Unital commutative distributive ℓ -monoids and their unit intervals

Marco Abbadini

University of Salerno, Italy

July 7, 2021

DOCToR: Duality, Order, (Co)algebras, Topology, and Related topics

Based on

Chapter 4 of my Ph.D. thesis "On the axiomatisability of the dual of compact ordered spaces", University of Milan, 2021,

and

A., Equivalence à la Mundici for commutative lattice-ordered monoids, *Algebra Univers.* 82, 45 (2021).

Marco Abbadini

Unital commutative distributive ℓ -monoids and their unit intervals

Unital Abelian ℓ-groups, MV-algebras ●00000 Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Outline

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras

Applications, further work

Unital Abelian ℓ-groups, MV-algebras 0€0000 Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Unital Abelian $\ell\text{-}groups$ and MV-algebras

Definition

A *lattice-ordered group* (or ℓ -group, for short) is an algebra $\langle G; \lor, \land, +, -, 0 \rangle$ (arities 2, 2, 2, 1, 0) such that

- 1. $\langle G;+,-,0
 angle$ is a group;
- 2. $\langle G; \lor, \land \rangle$ is a lattice;
- 3. + preserves the lattice order (i.e. $x \le y$ implies $x + z \le y + z$ and $z + x \le z + y$).

An ℓ -group is called *Abelian* if + is commutative.

The underlying lattice of an ℓ -group is distributive.

Item 3. can be equivalently replaced by "+ distributes over \lor ", or by "+ distributes over \land ".

Unital Abelian ℓ-groups, MV-algebras 00€000 Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Unit intervals

Given an Abelian $\ell\text{-}\mathrm{group}\;\mathbf{G}$ and an element $1\in G$ such that $1\geq 0,$ one equips

$$\Gamma(\mathbf{G}, 1) \coloneqq \{ x \in G \mid 0 \le x \le 1 \}$$

with the operations \lor , \land , 0 and 1 defined by restriction,

$$x \oplus y \coloneqq (x+y) \land 1, \qquad x \odot y \coloneqq (x+(-1)+y) \lor 0,$$

and

$$\neg x \coloneqq 1 - x.$$

Unital Abelian ℓ-groups, MV-algebras 000€00 Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

MV-algebras

Definition [Chang, 1958]

An *MV-algebra* is an algebra $\langle A; \lor, \land, \oplus, \odot, 0, 1, \neg \rangle$ (arities 2, 2, 2, 2, 0, 0, 1) such that

- 1. $\langle A;\oplus,0\rangle$ and $\langle A;\odot,1\rangle$ are commutative monoids.
- 2. \lor and \land are commutative.
- 3. \oplus distributes over \wedge and \odot distributes over $\lor.$

4.
$$x \lor y = (x \odot \neg y) \oplus y$$
 and $x \land y = (x \oplus \neg y) \odot y$.

5. $x \oplus \neg x = 1$ and $x \odot \neg x = 0$.

Given an Abelian ℓ -group **G** and an element $1 \in G$ such that $1 \ge 0$, $\Gamma(\mathbf{G}, 1)$ is an MV-algebra. Every MV-algebra arises in this way, up to iso. Unital Abelian ℓ-groups, MV-algebras 0000€0 Unital commutative distributive ℓ -monoids, MV-monoidal algebras

Applications, further work

Good \mathbb{Z} -sequences

Given an MV-algebra \mathbf{A} , we construct the Abelian ℓ -group $\mathbb{G}(\mathbf{A})$ of *good* \mathbb{Z} -*sequences in the MV-algebra* \mathbf{A} , i.e., functions $\mathbf{x} \colon \mathbb{Z} \to A$ s.t.

1.
$$\mathbf{x}(n) = 1$$
 eventually for $n \to -\infty$,

2.
$$\mathbf{x}(n) = 0$$
 eventually for $n \to +\infty$,

3. for all $n \in \mathbb{Z}$,

$$\mathbf{x}(n) \oplus \mathbf{x}(n+1) = \mathbf{x}(n)$$

(or, equivalently, $\mathbf{x}(n) \odot \mathbf{x}(n+1) = \mathbf{x}(n+1)$). Denote with 1 the good \mathbb{Z} -sequence

$$\begin{split} \mathbb{Z} &\longrightarrow A \\ n &\longmapsto \begin{cases} 0 & n > 1; \\ 1 & n \leq 1. \end{cases} \end{split}$$

We have $\mathbf{A} \cong \Gamma(\mathbb{G}(\mathbf{A}), 1)$.

Mundici's equivalence

A *strong unit* of an Abelian ℓ -group **G** is an element $1 \in G$ such that $1 \ge 0$ and such that, for every $x \in G$, there exists $n \in \mathbb{N}_{>0}$ such that

$$n(-1) \le x \le n1.$$

Theorem [Mundici, 1986]

The categories

- 1. of Abelian ℓ -groups with strong unit and unit-preserving homomorphisms, and
- 2. of MV-algebras and homomorphisms

are equivalent.

Unital Abelian ℓ -groups, MV-algebras 000000 Unital commutative distributive ℓ -monoids, MV-monoidal algebras \bullet 0000000 Applications, further work

Outline

Unital Abelian *l*-groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras

Applications, further work

Definition

An $\ell\text{-monoid}$ is an algebra $\langle M; \lor, \land, +, 0\rangle$ (arities $2,\,2,\,2,\,0)$ such that

- 1. $\langle M;+,0
 angle$ is a monoid;
- 2. $\langle M; \lor, \land \rangle$ is a lattice;
- 3. + distributes over \vee and $\wedge.$

An ℓ -monoid $\langle M; \lor, \land, +, 0 \rangle$ is called *distributive* if the lattice $\langle M; \lor, \land \rangle$ is distributive, *commutative* if + is commutative.

Distributive ℓ -monoids : ℓ -groups = monoids : groups.

Commutative distributive ℓ-monoids : Abelian ℓ-groups = commutative monoids : Abelian groups.

Marco Abbadini

Given a commutative distributive $\ell\text{-monoid}\ {\bf M}$ and an invertible element $1\in M$ with $1\geq 0,$ set

$$\Gamma(\mathbf{M}, 1) \coloneqq \{ x \in M \mid 0 \le x \le 1 \}.$$

We turn $\Gamma(\mathbf{M}, 1)$ into an algebra $\langle \Gamma(\mathbf{M}, 1); \lor, \land, \oplus, \odot, 0, 1 \rangle$ (arities 2, 2, 2, 2, 0, 0) by defining $\lor, \land, 0$ and 1 by restriction, and

$$x\oplus y\coloneqq (x+y)\wedge 1, \qquad x\odot y\coloneqq (x+(-1)+y)\vee 0.$$

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras 00000000

Applications, further work

MV-monoidal algebras

Definition

An *MV-monoidal algebra* is an algebra $\langle A; \lor, \land, \oplus, \odot, 0, 1 \rangle$ (arities 2, 2, 2, 2, 0, 0) such that

- 1. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids.
- 2. $\langle A; \lor, \land \rangle$ is a distributive lattice.
- 3. Both \oplus and \odot distribute over both \lor and $\land.$
- 4. $(x \oplus y) \odot ((x \odot y) \oplus z) = (x \odot (y \oplus z)) \oplus (y \odot z).$
- 5. $(x \odot y) \oplus z = ((x \odot (y \oplus z)) \oplus (y \odot z)) \lor z$, and $(x \oplus y) \odot z = ((x \oplus (y \odot z)) \odot (y \oplus z)) \land z$.

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Unit intervals

Given a commutative distributive ℓ -monoid \mathbf{M} and an invertible element $1 \in M$ such that $1 \ge 0$, the algebra $\Gamma(\mathbf{M}, 1)$ is an MV-monoidal algebra. Every MV-monoidal algebra arises in this way, up to iso. Given an MV-monoidal algebra \mathbf{A} , one constructs the commutative distributive ℓ -monoid $\mathbb{G}(\mathbf{A})$ of *good* \mathbb{Z} -*sequences*, i.e. functions $\mathbf{x} \colon \mathbb{Z} \to A$ such that

1.
$$\mathbf{x}(n) = 0$$
 eventually for $n \to +\infty$,

2.
$$\mathbf{x}(n) = 1$$
 eventually for $n \to -\infty$,

- 3. for all $n \in \mathbb{Z}$, $\mathbf{x}(n) \oplus \mathbf{x}(n+1) = \mathbf{x}(n)$,
- 4. for all $n \in \mathbb{Z}$, $\mathbf{x}(n) \odot \mathbf{x}(n+1) = \mathbf{x}(n+1)$.

Denote with 1 the good \mathbb{Z} -sequence

$$\begin{split} \mathbb{Z} &\longrightarrow A \\ n &\longmapsto \begin{cases} 0 & n > 1; \\ 1 & n \leq 1. \end{cases} \end{split}$$

We have $\mathbf{A} \cong \Gamma(\mathbb{G}(\mathbf{A}), 1)$.

A *strong unit* of a commutative distributive ℓ -monoid **M** is an invertible element $1 \in M$ such that $1 \ge 0$ and such that, for every $x \in M$, there exists $n \in \mathbb{N}_{>0}$ such that

 $n(-1) \le x \le n1.$

Main result

The categories

- 1. of commutative distributive ℓ -monoids with strong unit and unit-preserving homomorphisms, and
- 2. of MV-monoidal algebras and homomorphisms

are equivalent.

The proof is choice-free.

Corollary

The categories

- 1. of Abelian ℓ -groups with strong unit and unit-preserving homomorphisms, and
- 2. of algebras $\langle A; \lor, \land, \oplus, \odot, 0, 1, \neg \rangle$ s.t.
 - 2.1 $\langle A; \lor, \land, \oplus, \odot, 0, 1 \rangle$ is an MV-monoidal algebra,
 - 2.2 $x \oplus \neg x = 1$ and $x \odot \neg x = 0$

and homomorphisms

are equivalent.

The proof is choice-free.

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Outline

Unital Abelian ℓ-groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras

Applications, further work

Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Compact ordered space

Definition [Nachbin, 1948]

A *compact ordered space* is a compact space X equipped with a partial order \leq , closed in $X \times X$.

Given a compact ordered space X,

- 1. the set of order-preserving continuous functions from X to \mathbb{R} is a commutative distributive ℓ -monoid with strong unit (with pointwise defined operations), and
- 2. the set of order-preserving continuous functions from X to [0,1] is an MV-monoidal algebra (with pointwise defined operations).

Theorem [A., 2019, A., Reggio, 2020]

The category of compact ordered spaces and order-preserving continuous maps is dually equivalent to a variety of infinitary algebras.

We provide a finite equational axiomatization.

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras 00000000

Applications, further work

Axiomatization

Definition

A 2-divisible MV-monoidal algebra is an algebra $(A; \lor, \land, \oplus, \odot, 0, 1, h, j)$ (arities 2, 2, 2, 2, 0, 1, 1) such that 1. $\langle A; \lor, \land, \oplus, \odot, 0, 1 \rangle$ is an MV-monoidal algebra; 2. $i(x) = h(1) \oplus h(x);$ 3. $h(x) = i(0) \odot i(x);$ 4. $h(x) \oplus h(x) = x;$ 5. $j(x) \odot j(x) = x;$ 6. $h(h(x) \oplus h(y)) = h(h(x)) \oplus h(h(y));$ 7. $j(j(x) \odot j(y)) = j(j(x)) \odot j(j(y)).$

Intented interpretation in [0, 1]:

$$h(x) = \frac{x}{2}, \quad j(x) = \frac{1}{2} + \frac{x}{2}.$$

Unital Abelian	ℓ-groups,	MV-algebras
000000		

For $n \in \mathbb{N}$,

$$\tau_n(x,y) \coloneqq \left(x \land (y \oplus \mathbf{h}^n(1))\right) \lor \left(y \odot \mathbf{j}^n(0)\right).$$

Inductively on $n \in \mathbb{N}_{>0}$:

$$\mu_1(x_1) \coloneqq x_1;$$

$$\mu_n(x_1, \dots, x_n) \coloneqq \tau_{n-1}(x_n, \mu_{n-1}(x_1, \dots, x_{n-1})).$$

Unital Abelian ℓ -groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras 00000000

Applications, further work

Definition

A limit 2-divisible MV-monoidal algebra is an algebra $\langle A; \vee, \wedge, \oplus, \odot, 0, 1, h, j, \lambda \rangle$ (arities 2, 2, 2, 2, 0, 0, 1, 1, ω) such that 1. $\langle A; \lor, \land, \oplus, \odot, 0, 1, h, j \rangle$ is a 2-divisible MV-monoidal algebra. 2. $\lambda(x, x, \dots) = x$. 3. $\lambda(\tau_0(x,y),\tau_1(x,y),\dots) = y.$ 4. $\lambda(x_1, x_2, \dots) = \lambda(\mu_1(x_1), \mu_2(x_1, x_2), \dots).$ 5. $\mu_2(x_1, x_2) \odot j(0) \le \lambda(x_1, x_2, \dots) \le \mu_2(x_1, x_2) \oplus h(1).$ 6. $\lambda(x_1, x_2, ...) \oplus \lambda(x_1, x_2, ...) =$ $\lambda(\mu_2(x_1, x_2) \oplus \mu_2(x_1, x_2), \mu_3(x_1, x_2, x_3) \oplus \mu_3(x_1, x_2, x_3), \dots).$ 7. $\lambda(x_1, x_2, ...) \odot \lambda(x_1, x_2, ...) =$ $\lambda(\mu_2(x_1, x_2) \odot \mu_2(x_1, x_2), \mu_3(x_1, x_2, x_3) \odot \mu_3(x_1, x_2, x_3), \dots).$

Intended interpretation in [0, 1]:

$$\lambda(x_1, x_2, \dots) = \lim_{n \to \infty} \mu_n(x_1, \dots, x_n).$$

Theorem

The category of compact ordered spaces and order-preserving continuous maps is dually equivalent to the (infinitary, finitely axiomatized) variety of limit 2-divisible MV-monoidal algebras.

Unital Abelian ℓ-groups, MV-algebras 000000 Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Positive MV-algebras

From an abstract by Cabrer, Jipsen, Kroupa (SYSMICS 2019):

Definition

A *positive MV-algebra* is an algebra $\langle A; \lor, \land, \oplus, \odot, 0, 1 \rangle$ that is isomorphic to a subreduct of some MV-algebra.

The class of positive MV-algebras is the quasivariety generated by $\langle [0,1]; \lor, \land, \oplus, \odot, 0, 1 \rangle$.

Term-functions on [0, 1]: order-preserving McNaughton functions.

"Positive MV-algs. : MV-algs. = bdd. distr. lattices : Bool. algs."

Question

Does there exist a finite quasi-equational axiomatization for the class of positive MV-algebras?

Marco Abbadini

Proposition [Work in progress with Jipsen, Kroupa, Vannucci]

An algebra $\langle A; \lor, \land, \oplus, \odot, 0, 1 \rangle$ is a positive MV-algebra iff it is an MV-monoidal algebra satisfying

If $x \oplus z = y \oplus z$ and $x \odot z = y \odot z$, then x = y. (*)

A commutative distributive ℓ -monoid \mathbf{M} with strong unit 1 is cancellative iff (*) holds in $\Gamma(\mathbf{M}, 1)$.

Applications, further work

Finite non-axiomatizability

An ℓ -semigroup is an algebra $\langle M; \lor, \land, + \rangle$ such that $\langle M; + \rangle$ is a semigroup, $\langle M; \lor, \land \rangle$ is a lattice, and + distributes over \lor and \land . An ℓ -semigroup $\langle M; \lor, \land, + \rangle$ is called *distributive* if the lattice $\langle M; \lor, \land \rangle$ is distributive, *commutative* if + is commutative.

Proposition (see [Repnitskii, 1983])

The variety of commutative distributive ℓ -semigroups is not generated by any cancellative commutative distributive ℓ -semigroup.

For example,

$$(x+y) \land (z+w) \le (x+z) \lor (y+w).$$

holds in every cancellative commutative distributive ℓ -semigroup, but fails in some (totally ordered, positive) commutative distributive ℓ -semigroups.

Marco Abbadini

Theorem [Repnitskii, 1983]

The variety generated by any nontrivial cancellative commutative distributive ℓ -semigroup admits no finite equational axiomatization.

Unital Abelian *l*-groups, MV-algebras

Unital commutative distributive $\ell\text{-monoids},$ MV-monoidal algebras 00000000

Applications, further work

Finite non-axiomatizability

Proposition

The variety of MV-monoidal algebras is not generated by $\langle [0,1]; \lor, \land, \oplus, \odot, 0, 1 \rangle$.

Indeed,

$$(x\oplus y)\wedge (z\oplus w)\leq (x\oplus z)\vee (y\oplus w).$$

holds in $\left[0,1\right]$ but fails in some MV-monoidal algebras.

Conjecture

The variety generated by $\langle [0,1]; \lor, \land, \oplus, \odot, 0, 1 \rangle$ admits no finite equational axiomatization.

Unital Abelian *l*-groups, MV-algebras

Unital commutative distributive ℓ -monoids, MV-monoidal algebras 00000000

Applications, further work

Perfect MV-monoidal algebras

We have an equivalence between

- 1. the category of commutative distributive ℓ -monoids, and
- 2. a full subcategory of the category of MV-monoidal algebras, whose objects we call *perfect MV-monoidal algebras*.

Unital Abelian	ℓ-groups,	MV-algebras
000000		

Thank you for your attention.