POLYHEDRAL SEMANTICS FOR MODAL LOGIC

DAVID GABELAIA

DOCTOR: DUALITY, ORDER, (CO)ALGEBRAS, TOPOLOGY, AND RELATED TOPICS

VARIOUS TOPOLOGICAL SEMANTICS

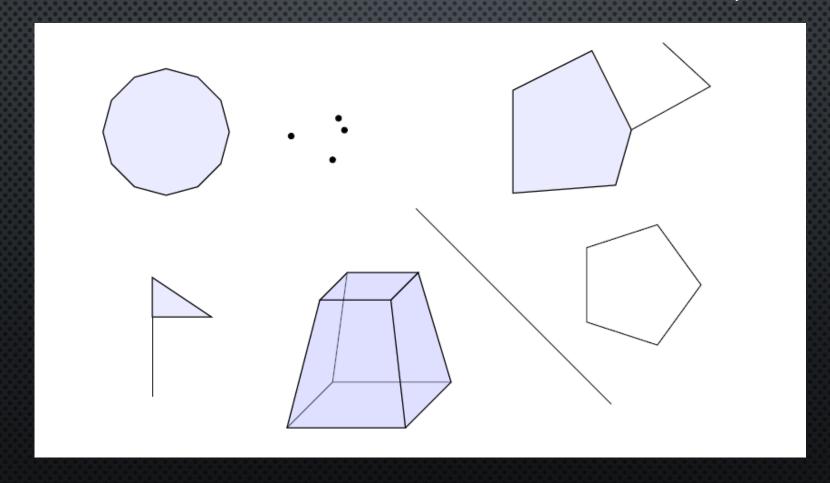
 \bullet A TOPOLOGICAL SPACE X GIVES RISE TO:

Heyting algebra	Closure algebra	Derivative algebra
Op(X)	$(\wp(X), c)$	$(\wp(X), \mathbf{d})$
IPC	S4	wK4

- The algebra $Op(\mathbb{R}^n)$ generates the whole variety
- SUBALGEBRAS OF $Op(\mathbb{R}^n)$ GENERATE ALL SUBVARIETIES

PIECEWISE LINEAR SUBSETS

- ullet Consider only polyhedral subsets of \mathbb{R}^n
- GENERATED BY CONVEX HULLS OF FINITE SETS (POLYTOPES)



POLYHEDRAL ALGEBRAS

- FOR A POLYHEDRON P LET Sub(P) DENOTE THE CLOSURE ALGEBRA OF SUBPOLYHEDRA OF P
- CALL A MODAL LOGIC (VARIETY) POLYHEDRAL IFF IT IS GENERATED BY POLYHEDRAL ALGEBRAS

QUESTIONS:

- WHICH LOGICS ARE POLYHEDRAL?
- What is a logic of a particular class of POLYHEDRA?

OVERVIEW OF THE TALK

- 1. CRITERION FOR POLY-COMPLETENESS
- 2. POLY-COMPLETE AND POLY-INCOMPLETE LOGICS
- 3. Starlike logics
- 4. CONVEX LOGICS based on joint work with S. Adam-Day, N. Bezhanishvili and E. Marra
- 5. FLAT POLYGONAL LOGICS based on joint work with K. Gogoladze, E. Kuznetsov, M. Jibladze, K. Razmadze and L. Uridia (Tbilisi)
- 6. APPLICATIONS TO SPATIAL MODEL CHECKING based on joint work with N. Bezhanishvili, V. Ciancia, G. Grilletti, D. Latella and M. Massink (CNR Pisa)

LOCAL FINITENESS

FOR POLYHEDRA A AND B: If $A extbf{2} B = \emptyset$ AND $A \subseteq cB$ Then dim(A) < dim(B)

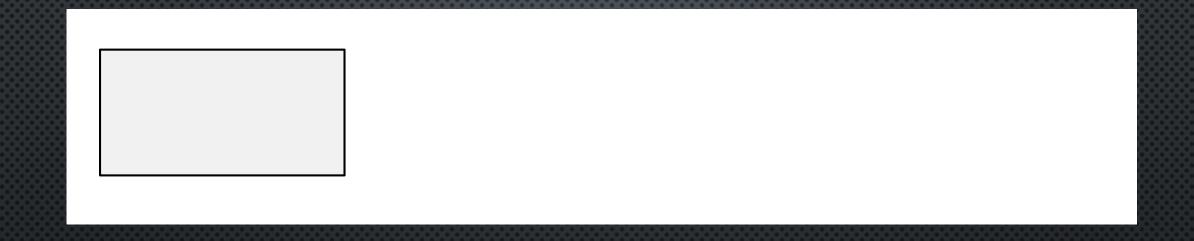
- This implies two things for the algebra Sub(P):
 - Sub(P) is of finite height, hence Locally Finite
 - Sub(P) IS A S4.GRZ-ALGEBRA
- THUS, FINITE SUBALGEBRAS DETERMINE EVERYTHING

THEOREM: EACH POLY-COMPLETE LOGIC HAS FMP.

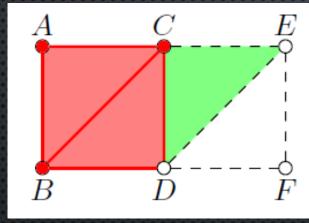
FINITE SUBALGEBRAS OF Sub(P)

- TAKE $P_1, P_2, ..., P_n \subseteq P$ AND GENERATE A CLOSURE SUBALGEBRA S INSIDE Sub(P)
- This produces a subdivision Σ of P (finite partition into subpolyhedra $\Sigma = At(S)$)
- The subalgebra S is dual to a finite poset (Σ, \leq) :
 - TAKE Σ TO BE ATOMS OF S
 - Order by taking $A \leq B$ iff $A \subseteq cB$
- THERE IS A NATURAL INTERIOR MAP $f: P \to \Sigma$

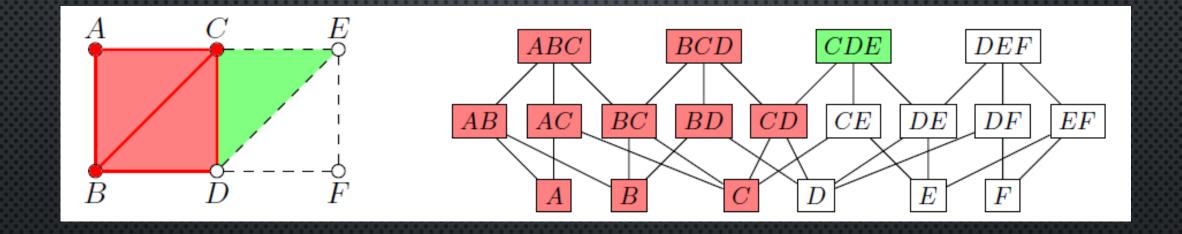
ILLUSTRATION



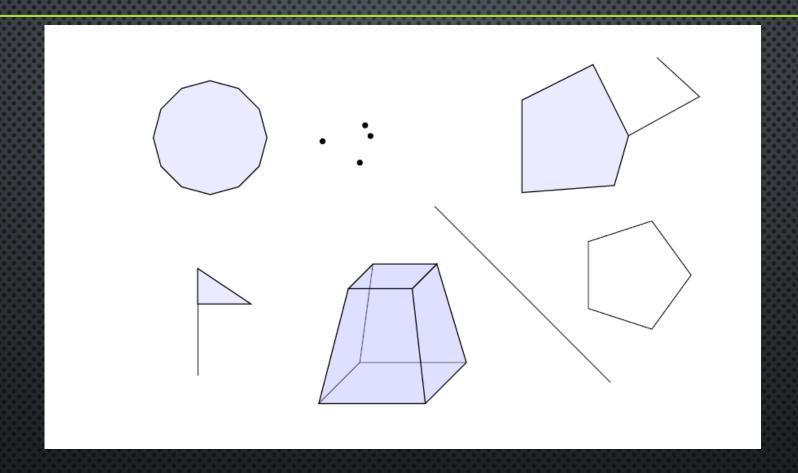
ILLUSTRATION



ILLUSTRATION

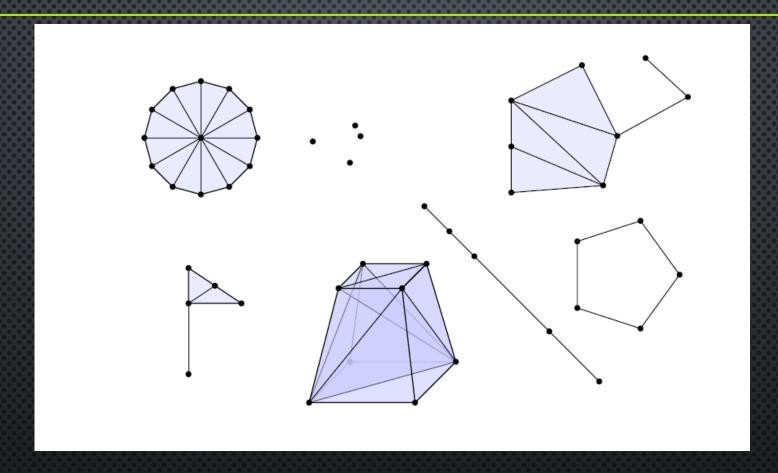


TRIANGULATIONS



• INTUITION: SUBDIVIDE POLYHEDRA INTO PIECES OF SIMPLEST POSSIBLE SHAPE

TRIANGULATIONS



- THE PIECES ARE POINTS, (OPEN) SEGMENTS, (OPEN) TRIANGLES, (OPEN)
 TETRAHEDRA, ETC. (OPEN) SIMPLICES
- EVERY POLYHEDRON ADMITS A TRIANGULATION (SIMPLICIAL COMPLEX*)

TRIANGULATION SUBALGEBRAS

DEFINITION: GIVEN A TRIANGULATION Σ OF P, LET $P(\Sigma)$ BE THE (CLOSURE) SUBALGEBRA GENERATED BY Σ INSIDE Sub(P).

LEMMA: EACH FINITE SUBALGEBRA OF Sub(P) IS A FINITE SUBALGEBRA OF A TRIANGULATION SUBALGEBRA.

THEOREM: THE LOGIC OF A POLYHEDRON IS THE LOGIC OF ITS TRIANGULATIONS.

PROOF: A NON-THEOREM IS REFUTABLE IN A FINITE SUBALGEBRA.
BY THE LEMMA, IN A TRIANGULATION SUBALGEBRA.

FROM POSETS TO POLYHEDRA

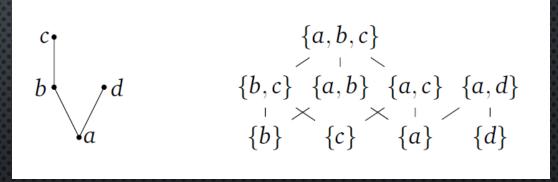
• EACH SUBDIVISION **\(\Sigma \)** OF **\(P \)** PRODUCES AN INTERIOR MAP:

$$f: P \to \Sigma$$

Ouestion: Given a finite poset F, is there a polyhedron that interior-maps onto F?

<u>Definition (Alexandrov's Nerve)</u>:

The nerve N(F) of a finite poset F is the set of non-empty chains of F ordered by inclusion

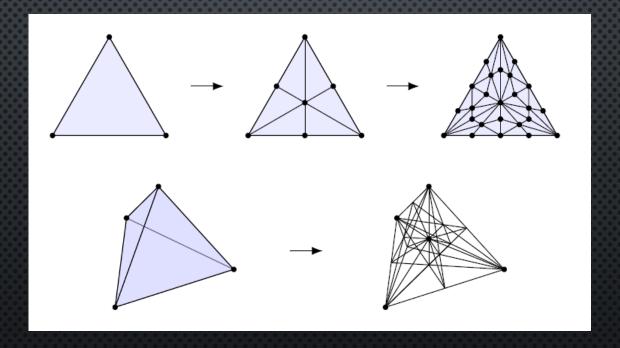


<u>Theorem:</u>

- 1) The nerve of F maps p-morphically (=interior map) onto F by: $\max: N(F) \to F$
- 2) There exists a polyhedron P that interior-maps onto N(F).

NERVES AND BARYCENTRIC SUBDIVISIONS

• FOR A TRIANGULATION Σ CONSTRUCT ITS BARYCENTRIC SUBDIVISION Σ' BY PUTTING A NEW POINT AT THE BARYCENTER OF EACH CELL AND FORMING A NEW TRIANGULATION AROUND IT



• The posets Σ' and $N(\Sigma)$ are isomorphic

THE NERVE CRITERION

THEOREM (NERVE CRITERION):

A LOGIC L is poly-complete iff L is a logic of a class of finite frames closed under $N(\cdot)$

INTUITION:

- Let P be a polyhedron and Σ its triangulation
- LET $\Sigma^{(n)}$ BE $N^n(\Sigma)$ (the n^{th} iterated barycentric subdivision of Σ)
- EACH FINITE SUBALGEBRA S OF Sub(P) IS A SUBALGEBRA OF SOME $\mathrm{P}(\Sigma^{(n)})$
- $\{P(\Sigma^{(n)}) \mid n < \omega\}$ APPROXIMATE Sub(P)

SOME CONSEQUENCES

COROLLARY

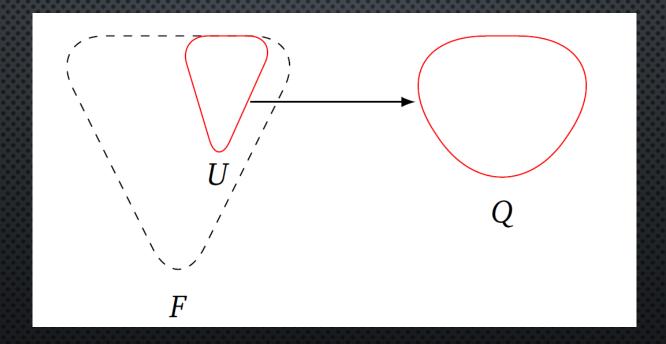
- THE LOGICS \$4.GRZ, \$4.GRZ_n ARE POLY-COMPLETE
- THE LOGICS \$4.GRZ.2, \$4.GRZ.3, \$4.GRZ_n.3 ARE POLY-INCOMPLETE
- THERE ARE CONTINUUM MANY POLY-INCOMPLETE LOGICS WITH FMP (ALL STABLE LOGICS)

KEY INTUITIONS:

- Use the Nerve Criterion and note that $S4.Grz_n$ is the logic of all posets of height < n and the nerve construction does not increase the Height
- THE NERVE CONTRUCTION INCREASES THE WIDTH INDEFINITELY

JANKOV-FINE FORMULAS

• FOR EACH FINITE ROOTED FRAME Q THERE IS A FORMULA $\chi(Q)$, THE JANKOV-FINE FORMULA OF Q, SUCH THAT FOR ANY FRAME F, $F \not\models \chi(Q)$ IFF F UP-REDUCES TO Q.

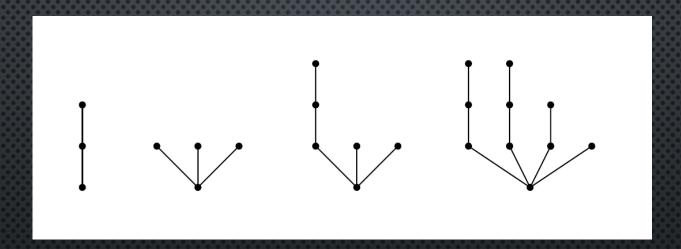


• THE FORMULA $\chi(Q)$ AXIOMATIZES THE LOGIC THAT OMITS Q

STARLIKE TREES AND LOGICS

DEFINITION:

1) A TREE T IS STARLIKE IF THE ROOT IS THE ONLY BRANCHING NODE



2) A LOGIC L IS STARLIKE IF IT IS OF THE FORM

S4.GRZ +
$$\chi(T_1) + \chi(T_2) + \cdots$$

WITH $\{T_1, T_2, ...\}$ a set of starlike trees other than

STARLIKE POLY-COMPLETENESS

THEOREM:

EVERY STARLIKE LOGIC IS POLY-COMPLETE

COROLLARY:

1) THERE ARE INFINITELY MANY POLY-COMPLETE LOGICS OF EACH FINITE HEIGHT

2) SCOTT'S LOGIC S4.GRZ + $\chi(\checkmark)$ IS POLY-COMPLETE

STARLIKE POLY-COMPLETENESS

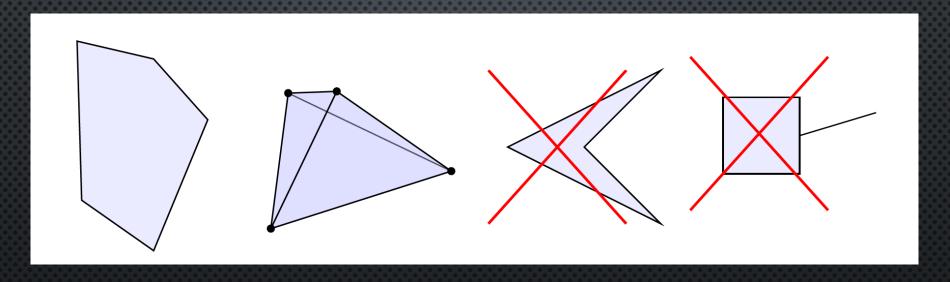
STARLIKE LOGICS EXPRESS LOCAL CONNECTEDNESS
 PROPERTIES ABOUT FRAMES AND POLYHEDRA

THERE ARE JUST COUNTABLY MANY STARLIKE LOGICS

• THE EXCLUSION OF $\sqrt{}$ IS NECESSARY — THE ONLY POLY-COMPLETE LOGIC EXTENDING \$4.Grz + $\chi(\sqrt{})$ Is Triv

CONVEX POLYHEDRA

• THE POLYHEDRON P IS CONVEX IF FOR ANY TWO POINTS $x, y \in P$ IT CONTAINS THE STRAIGHT SEGMENT [x, y] CONNECTING THESE POINTS.



- THE \mathbb{R}^n IS A PARADIGMATIC EXAMPLE
- WHAT IS THE LOGIC OF ALL CONVEX POLYHEDRA?

AXIOMATIZING CONVEX LOGICS

THEOREM:

• THE LOGIC OF CONVEX POLYHEDRA IS AXIOMATIZED BY

$$PL = S4.GRZ + \chi(\checkmark) + \chi(\checkmark)$$

• The logic of convex polyhedra of dimension n, and the logic of \mathbb{R}^n are both axiomatized by

$$PL_{n} = S4.GRZ_{n+1} + \chi(\checkmark) + \chi(\checkmark)$$

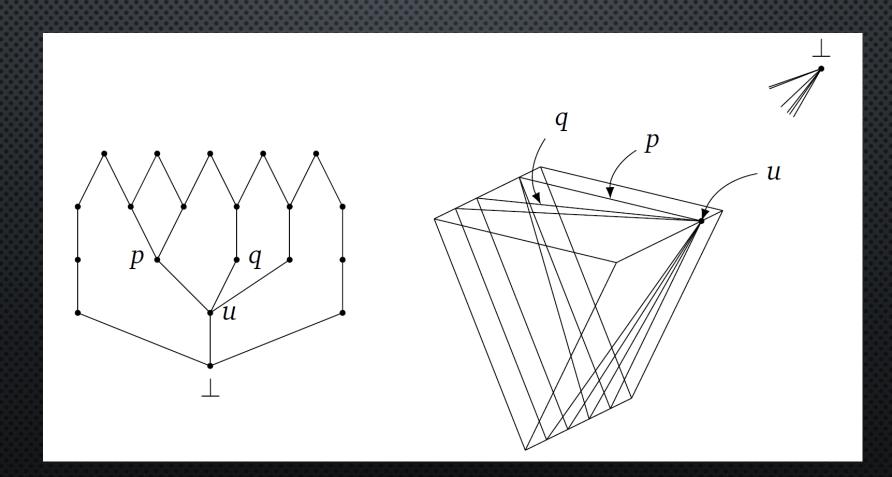
SOUNDNESS

• THAT $P \models \chi(\ \)$ EXPRESSES THE CLASSICAL RESULT BY HUREWICZ AND WALLMAN THAT A CONVEX POLYHEDRON OF DIMENSION N CANNOT BE DISCONNECTED BY A SUBSET OF DIMENSION < n-1

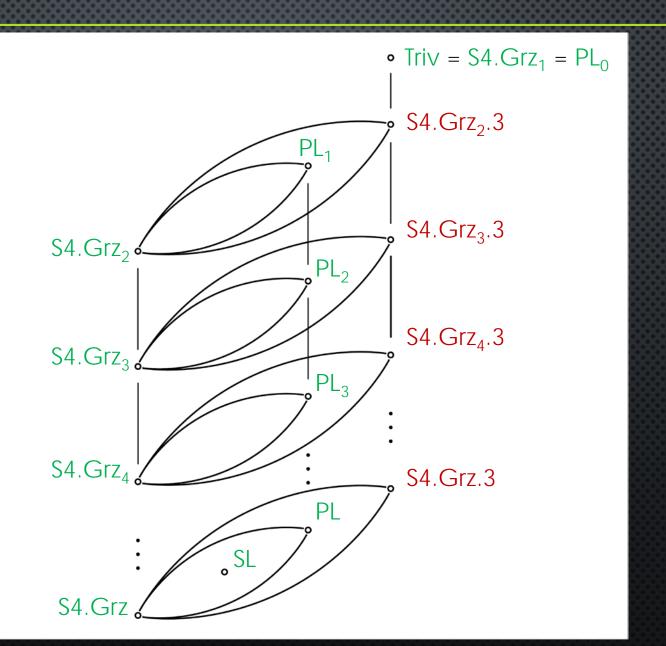
• THAT $P \models \chi(\P^*)$ EXPRESSES THAT A CONVEX
POLYHEDRON CANNOT CONTAIN THREE OPEN DISJOINT
SUBPOLYHEDRA SHARING A COMMON BOUNDARY

COMPLETENESS

BY TRANSFORMING EACH APPROPRIATE FINITE FRAME INTO A SAW-TOPPED TREE AND THEN REALIZING IT AS A SUBDIVISION OF A CONVEX POLYHEDRON



GENERAL PICTURE SO FAR



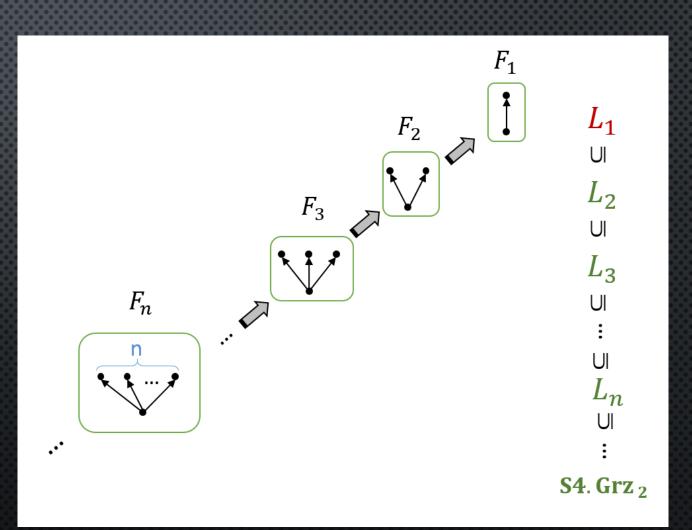
DIMENSION = 0

• THE LOGIC OF THE SINGLE POINT $PL_0 = S4.GRZ_1 = TRIV$

DIMENSION = 1

• EXTENSIONS OF \$4.GRZ₂

- Posets of Height = 1
- $L_i = \text{Log}(F_i) =$ $S4. Grz_2 + \chi(F_{i+1})$
- L₁ IS POLY-INCOMPLETE
- $\bullet L_2 = PL_2$

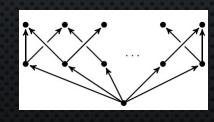


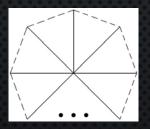
DIMENSION = 2

- EXTENSIONS OF $$4.GRZ_3 =$ THE LOGIC OF ALL POLYGONS
- THE LARGEST POLY-COMPLETE LOGIC IS $PL_2 =$

In terms of forbidden frames: S4.Grz_{n+1} + $\chi(\checkmark)$ + $\chi(\checkmark)$

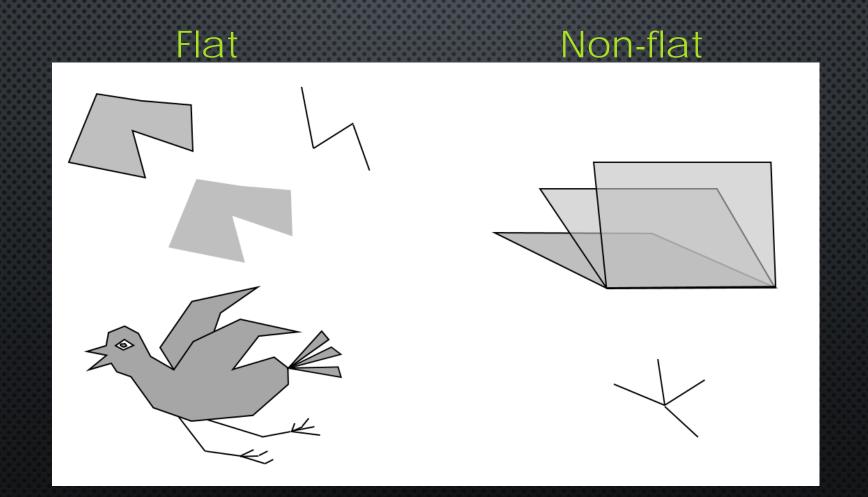
IN TERMS OF ADMITTED FRAMES:





FLAT POLYHEDRAL LOGICS

• An n-dimensional polyhedron P is called flat if it is embeddable into \mathbb{R}^n

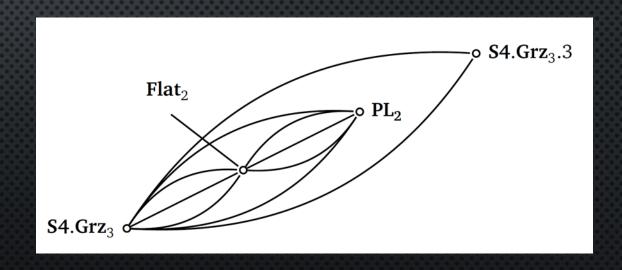


THE LOGIC OF FLAT POLYGONS

- POLYGONAL SUBSETS OF THE 2D PLANE
- WHICH FINITE POSETS CAN WE OBTAIN FROM FLATS?
- WHICH FINITE POSETS CANNOT BE OBTAINED FROM FLATS?

$$FLAT_2 = S4.GRZ_3 + \sigma()$$

FLAT₂ IS A SUBFRAMIZATION OF PL₂



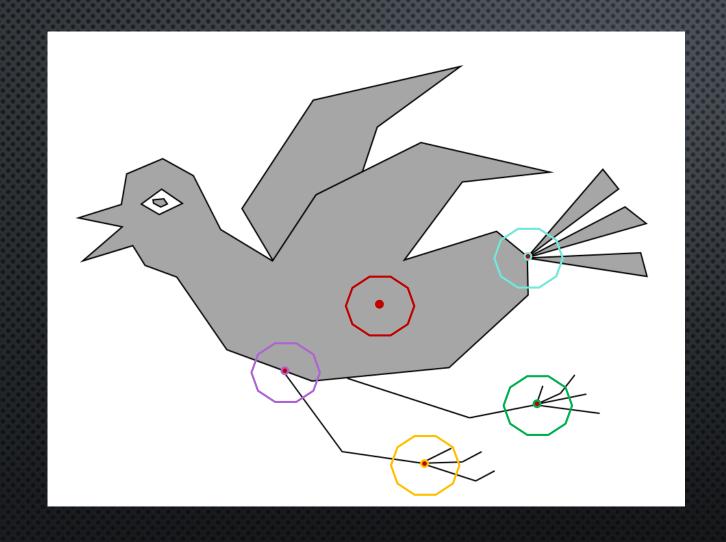
FLAT POLYGONAL LOGICS

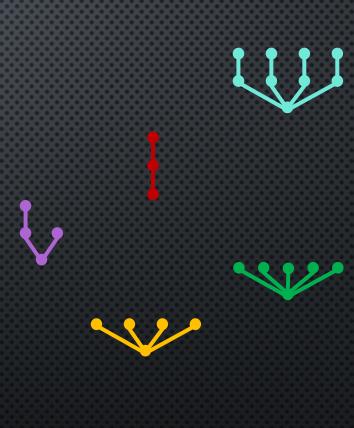
TAKE ANY COLLECTION OF FLAT POLYGONS, GENERATE
 THE MODAL LOGIC. CALL SUCH LOGICS FLAT POLYGONAL

CAN WE CHARACTERIZE FLAT POLYGONAL LOGICS?

 LET US TAKE A SINGLE FLAT POLYGON AND SEE WHICH POSETS WE CAN GET

BIRD-OBTAINABLE POSETS





CHARACTERIZING FLAT POLYGONALS

Let α be an antichain in the ordering Q. Let L_{α} be the extension of S4.Grz₃ by $\chi(F)$, with $F \in \alpha$.

Lemma: Each α is finite.

Theorem: The flat polygonal logics are

precisely the L_{α} .

Corollary: There are countably many flat polygonal logics, each finitely axiomatizable.

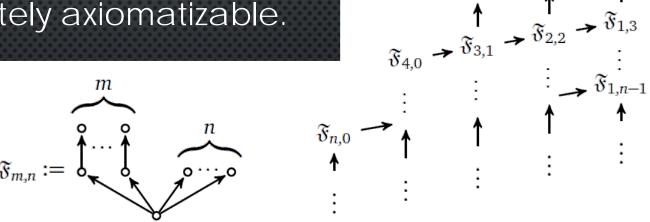


Figure 2: Poset Q of the frames $\mathfrak{F}_{m,n}$ ordered by reducibility

STILL WORK TO DO IN DIM = 2 AND UP

OPEN QUESTIONS IN DIMENSION 2:

• CHARACTERIZE ALL POLYGONAL LOGICS. ARE THERE COUNTABLY MANY?

OPEN QUESTIONS IN ALL DIMENSIONS:

- CHARACTERIZE ALL FLAT LOGICS
- CHARACTERIZE ALL POLYHEDRAL LOGICS

APPLICATIONS

Many real-world or fictional scenarios can be modelled using 3D polyhedra

 THE THEORY DEVELOPED SO FAR IS A GROUNDWORK FOR DEVELOPING AUTOMATED REASONING TOOLS

 ONE SUCH APPLICATION IS IN THE FIELD OF SPATIAL MODEL CHECKING

THE ULTIMATE GOAL IS TO DEVELOP A TOOL TO REASON ABOUT 3D IMAGES (E.G. IN MEDICAL IMAGING)

REACHABILITY OPERATOR

DEFINITION:

A PATH IN P IS A CONTINUOUS MAP $\pi: [0,1] \to P$

Consider the binary modal operator $\gamma(\phi, \psi)$:

$$\mathcal{X}, x \vDash \gamma(\phi, \psi) \iff \text{there exists a path } \pi \text{ such that}$$

$$\pi(0) = x, \, \pi(1) \in \llbracket \psi \rrbracket^{\mathcal{X}} \text{ and } \pi((0, 1)) \subseteq \llbracket \phi \rrbracket^{\mathcal{X}}$$

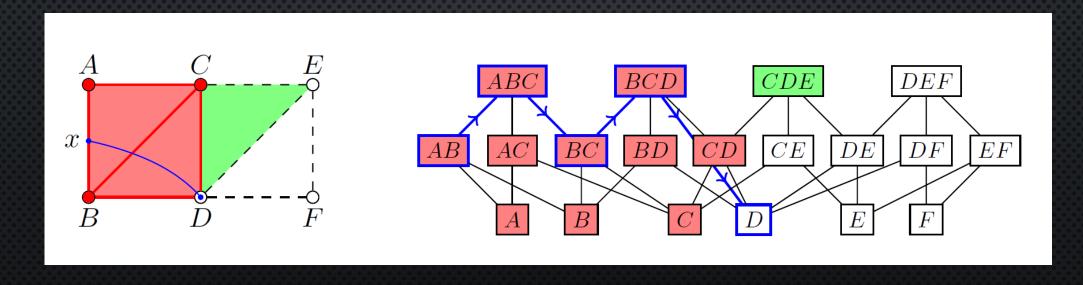
Expressing " ψ is reachable via a ϕ -path"

IT TURNS OUT THAT $\gamma(A, B)$ IS A POLYHEDRON, WHENEVER A AND B ARE POLYHEDRA.

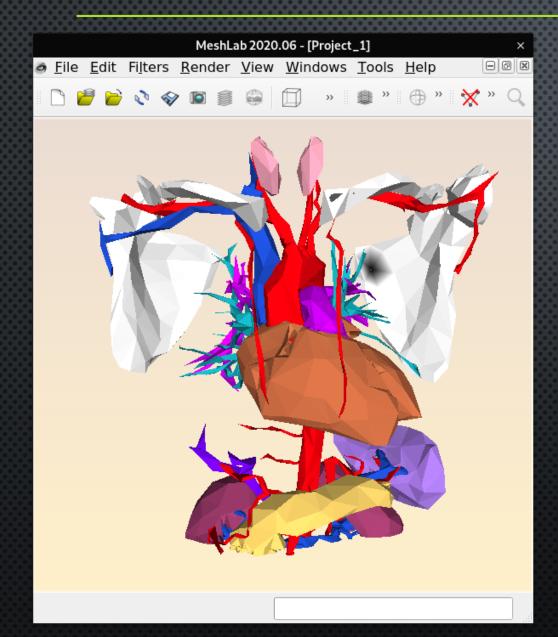
PASSING DOWN TO THE TRIANGULATION

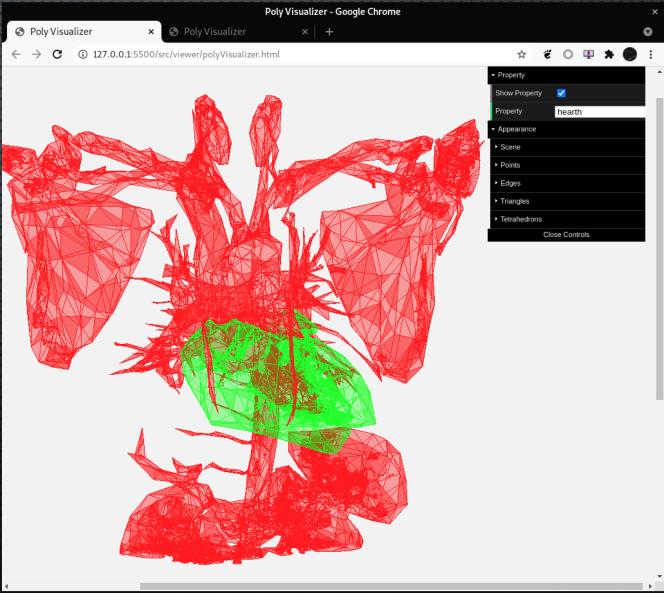
• LET Σ BE A TRIANGULATION OF A POLYHEDRON P AND LET $f:P\to\Sigma$ BE THE CORRESPONDING MAP, THEN FOR EACH $x\in P$ AND EACH FORMULA ϕ IN THE REACHABILITY LANGUAGE:

$$P, x \models \phi$$
 IFF $\Sigma, f(x) \models \phi$

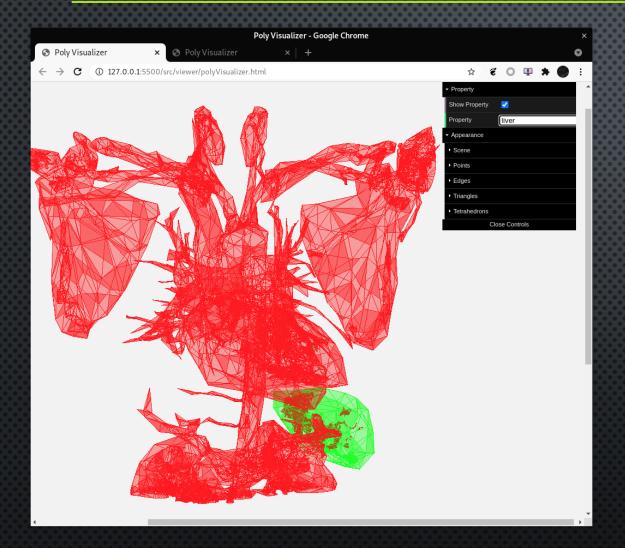


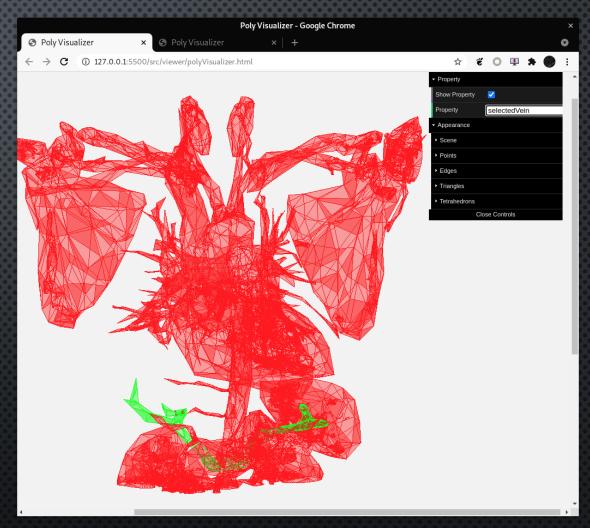
PROTOTYPE TOOL/VISUALIZER





PROTOTYPE TOOL/VISUALIZER





Liver selected

Veins reaching Liver selected

SOME REFERENCES

- 1. <u>Euclidean Hierarchy in Modal Logic.</u> J. van Benthem, G. Bezhanishvili, M. Gehrke. Studia Logica, **75** (2003), pp. 327-345.
- 2. Tarski's theorem on intuitionistic logic, for polyhedra. Nick Bezhanishvili, Vincenzo Marra, Daniel McNeill, Andrea Pedrini. *Annals of Pure and Applied Logic*, 169 (5), pp. 373-391, 2018.
- 3. Modal Logic of Planar Polygons. David Gabelaia, Kristina Gogoladze, Mamuka Jibladze, Evgeny Kuznetsov, Maarten Marx. arXiv:1807.02868 [math.LO]
- 4. The Nerve Criterion and Polyhedral Completeness of Intermediate Logics. Sam Adam-Day, Nick Bezhanishvili, David Gabelaia, Vincenzo Marra. Submitted, September 2020.
- 5. <u>Geometric Model Checking of Continuous Space.</u> Nick Bezhanishvili, Vincenzo Ciancia, David Gabelaia, Gianluca Grilletti, Diego Latella, Mieke Massink. ArXiv:2105.06194 [cs.LO]