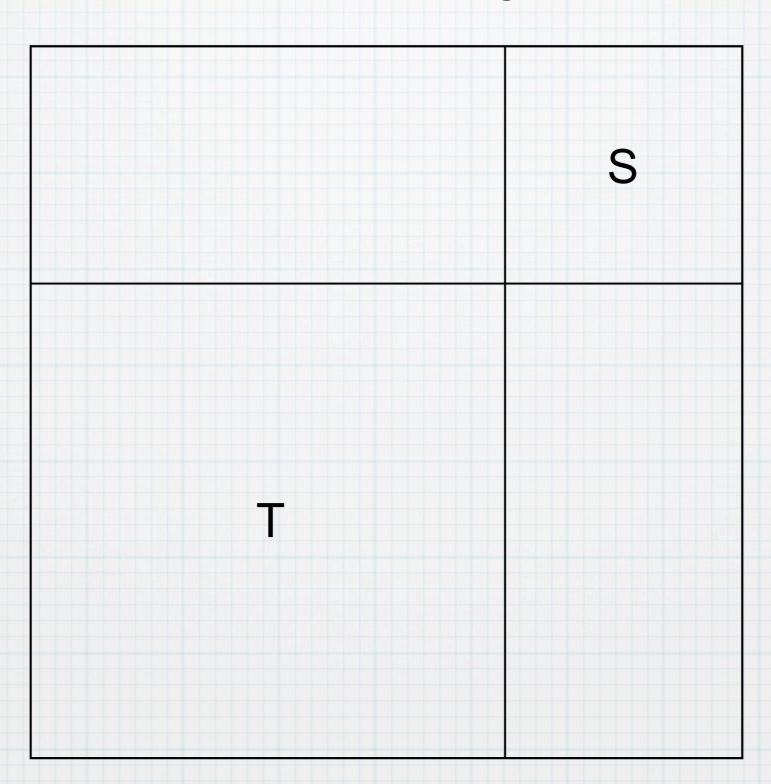


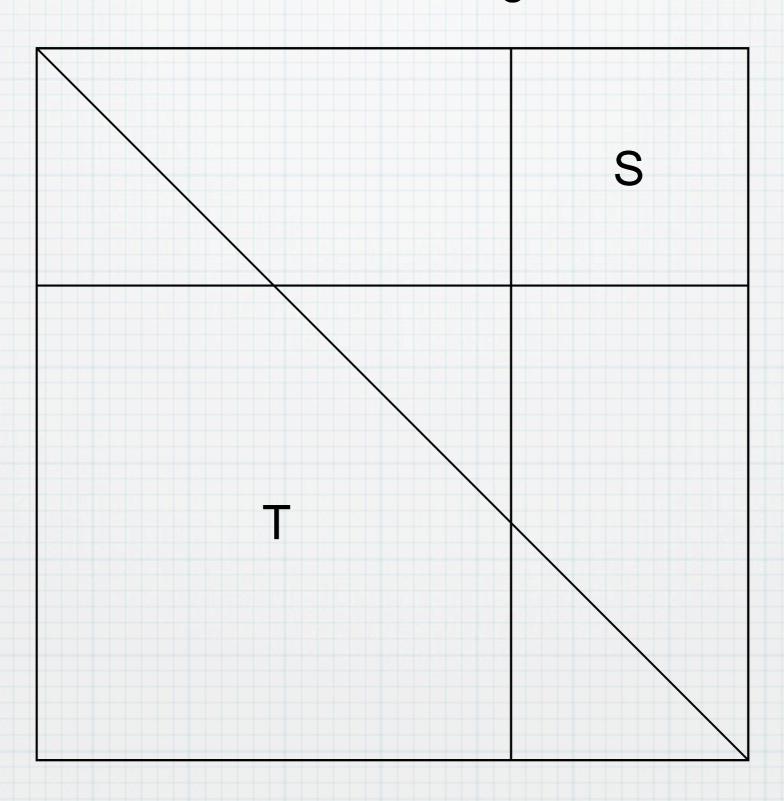
What if I and Sare only residuated (left-continuous)?

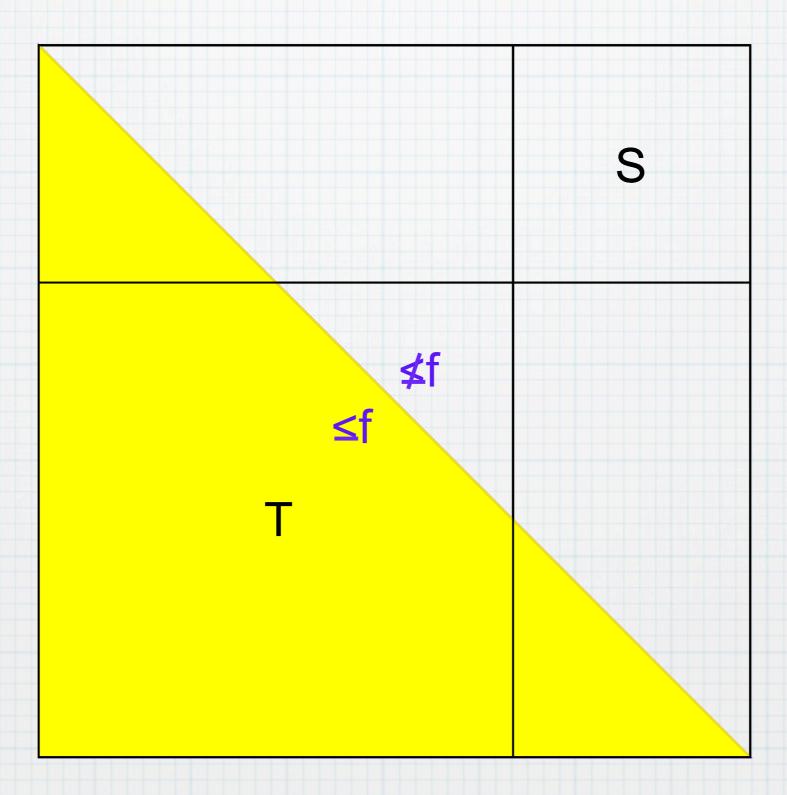
Q1: Structural description Q2: Classification

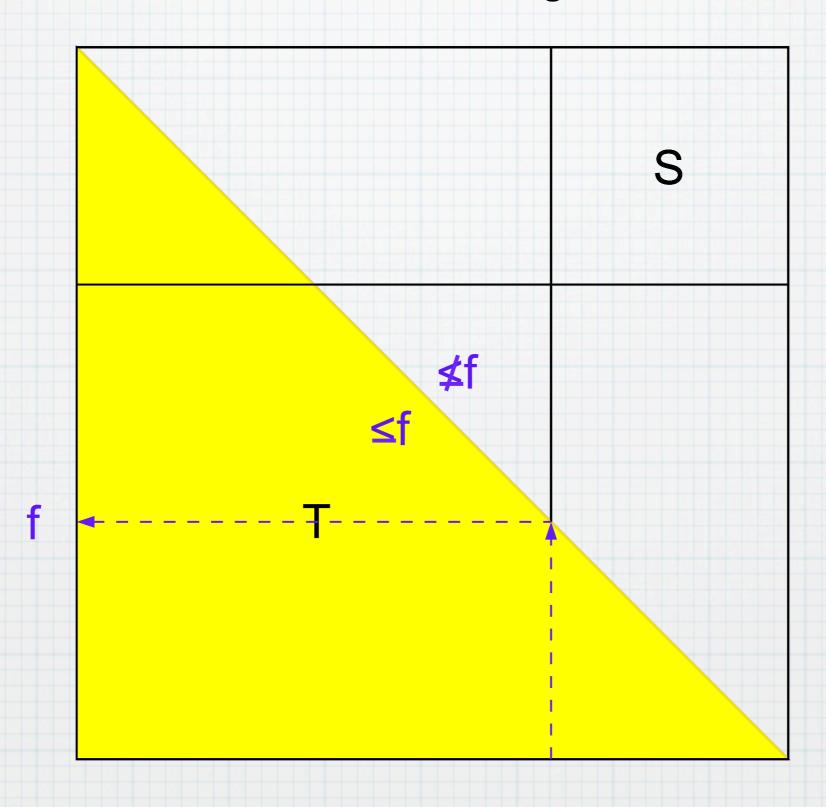












Basic Pefinition

000

ASubl. 4.pdf (page 2 of 19)

Definition 1 $\mathcal{U} = \langle X, *, \leq, e, f \rangle$ is called an *involutive* FL_e algebra if

- 1. $C = \langle X, \leq \rangle$ is a poset,
- 2. \bullet is a uninorm over \mathcal{C} with neutral element e,
- 3. for every $x \in X$, $x \to_{\mathfrak{g}} f = \max\{z \in X \mid x \otimes z \leq f\}$ exists, and
- 4. for every $x \in X$, we have $(x \to_{\bullet} f) \to_{\bullet} f = x$.

We will call * an involutive uninorm. It is not difficult to see that every involutive uninorm is residuated and isotone. Therefore, $': X \to X$ given by

$$x' = x \rightarrow_{\bullet} f$$

is an order-reversing involution.

Basic Pefinition

800

ASubl. 4.pdf (page 2 of 19)

Definition 1 $\mathcal{U} = \langle X, *, \leq, e, f \rangle$ is called an *involutive* FL_e algebra if

- 1. $C = \langle X, \leq \rangle$ is a poset,
- 2. \bullet is a uninorm over \mathcal{C} with neutral element e,
- 3. for every $x \in X$, $x \to_{\mathfrak{g}} f = \max\{z \in X \mid x \otimes z \leq f\}$ exists, and
- 4. for every $x \in X$, we have $(x \to_{\bullet} f) \to_{\bullet} f = x$.

A A A

Screen shot 2010-06-06 at 11.01.08 AM

Denote

$$X^+ = \{x \in X \mid x \ge e\}$$
 and $X^- = \{x \in X \mid x \le e\}.$

Overview

- * Motivation beyond the algebraic interest
- * Twin rotation construction
- * Complete, densely ordered chains
- * Finite Chains

DEFINITION 1. **MAILL** consists of the following axioms and rules: $(L1) \quad A \to A$ $(L2) \quad (A \to B) \to ((B \to C) \to (A \to C))$ $(L3) \quad (A \to (B \to C)) \to (B \to (C))$ $(L4) \quad ((A \odot B) \to C) \leftrightarrow (A \to (B \to C))$ $(L5) \quad (A \land B) \to A$ $(L6) \quad (A \land B) \to B$ $(L7) \quad ((A \to B) \land (A \to C)) \to (A \to (B \land C))$

[17] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic, 72(3): 834–864, 2007.

(L12)
$$\bot \to A$$

(L13) $A \to \top$

$$\frac{A \quad A \to B}{B} \ (mp)$$

$$\frac{A \quad B}{A \land B} \ (adj)$$

DEFINITION 2. Uninorm logic UL is MAILL plus:

$$(PRL) \ (A \to B) \land t) \lor ((B \to A) \land t)$$

substructural fuzzy logics Metcalfe Montagna.pdf (page 3 of 30) DEFINITION 1. MAILL consists of the following axioms and rules: (L1) $A \rightarrow A$ (L2) $(A \to B) \to ((B \to C) \to (A \to C))$ (L3) $(A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$ (L4) $((A \odot B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$ (L5) $(A \land B) \rightarrow A$ (L6) $(A \wedge B) \rightarrow B$ (L7) $((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow (B \land C))$ (L8) $A \rightarrow (A \lor B)$ (L9) $B \to (A \lor B)$ (L10) $((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$ (L11) $A \leftrightarrow (t \rightarrow A)$ (L12) $\perp \rightarrow A$ (L13) $A \rightarrow \top$ $\frac{A \quad A \to B}{R} \ (mp)$ $\frac{A}{A} \stackrel{B}{\wedge} B (adj)$ DEFINITION 2. Uninorm logic UL is MAILL plus: (PRL) $(A \rightarrow B) \land t) \lor ((B \rightarrow A) \land t)$

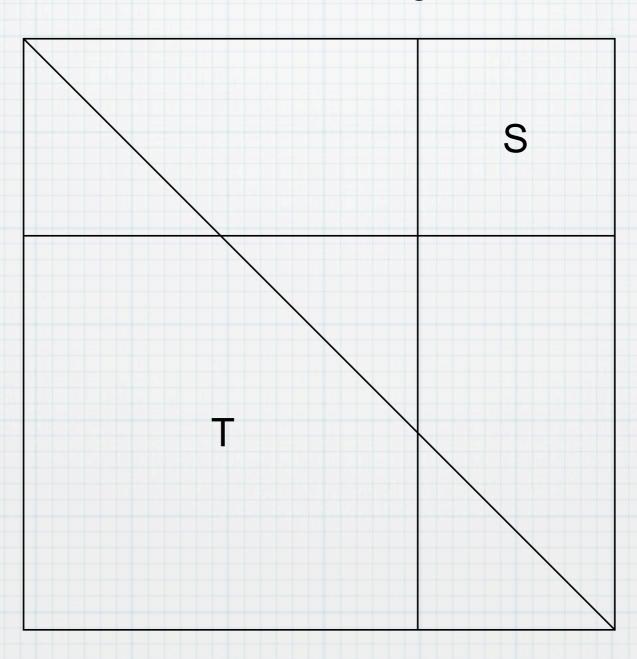
substructural fuzzy logics Metcalfe Montagna.pdf (page 3 of 30 DEFINITION 1. MAILL consists of the following axioms and rules: (L1) $A \rightarrow A$ (L2) $(A \to B) \to ((B \to C) \to (A \to C))$ (L3) $(A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$ (L4) $((A \odot B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$ (L5) $(A \land B) \rightarrow A$ (L6) $(A \wedge B) \rightarrow B$ (L7) $((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow (B \land C))$ (L8) $A \rightarrow (A \lor B)$ (L9) $B \to (A \lor B)$ (L10) $((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$ (L11) $A \leftrightarrow (t \rightarrow A)$ (L12) $\perp \rightarrow A$ (L13) $A \rightarrow \top$ $\frac{A \quad A \to B}{R} \ (mp)$ $\frac{A}{A} \stackrel{B}{\wedge} B (adj)$ DEFINITION 2. Uninorm logic UL is MAILL plus:

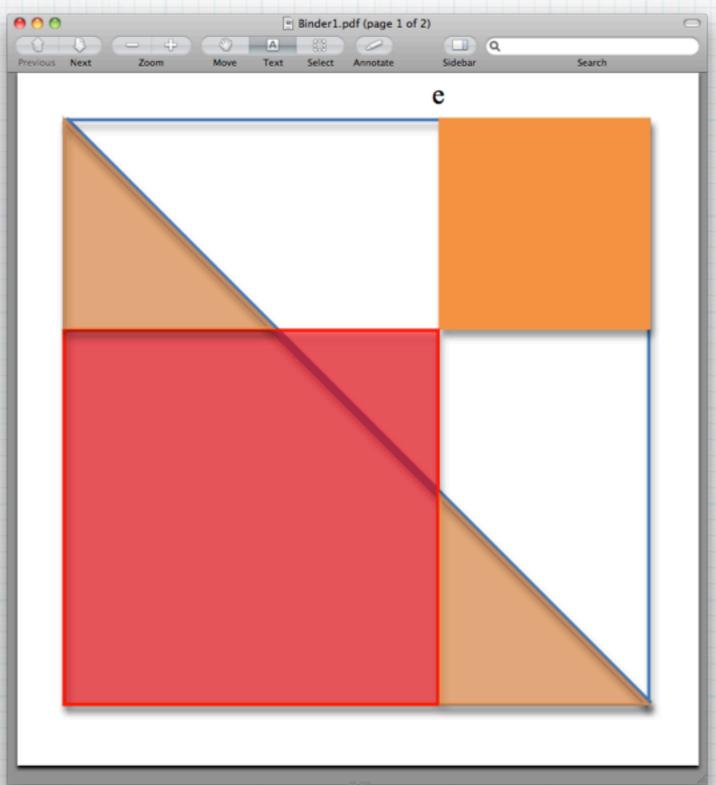
$$(PRL) \ (A \to B) \land t) \lor ((B \to A) \land t)$$

• Involutive uninorm logic IUL is UL plus $(INV) \neg \neg A \rightarrow A$.

 $Logics = \{UL, IUL, MTL, IMTL, G, UML, IUML\}.$

Involutive uninorm logic IUL is UL plus (INV) ¬¬A → A.
Monoidal t-norm logic MTL is UL plus (W) (A → t) ∧ (f → A).
Involutive monoidal t-norm logic IMTL is MTL plus (INV).
Gödel logic G is MTL plus (ID) A ↔ (A ⊙ A).
Uninorm mingle logic UML is UL plus (ID).
Involutive uninorm mingle logic IUML is IUL plus (ID) and (FP) t ↔ f.





Definition 4 (Twin-rotation construction) Let X_1 be a partially ordered set with top element t, and and X_2 be a partially ordered set with bottom element t such that the connected ordinal sum $os_c\langle X_1, X_2\rangle$ of X_1 and X_2 (that is putting X_1 under X_2 , and identifying the top of X_1 with the bottom of X_2) has an order reversing involution '. Let \otimes and \oplus be commutative, residuated semigroups on X_1 and X_2 , respectively, both with neutral element t. Assume, in addition, that

- 1. in case $t' \in X_1$ we have $x \to_{\otimes} t' = x'$ for all $x \in X_1, x \geq t'$, and
- 2. in case $t' \in X_2$ we have $x \to_{\oplus} t' = x'$ for all $x \in X_2$, $x \le t'$.

Denote

$$\mathcal{U}_{\otimes}^{\oplus} = \langle os_c \langle X_1, X_2 \rangle, *, \leq, t, f \rangle$$

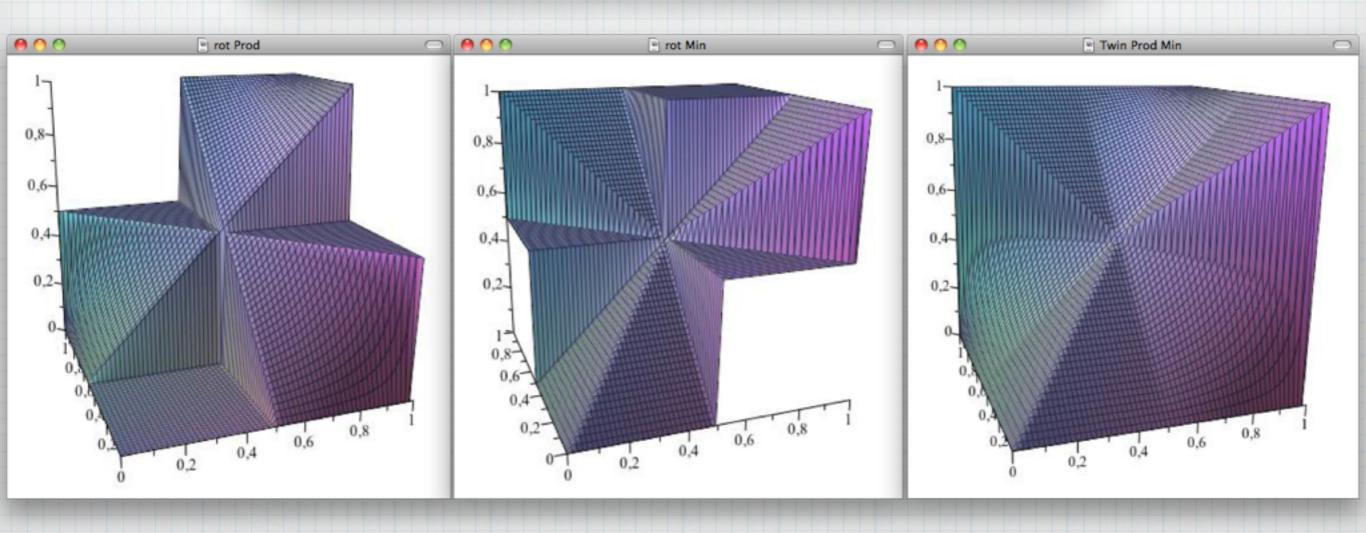
where f = t' and \bullet is defined as follows:

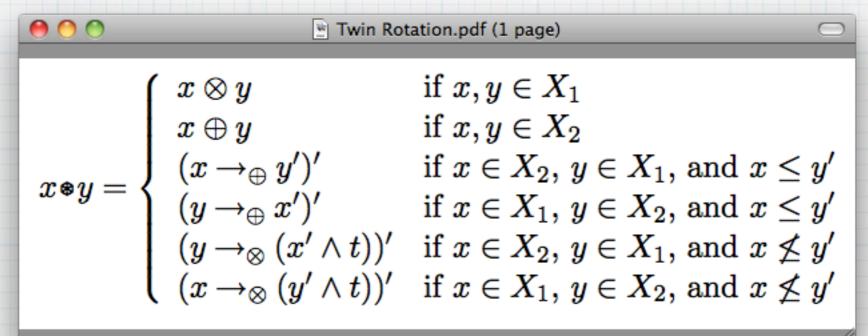
$$x \bullet y = \begin{cases} x \otimes y & \text{if } x, y \in X_1 \\ x \oplus y & \text{if } x, y \in X_2 \\ (x \to_{\oplus} y')' & \text{if } x \in X_2, y \in X_1, \text{ and } x \leq y' \\ (y \to_{\oplus} x')' & \text{if } x \in X_1, y \in X_2, \text{ and } x \leq y' \\ (y \to_{\otimes} (x' \land t))' & \text{if } x \in X_2, y \in X_1, \text{ and } x \nleq y' \\ (x \to_{\otimes} (y' \land t))' & \text{if } x \in X_1, y \in X_2, \text{ and } x \nleq y' \end{cases} . (12)$$

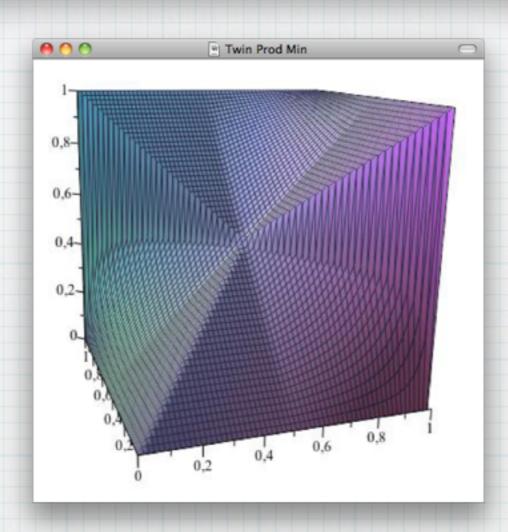
Call \bullet (resp. $\mathcal{U}_{\otimes}^{\oplus}$) the twin-rotation of \otimes and \oplus (resp. of the first and the second partially ordered monoid).

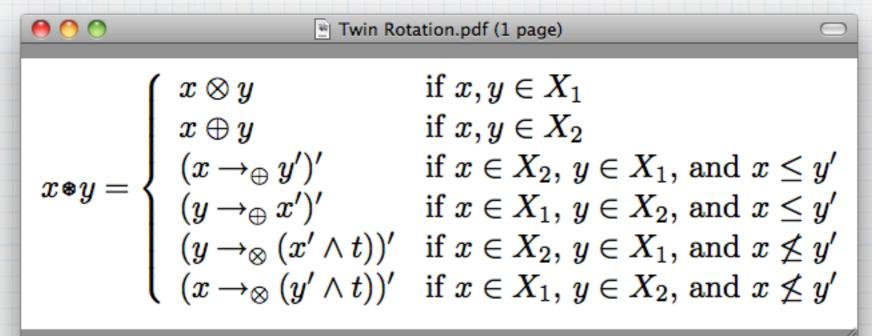
$$x * y = \begin{cases} x \otimes y & \text{if } x, y \in X_1 \\ x \oplus y & \text{if } x, y \in X_2 \\ (x \to_{\oplus} y')' & \text{if } x \in X_2, \ y \in X_1, \ \text{and } x \leq y' \\ (y \to_{\oplus} x')' & \text{if } x \in X_1, \ y \in X_2, \ \text{and } x \leq y' \\ (y \to_{\otimes} (x' \land t))' & \text{if } x \in X_2, \ y \in X_1, \ \text{and } x \not\leq y' \\ (x \to_{\otimes} (y' \land t))' & \text{if } x \in X_1, \ y \in X_2, \ \text{and } x \not\leq y' \\ (x \to_{\otimes} (y' \land t))' & \text{if } x \in X_1, \ y \in X_2, \ \text{and } x \not\leq y' \end{cases}$$

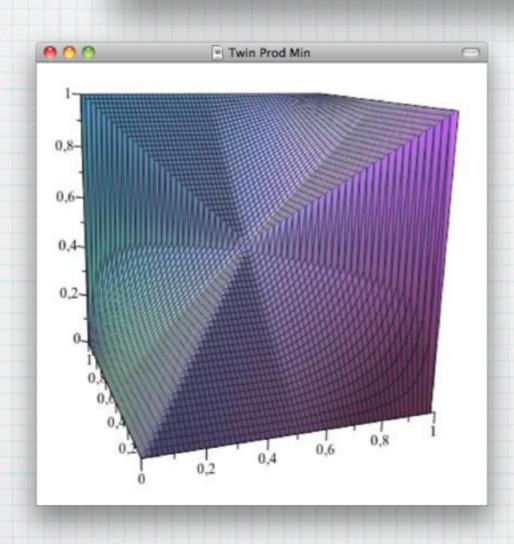
$$x * y = \begin{cases} x \otimes y & \text{if } x, y \in X_1 \\ x \oplus y & \text{if } x, y \in X_2 \\ (x \rightarrow_{\oplus} y')' & \text{if } x \in X_2, \ y \in X_1, \ \text{and } x \leq y' \\ (y \rightarrow_{\oplus} x')' & \text{if } x \in X_1, \ y \in X_2, \ \text{and } x \leq y' \\ (y \rightarrow_{\otimes} (x' \land t))' & \text{if } x \in X_2, \ y \in X_1, \ \text{and } x \nleq y' \\ (x \rightarrow_{\otimes} (y' \land t))' & \text{if } x \in X_1, \ y \in X_2, \ \text{and } x \nleq y' \end{cases}$$

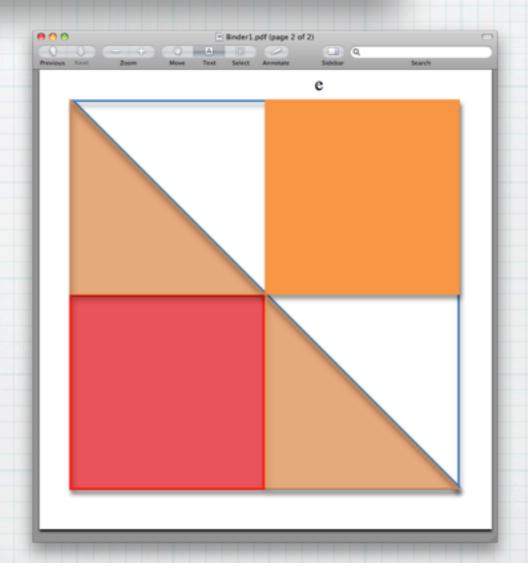


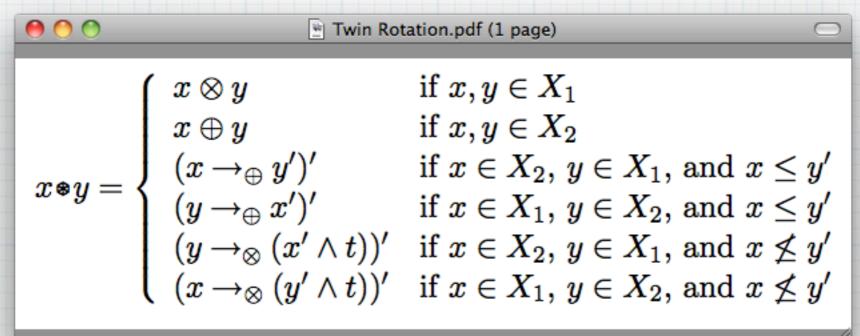


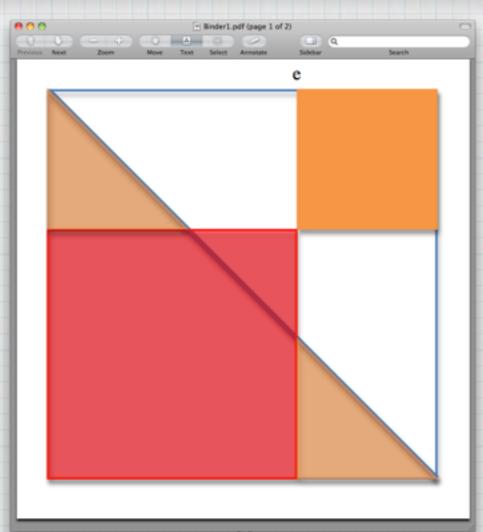








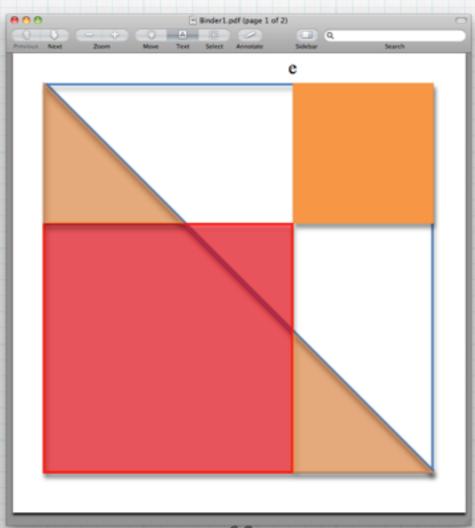




1. in case $t' \in X_1$ we have $x \to_{\otimes} t' = x'$ for all $x \in X_1$, $x \geq t'$, and

Conditions (1 page)

2. in case $t' \in X_2$ we have $x \to_{\oplus} t' = x'$ for all $x \in X_2$, $x \leq t'$.



Definition 4 (Twin-rotation construction) Let X_1 be a partially ordered set with top element t, and and X_2 be a partially ordered set with bottom element t such that the connected ordinal sum $os_c\langle X_1, X_2\rangle$ of X_1 and X_2 (that is putting X_1 under X_2 , and identifying the top of X_1 with the bottom of X_2) has an order reversing involution '. Let \otimes and \oplus be commutative, residuated semigroups on X_1 and X_2 , respectively, both with neutral element t. Assume, in addition, that

- 1. in case $t' \in X_1$ we have $x \to_{\otimes} t' = x'$ for all $x \in X_1, x \geq t'$, and
- 2. in case $t' \in X_2$ we have $x \to_{\oplus} t' = x'$ for all $x \in X_2$, $x \le t'$.

Denote

$$\mathcal{U}_{\otimes}^{\oplus} = \langle os_c \langle X_1, X_2 \rangle, *, \leq, t, f \rangle$$

where f = t' and \bullet is defined as follows:

$$x \bullet y = \begin{cases} x \otimes y & \text{if } x, y \in X_1 \\ x \oplus y & \text{if } x, y \in X_2 \\ (x \to_{\oplus} y')' & \text{if } x \in X_2, y \in X_1, \text{ and } x \leq y' \\ (y \to_{\oplus} x')' & \text{if } x \in X_1, y \in X_2, \text{ and } x \leq y' \\ (y \to_{\otimes} (x' \land t))' & \text{if } x \in X_2, y \in X_1, \text{ and } x \nleq y' \\ (x \to_{\otimes} (y' \land t))' & \text{if } x \in X_1, y \in X_2, \text{ and } x \nleq y' \end{cases} . (12)$$

Call \bullet (resp. $\mathcal{U}_{\otimes}^{\oplus}$) the twin-rotation of \otimes and \oplus (resp. of the first and the second partially ordered monoid).

ASUV 2011 b.pdf (1 page)

Twin rotation

Definition 4 (Twin-rotation construction) Let X_1 be a partially ordered set with top element t, and and X_2 be a partially ordered set with bottom element t such that the connected ordinal sum $os_c\langle X_1, X_2\rangle$ of X_1 and X_2 (that is putting X_1 under X_2 , and identifying the top of X_1 with the bottom of X_2) has an order reversing involution '. Let \otimes and \oplus be commutative, residuated semigroups on X_1 and X_2 , respectively, both with neutral element t. Assume, in addition, that

- 1. in case $t' \in X_1$ we have $x \to_{\otimes} t' = x'$ for all $x \in X_1$, $x \ge t'$, and
- 2. in case $t' \in X_2$ we have $x \to_{\oplus} t' = x'$ for all $x \in X_2$, $x \le t'$.

Denote

$$\mathcal{U}_{\otimes}^{\oplus} = \langle os_c \langle X_1, X_2 \rangle, \bullet, \leq, t, f \rangle$$

where f = t' and \bullet is defined as follows:

$$x \bullet y = \begin{cases} x \otimes y & \text{if } x, y \in X_1 \\ x \oplus y & \text{if } x, y \in X_2 \\ (x \to_{\oplus} y')' & \text{if } x \in X_2, y \in X_1, \text{ and } x \leq y' \\ (y \to_{\ominus} x')' & \text{if } x \in X_1, y \in X_2, \text{ and } x \leq y' \\ (y \to_{\otimes} (x' \land t))' & \text{if } x \in X_2, y \in X_1, \text{ and } x \nleq y' \\ (x \to_{\otimes} (y' \land t))' & \text{if } x \in X_1, y \in X_2, \text{ and } x \nleq y' \end{cases} . (12)$$

Call \bullet (resp. $\mathcal{U}_{\otimes}^{\oplus}$) the twin-rotation of \otimes and \oplus (resp. of the first and the second partially ordered monoid).

⋒ ⊕ ⊕

well-defined (1 page)

Proposition 5 1. $\mathcal{U}_{\otimes}^{\oplus}$ in Definition 4 is well-defined,

2. it is an involutive FL_e -algebra if and only if * is associative,

* THEOREM:
Every conic involutive uninorm is the twin rotation of its underlying t-norm and t-conorm.

Chains

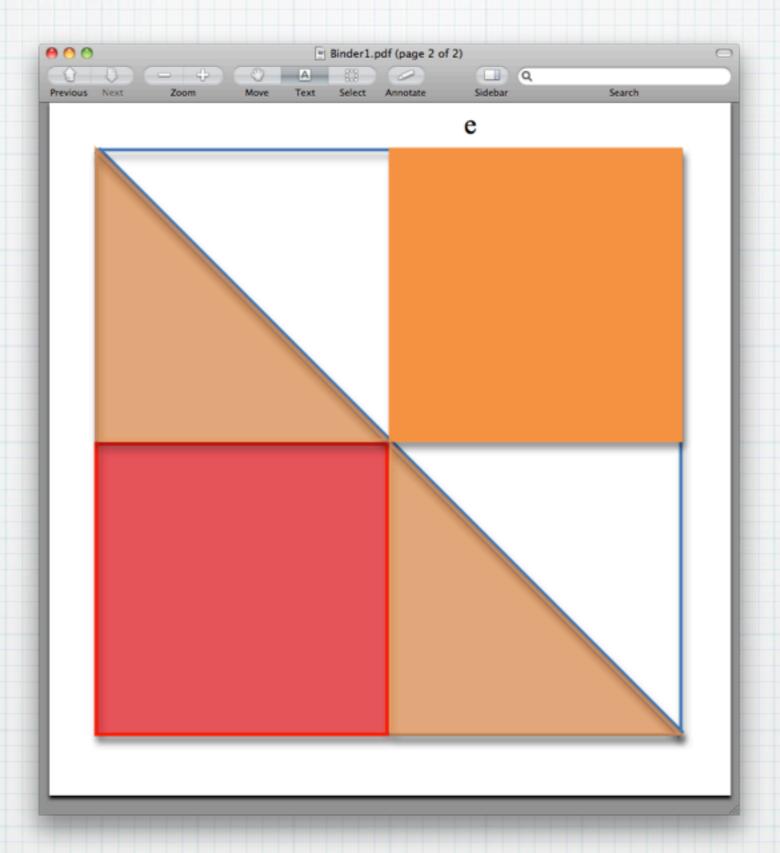
000

Screen shot 2010-06-06 at 4.44.34 AM

Corollary 2 Any involutive FL_e -chain is the twin-rotation of its underlying t-norm and t-conorm.

Complete, densely ordered chains with e=f

- * Skew dualization on complete, densely ordered posets
- * Classification of involutive FLe-algebras with e=f on [0,1]



Complete, densely ordered chains with e=f

Skew dualization on complete, densely ordered chains

ASubL 4.pdf (page 17 of

Definition 5 [1] For any commutative residuated lattice on a complete and dense chain $\langle X, \leq, \oplus, \to_{\oplus}, 1 \rangle$, define $\oplus : X \times X \to X$ by $x \oplus y = \inf\{u \oplus v \mid u > x, v > y\}$, and call it the *skewed pair* of \oplus .

Definition 6 [1] Let (L_2, \leq) be a complete, dense chain and $L_1 \subseteq L_2$. Let $(L_1, \oplus, \to_{\oplus}, \leq, \top)$ be a commutative residuated lattice on a complete and dense chain, and let ' be an order reversing involution on L_2 . The operation \odot is said to be dual to \oplus with respect to ' if \odot is a binary operation on $(L_1)' = \{x' \mid x \in L_1\}$ given by $x \odot y = (x' \oplus y')'$. We say that the operation \odot is skew dual to the residuated operation \oplus with respect to ' if \odot is the dual of the skewed pair of \oplus .

Classification of involutive FLe-algebras with e=f on [0,1]

Theorem 4 Any involutive uninorm on [0,1] with e = f can be represented by (2) where its undelying t-norm and t-conorm are skew-duals.

Theorem 5 For any involutive uninorm on [0,1] such that its underlying t-norm \odot is continuous, one of the following statements is true:

- 1. \odot is order-isomorphic to the product t-norm or
- 2. \odot is order-isomorphic to the minimum t-norm or
- 3. is order-isomorphic to an ordinal sum with summands all being product t-norms.

Classification of involutive FLe-algebras with e=f on [0,1]

Theorem 4 Any involutive uninorm on [0,1] with e = f can be represented by (2) where its undelying t-norm and t-conorm are skew-duals.

Holds in a more general setting

Theorem 5 For any involutive uninorm on [0,1] such that its underlying t-norm \odot is continuous, one of the following statements is true:

- 1. \odot is order-isomorphic to the product t-norm or
- 2. \odot is order-isomorphic to the minimum t-norm or
- 3. is order-isomorphic to an ordinal sum with summands all being product t-norms.

000

Screen shot 2010-06-06 at 4.44.34 AM

Corollary 2 Any involutive FL_e -chain is the twin-rotation of its underlying t-norm and t-conorm.

000

Screen shot 2010-06-06 at 4.44.34 AM

Corollary 2 Any involutive FL_e -chain is the twin-rotation of its underlying t-norm and t-conorm.

Consider a finite involutive FL_e -chain

$$\mathcal{U}_n = \langle \{1, 2, \dots, n\}, \circledast, \leq, e, f \rangle$$

and denote its underlying t-norm (which acts on $\{1, 2, ..., e\}$) and its underlying t-conorm (which acts on $\{e, e+1, ..., n\}$) by \otimes and \oplus , respectively. We have

$$\mathcal{U}_n = \mathcal{U}_{\otimes}^{\oplus}$$

 $\mathcal{U}_n = \langle \{1,2,\ldots,n\}, \circledast, \leq, 1,n,e,f
angle.$ Call e-f the rank of \mathcal{U}_n (or the rank of \circledast).

We have that $rank(\mathcal{U}_n)$ is necessarily even if n is odd, and vice versa.

- * skew dualisation between non-positive rank algebras and positive rank algebras
- * positive rank algebras

Skew dualisation

Definition 4

i. Let $\mathcal{U} = \langle \{1, 2, \dots, n\}, *, \leq, e, f \rangle$ be an involutive FL_{e^-} algebra with $rank(\mathcal{U}) > 0$. Define the following algebra:

$$\mathcal{U}_{\nabla} = \langle \{1, 2, \dots, n+1\}, \circ, \leq, f+1, e \rangle,$$

where \circ is the dual of \diamond , and \diamond is derived from \circ by adding n+1 as a new annihilator to it. More formally, for $x,y\in\{1,2,\ldots,n+1\}$ let

$$x \diamond y = \begin{cases} x \circledast y & \text{if } x, y \in \{1, 2, \dots, n\} \\ n+1 & \text{if } \max(x, y) = n+1 \end{cases}$$

and let $x \circ y = (x' \diamond y')'$, where ' is the order-reversing involution of $\{1, 2, \dots, n\}$.

Skew dualisation

Definition 4

ii. Let $\mathcal{U} = \langle \{1, 2, \dots, n+1\}, *, \leq, e, f \rangle$ be an involutive FL_{e} -algebra, and assume $rank(\mathcal{U}) \leq 0$. Define the following algebra:

$$\mathcal{U}_{\Delta} = \langle \{1, 2, \dots, n\}, \circ, \leq, f, e-1 \rangle,$$

where \circ is the restriction of the dual of \bullet to $\{1, 2, \ldots, n\}$.

and let $x \circ y = (x' \diamond y')'$, where ' is the order-reversing involution of $\{1, 2, \dots, n\}$.

Skew dualisation

iddd.pdf

Theorem 2 (finite skew dualization)

- i. For any involutive FL_e -algebra \mathcal{U} on $\{1, 2, ..., n\}$ with $rank \ k > 0$, \mathcal{U}_{∇} is an involutive FL_e -algebra on $\{1, 2, ..., n+1\}$ with $rank \ 1-k$.
- ii. For any involutive FL_e -algebra $\mathcal{U} = \langle \{1, 2, \dots, n + 1\}, *, \leq, e, f \rangle$ with rank $k \leq 0$, \mathcal{U}_{Δ} is an involutive FL_e -algebra on $\{1, 2, \dots, n\}$ with rank 1 k.

Moreover, we have

000

$$(\mathcal{U}_{\Delta})_{\;
abla} = \mathcal{U} \quad and \quad (\mathcal{U}_{
abla})^{\;
abla} = \mathcal{U}.$$

Lemma

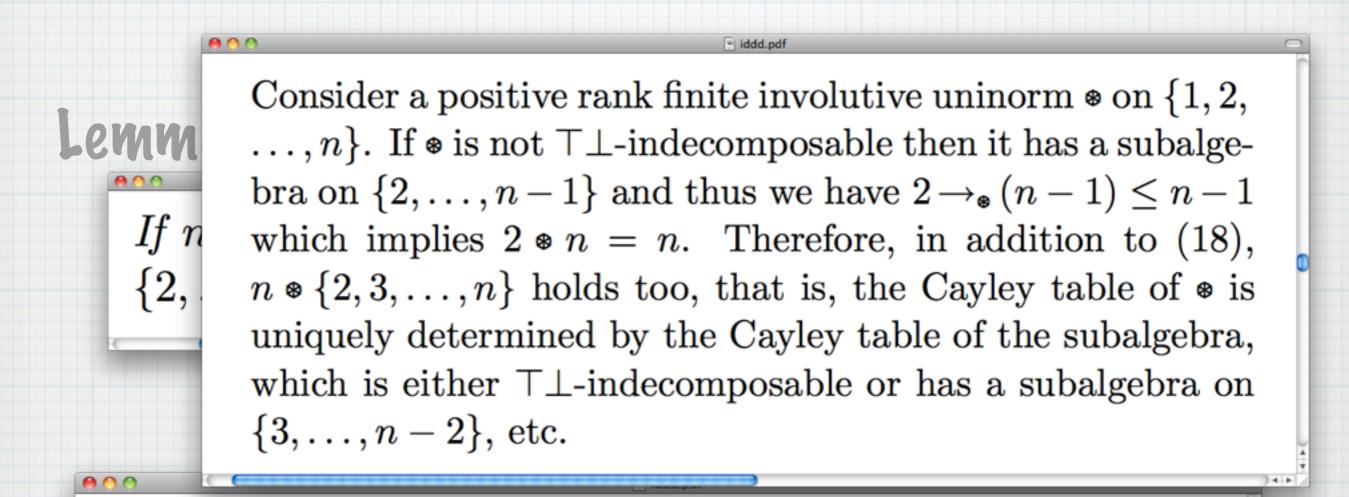
If $n \geq 3$, $rank(\mathcal{U}_n) \geq 0$ then \mathcal{U}_n has a subalgebra on $\{2,\ldots,n-1\}$ iff $2 \otimes 2 = 2$.

Lemma

000

If $n \geq 3$, $rank(\mathcal{U}_n) \geq 0$ then \mathcal{U}_n has a subalgebra on $\{2, \ldots, n-1\}$ iff $2 \otimes 2 = 2$.

It is sufficient to treat the $\top \bot$ -indecomposable case.



It is sufficient to treat the $\top \bot$ -indecomposable case.

Consider a positive rank finite involutive uninorm * on $\{1,2,\ldots,n\}$. If * is not $\top\bot$ -indecomposable then it has a subalgebra on $\{2,\ldots,n-1\}$ and thus we have $2\to_*(n-1)\le n-1$ which implies 2*n=n. Therefore, in addition to (18), $n*\{2,3,\ldots,n\}$ holds too, that is, the Cayley table of * is uniquely determined by the Cayley table of the subalgebra, which is either $\top\bot$ -indecomposable or has a subalgebra on $\{3,\ldots,n-2\}$, etc.

It is
$$1 \otimes \{1, 2, ..., n\} = 1$$
 and $n \otimes \{k, k + 1, ..., n\} = n$. (18)

€ 6

ASubL 4.pdf (page 12 of 19)

Theorem 2 (rank 0,1) We have that * is the monoidal operation of a finite involutive FL_e -chain with rank 0 (resp. rank 1) iff n is odd (resp. n is even) and

$$x * y = \begin{cases} \min(x, y) & \text{if } x \le y' \\ \max(x, y), & \text{if } x > y' \end{cases}$$
 (4)

♠ ← ASubL 4.pdf (page 12 of 19)

Theorem 2 (rank 0,1) We have that * is the monoidal operation of a finite involutive FL_e -chain with rank 0 (resp. rank 1) iff n is odd (resp. n is even) and

$$x * y = \begin{cases} \min(x, y) & \text{if } x \le y' \\ \max(x, y), & \text{if } x > y' \end{cases}$$
 (4)

0 0

iddd.pdi

Corollary 3 IUL plus $e \leftrightarrow f$ doesn't have the FMP.

Denote \odot the drastic t-norm on $\{1, 2, \ldots, n\}$ by

$$x \odot y = \begin{cases} 1 & \text{if } x, y < n \\ \min(x, y) & \text{otherwise} \end{cases}$$
 (19)

Theorem 4 (rank 2) Let $n \geq 3$ odd. We have that * is a $\top \bot$ -indecomposable finite involutive uninorm on the chain $\{1,2,\ldots,n\}$ with rank 2 if and only if its underlying t-norm (resp. t-conorm) is \odot on the $\frac{n+3}{2}$ -element chain (resp. an arbitrary t-conorm on the $\frac{n-1}{2}$ -element chain).

Corollary 4 Denote C_n the number of conorm operations on an n-element chain. The number of $\top \bot$ -indecomposable involutive uninorms on an n-element chain with rank 2 equals to $C_{\frac{n-1}{2}}$. The number of involutive uninorms on an

n-element chain with rank 2 equals to $\sum_{i=1}^{2} C_i$.

arbitrary t-conorm on the $\frac{n-1}{2}$ -element chain).

Corollary 5 (rank -1) Let $n \ge 4$ even. We have that \circ is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank -1 satisfying $(n-1) \circ (n-1) = n$ if and only if its underlying t-norm (resp. t-conorm) is an arbitrary t-norm \otimes on the $\frac{n}{2}$ -element chain satisfying $2 \otimes 2 = 2$ (resp. the dual of \odot on the $\frac{n+2}{2}$ -element chain).

n-element chain with rank 2 equals to $\sum_{i=1}^{2} C_{i}$.

tions

posa

2 eq

arbitrary t-conorm on the $\frac{n-1}{2}$ -element chain).

Proposition 4 (rank n-1) Let $n \ge 1$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank n-1 if and only if its underlying t-norm (resp. t-conorm) is any Girard monoid on the n-element chain (resp. the t-conorm on the one-element chain).

Proposition 4 (rank n-1) Let $n \ge 1$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank n-1 if and only if its underlying t-norm (resp. t-conorm) is any Girard monoid on the n-element chain (resp. the t-conorm on the one-element chain).

Corollary 6 (rank 3-n) Let $n \ge 2$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank 3-n if and only if its underlying t-norm (resp. t-conorm) is the (unique) t-norm, namely, the minimum, on the two-element chain (resp. the dual of any Girard monoid on the n-1-element chain).

Theorem 5 (rank n-3) Let $n \geq 3$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank n-3 if and only if its underlying t-norm satisfies condition 1 in Definition 2 and its underlying t-conorm coincide with the maximum operation on the two-element chain.

Theorem 5 (rank n-3) Let $n \geq 3$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank n-3 if and only if its underlying t-norm satisfies condition 1 in Definition 2 and its underlying t-conorm coincide with the maximum operation on the two-element chain.

Corollary 7 (rank 5-n) Let $n \geq 5$. We have that * is a finite involutive uninorm on the chain $\{1, 2, ..., n\}$ with rank 5-n if and only if its underlying t-conorm coincide with the minimum operation on the three-element chain, and its underlying t-conorm satisfies condition 2 in Definition 2.

Thank you!