Two-dimensional logics for (comparative) uncertainty

Marta Bílková ${ }^{1}$, Sabine Fritella ${ }^{2}$, Daniil Kozhemiachenko ${ }^{2}$
${ }^{1}$ Czech Academy of Sciences, Institute of Computer Science
${ }^{2}$ INSA Centre Val de Loire, Univ. Orléans
DOCToR July 72021

\dagger April, 2021

Motivation: Belief based on information

- It is natural to view belief as based on evidence/information
- Potential incompleteness, uncertainty, and contradictoriness of information needs to be dealt with adequately
- Separately, these characteristics has been taken into account by various appropriate logical formalisms and (classical) probability theory
- The first two are often accommodated within one formalism (e.g. imprecise probability), the second two less so.
- Conflict or contradictoriness of information is rather to be resolved than to be reasoned with.

Addressing incompleteness and contradictoriness of information in one framework:

- separating positive and negative information, which are not considered complementary and can overlap
- semantically, distinguishing support for from opposition to a statement (or qualifying/quantifying evidence for and evidence against a statement being the case separately)
- explicit in the double-valuation semantics of Belnap-Dunn logic, and the concept of bi-lattices.
- this approach can be extended to encompass uncertainty measures like probabilities, and graded reasoning.

Belnap-Dunn logic: qualifying evidence

Language $L_{B D}$:

$\varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$

$(4, \wedge, \vee, \neg)$ is a de Morgan algebra

- $(4, \wedge, \vee)$ is a distributive lattice
- each element represents the availability of positive and/or negative information
- t : true (top)
- n: no info b: contradictory info
- f : false (bottom)
- \neg is an involutive de Morgan negation.

BD consequence relation and Exactly true logic

$\Gamma \vDash_{\mathrm{BD}} \varphi$ given as preservation of $\{t, b\}$.
$\Gamma \vDash_{\mathrm{ETL}} \varphi$ given as preservation of $\{t\}$.

Belnap-Dunn square 4
$(0,1)$

BD is completely axiomatized using the following axioms and rules:

$$
\begin{array}{llll}
\varphi \wedge \psi \vdash \varphi & \varphi \wedge \psi \vdash \psi & \varphi \vdash \psi \vee \varphi & \varphi \vdash \varphi \vee \psi \\
\varphi \vdash \neg \neg \varphi & \neg \neg \varphi \vdash \varphi & \varphi \wedge(\psi \vee \chi) \vdash(\varphi \wedge \psi) \vee(\varphi \wedge \chi) \\
\neg \varphi \wedge \neg \psi \vdash \neg(\varphi \vee \psi) & \neg(\varphi \wedge \psi) \vdash \neg \varphi \vee \neg \psi \\
\frac{\varphi \vdash \psi, \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi, \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & \frac{\varphi \vdash \chi, \psi \vdash \chi}{\varphi \vee \psi \vdash \chi} & \frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi}
\end{array}
$$

- $\Gamma \vdash_{\mathrm{BD}} \varphi$ is the consequence relation generated by the above
- BD is strongly complete w.r.t. the algebraic semantics.
- BD allows for a unique (irredundant) DNF and CNF.

Non-standard probabilities: quantifying evidence

$=$ probabilistic extension of BD logic

- m : PLit $\rightarrow[0,1]$ a mass function: $\sum_{\Gamma \subseteq \text { Lit }} m(\Gamma)=1$
- Generates an assignment $\left(p^{+}, p^{-}\right): L_{B D} \rightarrow[0,1] \times[0,1]^{o p}$:

$$
\begin{aligned}
& p^{+}(\varphi)=\sum\{m(\Gamma) \mid \Gamma \vdash \varphi\} \\
& p^{-}(\varphi)=p^{+}(\neg \varphi) \quad \text { coherence }
\end{aligned}
$$

The non-standard probability function p^{+}satisfies:

(A1) normalization $0 \leq p^{+}(\varphi) \leq 1$
(A2) monotonicity if $\varphi \vdash_{\mathrm{BD}} \psi$ then $p^{+}(\varphi) \leq p^{+}(\psi)$
(A3) incl.-excl. $\quad p^{+}(\varphi \wedge \psi)+p^{+}(\varphi \vee \psi)=p^{+}(\varphi)+p^{+}(\psi)$.

- D. Klein, O. Majer, S. Raffie-Rad, Probabilities with gaps and gluts, JPL 2021.
- C. Zhou, Belief functions on distributive lattices. Artif. Intell. 201, (2013).

Non-standard probabilities range

Continuous extension of Belnap-Dunn square: the product

 bilattice $\mathrm{L}_{[0,1]} \odot \mathrm{L}_{[0,1]}$ with $\mathrm{L}_{[0,1]}=([0,1]$, min, max $)$.$$
\begin{aligned}
& \text { product bilattice } \mathrm{L}_{[0,1]} \odot \mathrm{L}_{[0,1]} \\
& \qquad \begin{aligned}
\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right) & =\left(a_{1} \wedge b_{1}, a_{2} \vee b_{2}\right) \\
\left(a_{1}, a_{2}\right) & \vee\left(b_{1}, b_{2}\right)=\left(a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right) \\
\neg\left(a_{1}, a_{2}\right) & =\left(a_{2}, a_{1}\right)
\end{aligned}
\end{aligned}
$$

- $\left(p^{+}(\varphi), p^{-}(\varphi)\right)$: positive/negative probabilistic support of φ. $(0,0)$: no information available, $(1,1)$: maximally conflicting information
- "classical" vertical line: $p^{+}(\varphi)=1-p^{-}(\varphi)$
- Graded reasoning about (belief based on) probabilities?

Other uncertainty measures

Aggregating probabilities: $\left(p^{+}, p^{-}\right)$, in general satisfy only

(A1) normalization $0 \leq p^{+}(\varphi) \leq 1$
(A2) monotonicity if $\varphi \vdash_{\mathrm{BD}} \psi$ then $p^{+}(\varphi) \leq p^{+}(\psi)$
coherence
$p^{-}(\varphi)=p^{+}(\neg \varphi)$
Inner probabilities (cf. belief functions): $\left(b^{+}, b^{-}\right)$
(A1) normalization
$0 \leq b^{+}(\varphi) \leq 1$
(A2) monotonicity
if $\varphi \vdash_{\mathrm{BD}} \psi$ then $b^{+}(\varphi) \leq b^{+}(\psi)$
(A3) incl.-excl.
$b^{+}(\varphi \vee \psi) \geq b^{+}(\varphi)+b^{+}(\psi)-b^{+}(\varphi \wedge \psi)$
coherence
$b^{-}(\varphi)=b^{+}(\neg \varphi)$

Necessity/possibility measures: $\nu=(n, p), \pi=(p, n)$

normalization, monotonicity distribution $n(\varphi \wedge \psi)=n(\varphi) \wedge n(\psi), p(\varphi \vee \psi)=p(\varphi) \vee p(\psi)$ coherence $\nu(\neg \varphi)=\neg \pi(\varphi)$

Two-dimensional logics for uncertainty

- to be interpreted over an algebra (matrix) expanding
$[0,1] \odot[0,1]$ with implication, fusion, negation, ...
- to be able to express:
I. all three probability (belief functions) axioms in case of uncertainty
- derived from Łukasiewicz logic and $[0,1]_{\mathrm{E}}$
II. monotonicity and coherence (and \wedge, \vee distribution) in case of comparative uncertainty
- derived from Gödel logic and $[0,1]_{G}$
- two ways of negating implication
(a) "de Morgan" way, using a co-implication

$$
\neg(a \rightarrow b):=(\neg b \prec \neg a)
$$

(b) "Nelson" way, combining positive and negative semantical values

$$
\neg(a \rightarrow b):=(a \& \neg b)
$$

case I.(a): $\mathrm{Ł}^{2}(\rightarrow)$, reasoning with probabilities

Standard MV algebra

$$
[0,1]_{\mathrm{L}}=\left([0,1], \wedge, \vee, \&_{\mathrm{L}}, \rightarrow_{\mathrm{L}}\right):
$$

$$
\begin{array}{rlrl}
a \wedge b & =\min \{a, b\}, & a \&_{\mathrm{E}} b:=\max \{0, a+b-1\} \\
a \vee b:=\max \{a, b\} & \left.a \rightarrow_{\mathrm{E}} b:=\min \{1,1-a+b)\right\} \\
\sim_{\mathrm{E}} a & :=a \rightarrow_{\mathrm{E}} 0=1-a &
\end{array}
$$

Definable connectives:

$$
\begin{aligned}
& a \oplus_{\mathrm{L}} b:=\sim a \rightarrow_{\mathrm{L}} b=\min \{1, a+b\} \\
& a \ominus_{\mathrm{E}} b:=\sim\left(a \rightarrow_{\mathrm{L}} b\right)=\max \{0, a-b\}
\end{aligned}
$$

\ominus_{e} can be seen as a co-implication.

case I.(a): $\mathrm{E}_{(1,0)}^{2}(\rightarrow)$, reasoning with probabilities

Bilattice product $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right)$,
$F=\{(1,0)\}$,

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, b_{2} \ominus a_{2}\right) \\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{2} \oplus b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, \sim_{\mathrm{L}} a_{2}\right)
\end{aligned}
\end{aligned}
$$

Notice: \neg is symmetry along the horizontal, \sim is symmetry along the middle point, $\sim \neg$ is symmetry along the vertical (conflation). $\neg \alpha \leftrightarrow \sim \alpha$ defines the vertical. \neg and \sim are distinct.
$\Gamma \vDash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)} \alpha$ defined as preservation of $(1,0)$. Its (\wedge, \vee, \neg)-fragment coincides with ETL.

case I. $(\mathrm{a}): \mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, reasoning with probabilities

Bilattice product $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$,

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, b_{2} \ominus a_{2}\right) \\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{2} \oplus b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, \sim_{\mathrm{L}} a_{2}\right)
\end{aligned}
\end{aligned}
$$

Notice: \neg is symmetry along the horizontal, \sim is symmetry along the middle point, $\sim \neg$ is symmetry along the vertical (conflation). $\neg \alpha \leftrightarrow \sim \alpha$ defines the vertical. \neg and \sim are distinct.
$\Gamma \vDash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha$ defined as preservation of $(1,1)^{\uparrow}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.

case I.(a): $\mathrm{E}_{(1,0)}^{2}(\rightarrow)$, reasoning with probabilities

$\mathrm{E}_{(1,0)}^{2}(\rightarrow): \mathrm{£}$ expanded with the bi-lattice negation \neg.

Axiomatization of $\mathrm{E}_{(1,0)}^{2}(\rightarrow)$

$$
\begin{aligned}
\alpha & \rightarrow(\beta \rightarrow \alpha) \\
(\alpha \rightarrow \beta) & \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)) \\
((\alpha \rightarrow \beta) \rightarrow \beta) & \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \\
(\sim \beta \rightarrow \sim \alpha) & \rightarrow(\alpha \rightarrow \beta)
\end{aligned}
$$

$$
\neg \neg \alpha \leftrightarrow \alpha
$$

$$
\neg \sim \alpha \leftrightarrow \sim \neg \alpha
$$

$$
(\sim \neg \alpha \rightarrow \sim \neg \beta) \leftrightarrow \sim \neg(\alpha \rightarrow \beta)
$$

$$
\alpha, \alpha \rightarrow \beta \vdash \beta \quad \alpha \vdash \sim \neg \alpha
$$

- ᄀ- negation normal form
- Deduction theorem:

$$
\Gamma, \alpha \vdash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)} \beta \text { iff } \exists n, n \Gamma \vdash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)}(\sim \neg \alpha)^{n} \& \alpha^{m} \rightarrow \beta
$$

Theorem: $\mathrm{E}_{(1,0)}^{2}(\rightarrow)$ is finitely strongly standard-complete

$$
\text { w.r.t. }(([0,1] \odot[0,1], \rightarrow, \sim),\{(1,0)\})
$$

case I.(a): $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, reasoning with probabilities

Axiomatization of $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$

$$
\begin{array}{rlrl}
\alpha & \rightarrow(\beta \rightarrow \alpha) & \neg \neg \alpha \leftrightarrow \alpha \\
(\alpha \rightarrow \beta) & \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)) & & \neg \sim \alpha \leftrightarrow \sim \sim \alpha \\
((\alpha \rightarrow \beta) \rightarrow \beta) & \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) & (\sim \neg \alpha \rightarrow \sim \neg \beta) & \leftrightarrow \sim \neg(\alpha \rightarrow \beta) \\
(\sim \beta \rightarrow \sim \alpha) & \rightarrow(\alpha \rightarrow \beta) & \alpha, \alpha \rightarrow \beta \vdash \beta & \vdash \alpha / \vdash \sim \neg \alpha
\end{array}
$$

- $ᄀ$ - negation normal form
- Deduction theorem:

$$
\Gamma, \alpha \vdash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \beta \text { iff } \exists n \Gamma \vdash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha^{n} \rightarrow \beta
$$

Theorem: $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$ is finitely strongly standard-complete

$$
\text { w.r.t. }\left(([0,1] \odot[0,1], \rightarrow, \sim),(1,1)^{\uparrow}\right)
$$

Case I $(\mathrm{b}): \mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, reasoning with probabilities

Product bi-lattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}:$

$$
\begin{align*}
& {[0,1] \odot[0,1] \text { expanded with }} \tag{1,0}\\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, a_{1} \&_{\mathrm{E}} b_{2}\right) \\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{1} \rightarrow_{\mathrm{E}} \sim_{\mathrm{E}} b_{1}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, a_{1}\right)
\end{aligned}
\end{align*}
$$

$(0,0)$

$\Gamma \vDash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.

The weak equivalence $\alpha \leftrightarrow \beta:=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$ is not congruential, the strong one $\alpha \longleftrightarrow \beta:=(\alpha \leftrightarrow \beta) \wedge(\neg \alpha \leftrightarrow \neg \beta)$ is.

Case I $(\mathrm{b}): \mathrm{E}_{(1,1)^{\dagger}}^{2}(\rightarrow)$, reasoning with probabilities

Product bi-lattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}:$

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{\mathrm{E}} b_{1}, a_{1} \&_{\mathrm{E}} b_{2}\right) \\
\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right) & =\left(a_{1} \&_{\mathrm{E}} b_{1}, a_{1} \rightarrow_{\mathrm{E}} \sim_{\mathrm{E}} b_{1}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{\mathrm{E}} a_{1}, a_{1}\right)
\end{aligned}
\end{aligned}
$$

$(1,0)$
$(0,0)$

$(0,1)$
$\Gamma \vDash_{\mathrm{L}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.
$\sim \alpha$ is always on the vertical. $\sim \alpha \leftrightarrow \neg \neg \alpha$ defines the vertical, $\sim \alpha \rightarrow \neg \alpha$ defines the right triangle, and $\neg \alpha \rightarrow \sim \alpha$ the left. $(\alpha \rightarrow \beta) \wedge(\neg \alpha \rightarrow \neg \beta)$ captures the information order.

Case I $(\mathrm{b}): \mathrm{E}_{(1,1)^{\dagger}}^{2}(\rightarrow)$, reasoning with probabilities

Axiomatics of $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$:

The axioms of Łukasiewicz logic (in terms of the weak implication) with MP as the only rule, plus the \neg-axioms:

$$
\begin{aligned}
\neg \neg \alpha & \leftrightarrow \alpha \\
\neg(\alpha \wedge \beta) & \leftrightarrow \neg \alpha \vee \neg \beta \\
\neg(\alpha \vee \beta) & \leftrightarrow \neg \alpha \wedge \neg \beta \\
\neg(\alpha \rightarrow \beta) & \leftrightarrow(\alpha \& \neg \beta) \\
\neg(\alpha \& \beta) & \leftrightarrow(\alpha \rightarrow \sim \beta) \\
\neg 0 & \leftrightarrow \sim 0
\end{aligned}
$$

- - -negation normal form (weakly equivalent only)
- Deduction theorem as in L
- Finite strong standard completeness (FSSC)

case II.(a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty

Standard Gödel algebra:

$$
[0,1]_{G}=\left([0,1], \wedge, \vee, \rightarrow_{G}\right)
$$

$$
\begin{gathered}
a \rightarrow_{G} b=\left\{\begin{array}{l}
1, \text { if } a \leq b \\
b \text { else }
\end{array} \quad \sim_{G} a:=a \rightarrow_{G} 0\right. \\
c \leq a \rightarrow_{G} b \text { iff } a \wedge c \leq b
\end{gathered}
$$

can be expanded by a co-implication:

$$
\begin{gathered}
b \prec_{G} a=\left\{\begin{array}{l}
0, \text { if } b \leq a \quad-{ }_{G} a:=1 \prec_{G} a \\
b \text { else }
\end{array}\right. \\
b \prec_{G} a \leq c \text { iff } b \leq a \vee c
\end{gathered}
$$

case II.(a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty

Product bilattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right)$,
$F=\{(1,0)\}$,

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow_{G} b_{1}, b_{2} \prec_{G} a_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1},-a_{2}\right)
\end{aligned}
\end{aligned}
$$

$\Gamma \vDash_{G_{(1,0)}^{2}(\rightarrow)} \alpha$ defined as preservation of $(1,0)$. Its (\wedge, \vee, \neg)-fragment coincides with ETL.

case II.(a): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty

Product bilattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$,

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) \rightarrow\left(b_{1}, b_{2}\right) & =\left(a_{1} \rightarrow G b_{1}, b_{2} \prec_{G} a_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1},-a_{2}\right)
\end{aligned}
\end{aligned}
$$

$(1,0)$

$(0,1)$
$\Gamma \vDash_{\left.G_{(1,1) \uparrow}^{2} \uparrow\right)} \alpha$ defined as preservation of $(1,1)^{\uparrow}$. Its (\wedge, \vee, \neg)-fragment coincides with BD.

case II.(a): $G_{(1,0)}^{2}(\rightarrow)$, comparative uncertainty

$G_{(1,0)}^{2}(\rightarrow)$: bi-Gödel logic expanded with a bi-lattice negation
Axiomatization: bi-IL in the language $\{\wedge, \vee, \rightarrow, \prec, 0,1\}$ extended with the prelinearity axiom: $(\alpha \rightarrow \beta) \vee(\beta \rightarrow \alpha)$

$$
\begin{aligned}
& \neg \neg \alpha \leftrightarrow \alpha \quad \neg 0 \leftrightarrow \sim 0 \\
& \neg(\alpha \wedge \beta) \leftrightarrow(\neg \alpha \vee \neg \beta) \\
& \neg(\alpha \vee \beta) \leftrightarrow(\neg \alpha \wedge \neg \beta) \\
& \neg(\alpha \rightarrow \beta) \leftrightarrow(\neg \beta \prec \neg \alpha) \\
& \alpha \vdash \sim \neg \alpha
\end{aligned}
$$

- ᄀ-negation normal form; $p \wedge \neg p \vdash q$
- Deduction theorem: $\boldsymbol{\Gamma}, \alpha \vdash \beta$ iff $\Gamma \vdash \sim-\alpha \wedge \sim \neg \alpha \rightarrow \beta$
- Standard strong completeness (SSC)
- Its theorems coincide with Wansing's $I_{4} C_{4}$ extended with prelinearity axiom.

case II.(a): $G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$, comparative uncertainty

Axiomatization: bi-IL in the language $\{\wedge, \vee, \rightarrow, \prec, 0,1\}$ extended with the prelinearity axiom: $(\alpha \rightarrow \beta) \vee(\beta \rightarrow \alpha)$

$$
\begin{aligned}
\neg \neg \alpha & \leftrightarrow \alpha \quad \neg 0 \leftrightarrow \sim 0 \\
\neg(\alpha \wedge \beta) & \leftrightarrow(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \vee \beta) & \leftrightarrow(\neg \alpha \wedge \neg \beta) \\
\neg(\alpha \rightarrow \beta) & \leftrightarrow(\neg \beta \prec \neg \alpha) \\
\vdash \alpha & \vdash \sim \neg \alpha
\end{aligned}
$$

- ᄀ-negation normal form; $p \wedge \neg p \nvdash q$
- Deduction theorem: $\boldsymbol{\Gamma}, \alpha \vdash \beta$ iff $\Gamma \vdash \sim-\alpha \rightarrow \beta$
- Standard strong completeness (SSC)
- Wansing's $I_{4} C_{4}$ extended with prelinearity axiom.

Case II $(\mathrm{b}): G_{(1,1)^{\dagger}}^{2}(\rightarrow)$, comparative uncertainty

product bi-lattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) & \rightarrow\left(b_{1}, b_{2}\right) \\
& =\left(a_{1} \rightarrow G b_{1}, a_{1} \wedge b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1}, a_{1}\right)
\end{aligned}
\end{aligned}
$$

$(1,0)$

$(0,1)$
$\Gamma \vDash_{\left.G_{(1,1) \uparrow}^{2} \rightarrow \rightarrow\right)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$.
The weak equivalence $\alpha \leftrightarrow \beta:=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$ is not congruential, the strong one $\alpha \Longleftrightarrow \beta:=(\alpha \leftrightarrow \beta) \wedge(\neg \alpha \leftrightarrow \neg \beta)$ is.

Case II $(\mathrm{b}): G_{(1,1)^{\dagger}}^{2}(\rightarrow)$, comparative uncertainty

product bi-lattice $[0,1] \odot[0,1], \neg\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right), F=(1,1)^{\uparrow}$:

$$
\begin{aligned}
& {[0,1] \odot[0,1] \text { expanded with }} \\
& \begin{aligned}
\left(a_{1}, a_{2}\right) & \rightarrow\left(b_{1}, b_{2}\right) \\
& =\left(a_{1} \rightarrow G b_{1}, a_{1} \wedge b_{2}\right) \\
\sim\left(a_{1}, a_{2}\right) & =\left(\sim_{G} a_{1}, a_{1}\right)
\end{aligned}
\end{aligned}
$$

$\Gamma \vDash_{\left.G_{(1,1) \uparrow}^{2} \rightarrow \rightarrow\right)} \alpha$ defined as preservation of $F=\{(1, a) \mid a \in[0,1]\}$.
The resulting logic coincides with Nelson's $N 4^{\perp}$ extended with prelinearity (global consequence).

... of quantified uncertainty

- $\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow), \mathrm{E}_{(1,0)^{\uparrow}}^{2}(\rightarrow), \mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$
- Finitely strong standard complete axiomatization
- Varying the filters $(x, y)^{\uparrow}$: different tautologies, different entailments
- Constraint tableaux calculi, finitary
 entailment is coNP-complete.
- M. Bílková, S. Fritella, D. Kozhemiachenko. Constraint tableaux for two-dimensional fuzzy logics, TABLEAUX 2021.

Two-dimensional logics: summing up

of comparative uncertainty

- $G_{(1,0)^{\uparrow}}^{2}(\rightarrow), G_{(1,1)^{\uparrow}}^{2}(\rightarrow), G_{(1,1)^{\uparrow}}^{2}(\rightarrow)$
- Strong standard complete axiomatization
- Varying the filters $(x, y)^{\uparrow}$: same tautologies, different entailments:
- Constraint tableaux calculi, frame
 semantics, finitary entailment is coNP-complete.
$1>x>y>0$ for $G^{2}(\rightarrow)$
$\vDash_{(x, 1)^{\uparrow}} \subset F_{(1,1)^{\uparrow}} \subset F_{(1,0)^{\uparrow}}$
$\vDash_{(x, 1) \uparrow} \subset \vDash_{(y, x)^{\uparrow}} \subset \vDash_{(x, x)^{\uparrow}} \subset \vDash_{(x, y)^{\uparrow}} \subset \vDash_{(1,0)^{\uparrow}}$

Probabilistic belief (quantified uncertainty)

- Two-layer logics (BD, M, $\left.\mathrm{E}_{(1,0)}^{2}(\rightarrow)\right)$ or (BD, M, $\left.\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)\right)$
- Finite strong completeness w.r.t. intended semantics

M: $\vdash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)} B \neg \varphi \leftrightarrow \neg B \varphi \quad \varphi \vdash_{\mathrm{BD}} \psi / \vdash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)} B \varphi \rightarrow B \psi$

$$
\vdash_{\mathrm{E}_{(1,0)}^{2}(\rightarrow)} B(\varphi \vee \psi) \leftrightarrow(B \varphi \ominus B(\varphi \wedge \psi)) \oplus B \psi
$$

- M.Bílková, S. Fritella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.

Probabilistic belief (quantified uncertainty)

- Two-layer logics (BD, M, $\left.\mathrm{E}_{(1,0)}^{2}(\rightarrow)\right)$ or (BD, $\left.M, \mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)\right)$
- Finite strong completeness w.r.t. intended semantics

M: $\quad \vdash_{\left.\mathrm{L}_{(1,1)^{\uparrow}}^{2} \rightarrow\right)} B \neg \varphi \leftrightarrow \neg B \varphi \quad \varphi \vdash_{\mathrm{BD}} \psi / \vdash_{\left.\mathrm{E}_{(1,1) \uparrow^{2}}^{2} \rightarrow\right)} B \varphi \Longrightarrow B \psi$ $\vdash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} B(\varphi \vee \psi) \leftrightarrow(B \varphi \ominus B(\varphi \wedge \psi)) \oplus B \psi$ $\vdash_{\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)} B(\varphi \wedge \psi) \leftrightarrow(B \varphi \ominus B(\varphi \vee \psi)) \oplus B \psi$

- M.Bílková, S. Fritella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.

Monotone coherent belief (comparative uncertainty)

- Two-layer logics (BD, $\left.M^{\prime}, G_{(1,0)}^{2}(\rightarrow)\right)$ or (BD, $\left.M^{\prime}, G_{(1,1)^{\uparrow}}^{2}(\rightarrow)\right)$
- Strong completeness w.r.t. intended semantics

Modal rules M^{\prime} :

$$
\vdash_{G_{(1,0)}^{2}(\rightarrow)} B \neg \varphi \leftrightarrow \neg B \varphi
$$

$$
\varphi \vdash_{\mathrm{BD}} \psi / \vdash_{G_{(1,0)}^{2}(\rightarrow)}^{(1)} B \varphi \rightarrow B \psi .
$$

- M.Bíková, S. Fritella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.

Monotone coherent belief (comparative uncertainty)

- Two-layer logics (BD, $\left.M^{\prime}, G_{(1,0)}^{2}(\rightarrow)\right)$ or (BD, $\left.M^{\prime}, G_{(1,1)^{\uparrow}}^{2}(\rightarrow)\right)$
- Strong completeness w.r.t. intended semantics

Modal rules $M^{\prime}: \quad \quad \vdash_{G^{2}} B \neg \varphi \leftrightarrow \neg B \varphi$

$$
\varphi \vdash_{\mathrm{BD}} \psi / \vdash_{G^{2}} B \varphi \Rightarrow B \psi .
$$

- M.Bílková, S. Fritella, O. Majer, S. Nazari. Belief based on inconsistent information, DaLi 2020, LNCS volume 12569, pp 68-86, 2020.

Example: believing $(\varphi \wedge \neg \varphi)$

For a BD formula φ,

$\mathrm{E}_{(1,1)^{\uparrow}}^{2}(\rightarrow)$

- $B(\varphi \wedge \neg \varphi) \rightarrow \sim(B(\varphi \wedge \neg \varphi))$ says " rather small degree of conflict" (closer to 0 then 1)
- $\sim B(\varphi \wedge \neg \varphi) \rightarrow(B(\varphi \wedge \neg \varphi))$ says " rather big degree of conflict" (closer to 1 then 0)
$\mathrm{E}_{(1,0)}^{2}(\rightarrow)$
- $B(\varphi \wedge \neg \varphi) \rightarrow \sim(B(\varphi \wedge \neg \varphi))$ says "rather small degree of conflict" and " rather small degree of ignorance"
(By "says" I mean consequences of the formula being designated in the resp. algebra.)

Additional references

- [Belnap 19] How a computer should think, New Essays on Belnap-Dunn Logic, 2019.
- [Cintula \& Noguera 14] Modal logics of uncertainty with two-layer syntax: A general completeness theorem, WoLLIC 2014.
- [Dunn 76] Intuitive semantics for first-degree entailments and 'coupled trees'. Philosophical Studies 29(3), 149-168, 1976.
- [Hájek 98] Metamathematics of Fuzzy Logic, Trends in Logic.
- [Fagin, Halpern, Megiddo] A Logic for Reasoning about Probabilities, Information and Computation 87, 78-128, 1990.
- [Wansing 08] Constructive negation, implication, and co-implication Journal of Applied Non-Classical Logics 18 (2-3):341-364 (2008).

