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Uniform Interpolants in Propositional Logics

Uniform interpolants were introduced in the context of non-classical logics,
starting from the pioneering work by Pitts [1992] who proved that in IPC
for every formula φ(x, y) there is a formula φx(y) such that for every
further formula ψ(y, z) we have

φ(x, y) ` ψ(y, z) iff φx(y) ` ψ(y, z)

In modal logic, uniform interpolants have a local and a global version,
depending on how the entailment ` is interpreted.
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Uniform Interpolants in Propositional Logics

The local version of uniform interpolation allows an (albeit not faithful)
interpretation of the second order propositional calculus into plain
propositional calculus, whereas the global version can be used in the
axiomatization of model completions for the corresponding classes of
algebras.

Uniform interpolants can be sematically connected to some appropriate
notion of bisimulation at the level of Kripke models.
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Uniform Interpolants in Propositional Logics

The existence of uniform interpolants is an exceptional phenomenon,
which is however not so infrequent, as witnessed by a large literature in
non-classical logics.

The main results from the above literature are that uniform interpolants
exist for intuitionistic logic and for some modal systems (like the
Gödel-Löb system and the S4.Grz system); they do not exist for instance
in S4 and K4, whereas for the basic modal system K they exist for the
local version but not for the global version (the opposite situation is also
well-possible, already in the locally tabular case).
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Uniform Interpolants in First Order Theories

In the last decade, also the automated reasoning community (Kapur,
Gulwani-Musuvathi) developed an increasing interest in uniform
interpolants (sometimes renamed as covers), with particular focus on
quantifier-free fragments of first-order theories.

In such context, uniform interpolants are directly connected with model
completeness (see below).

Our interest in uniform interpolants for first order theories comes from
infinite state model checking applications, in particular from the
verification of (Business) Processes enriched with real data (data-aware
processes).
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Verification Applications

Given a state formula φ for states S(i), we symbolically define T−1(S(i)):

Pre(τ, φ) ≡ ∃x′(τ(x, x′) ∧ φ(x′))
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Verification Applications

Roughly speaking, unsafety of the system means satsifiability of certain
existential formulae; thus, one can limit to existentially closed structures
and exploit quantifier elimination when model completions exist.

This gives a precise representation of reachable states, whereas
computations of reachable states via ordinary interpolants (McMillan
2006) give overapproximations (to be refined during search).

Then uniform interpolants enter into the picture. This might be
competitive (as witnessed by our MCMT implementation) even from
complexity viewpoint, because only a limited fragment of first-order logic is
needed to formalize databases with primary and foreign keys. More details
in our journal (MSCS 20) and conferences (BPM 19,20,21) papers.
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Specific Contributions from this talk
Theories arising in applications are quite rich, they are often modular
combinations of theories modeling processes and data.

• We supply a general algorithm for computing combined covers in
case of convex component theories.

• The hypothesis under which this algorithm is correct is the same
needed to transfer quantifier-free interpolation: the equality
interpolating condition.

• We prove that the equality interpolating condition is also necessary
for transferring covers.

• The algorithm relies on the extensive use of the Beth definability
property for primitive fragments.

• Counterexample showing non-transfer of covers for non-convex
theories in general, even in case combined quantifier-free
interpolants do exist.
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Preliminaries
Definition
Given a FO theory T and two quantifier-free FO formulae α(x, y), β(y, z)
such that `T α→ β, a quantifier-free FO formula γ(y) is a
T -quantifier-free interpolant if `T α→ γ and `T γ → β hold.

If every pair α(x, y), β(y, z) has a quantifier-free interpolant, then T
enjoys the quantifier-free interpolation property.

Definition
A theory T is stably infinite iff every T -satisfiable constraint (conjunction
of literals) is satisfiable in an infinite model of T .
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in an infinite model of T .

Definition
A theory T is convex iff for every constraint δ, if T ` δ →

∨n
i=1 xi = yi

then T ` δ → xi = yi holds for some i ∈ {1, ..., n}.
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Uniform Quantifier-Free Interpolation (Covers)

Fix a theory T and an existential formula ∃e φ(e, y).
• A quantifier-free (qf) formula ψ(y) is a T -uniform (qf) interpolant

(or, T -cover) of ∃e φ(e, y) iff

(i) ψ(y) ∈ Res(∃e φ) := {θ(y, z) | T |= φ(e, y)→ θ(y, z)},
(ii) ψ(y) implies (modulo T ) all the formulae in Res(∃e φ).

We say that a theory T has uniform (qf) interpolation iff every
existential formula ∃e φ(e, y) has a T -uniform (qf) interpolant.

• A T -cover is, intuitively, the strongest formula implied by ∃e φ(e, y).
• In the cover ψ(y), the variables e have been ’eliminated’, in some

sense.
• But, in general, ψ(y) does not imply ∃e φ(e, y). Hence, usually
ψ(y) and ∃e φ(e, y) are not T -equivalent.
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Uniform Quantifier-Free Interpolation (Covers)

Following SMT-terminology, we call EUF(Σ) the pure equality theory in
the (functional) signature Σ.

Uniform (qf) interpolants exists in EUF(Σ): an algorithm using
Superposition Calculus is presented in our (CADE 19) paper - journal
version in (JAR 21), to appear.

Two further algorithms are in (Gianola, G., Kapur CILC 21).
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Covers and Model Completions

A universal Σ-theory T has a model completion iff there is a stronger
theory T ∗ ⊇ T (in the same signature Σ) such that (i) every T -model
embeds into a model of T ∗; (ii) T ∗ eliminates quantifiers.

Theorem (Covers and QE)

Suppose that T is a universal theory. Then, T has a model completion T ∗
iff T has uniform quantifier-free interpolation. If this happens, T ∗ is
axiomatized by the infinitely many sentences ∀y (ψ(y)→ ∃e φ(e, y)),
where ∃e φ(e, y) is a primitive formula and ψ is a cover of it.

Hence, computing covers in a theory T
is equivalent to

eliminating quantifiers in its model completion T ∗.
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Equality Interpolating Condition

Definition ([YM05])
A convex universal theory T is equality interpolating iff for every pair y1, y2
of variables and for every pair of constraints δ1(x, z1, y1), δ2(x, z2, y2)
such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = y2, there exists a term
t(x) such that T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = t(x) ∧ y2 = t(x).

Examples of universal quantifier-free interpolating and equality
interpolating theories:
• EUF(Σ), given a signature Σ;
• recursive data theories;
• linear real arithmetics;
• Boolean algebras.
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Beth Definability and Equality Interpolating Condition
Equality interpolating can be characterized using Beth definability.

Given a primitive formula ∃zφ(x, z, y), we say that:
• ∃z φ(x, z, y) implicitly defines y in T iff the following formula is
T -valid: ∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′)→ y = y′);
• ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x) such that

the formula is T -valid: ∀y (∃zφ(x, z, y)→ y = t(x));
• a theory T has the Beth definability property for primitive formulae

iff whenever a primitive formula ∃z φ(x, z, y) implicitly defines the
variable y then it also explicitly defines it.

Theorem (Key Theorem [BGR14])

A convex theory T having quantifier-free interpolation is equality
interpolating iff it has the Beth definability property for primitive
formulae.

Combination of Uniform Interpolants ... July 2021 17 / 32



Strong Amalgamability and Equality Interpolating
Condition

It is well-known since the 70’s that, for a universal theory, quantifier-free
interpolation is equivalent to amalgamation property.

This result can
be extended so as to characterize also the equality interpolating condition:

Theorem
[BGR14] The following two conditions are equivalent for a convex
universal theory T : (i) T is equality interpolating and has
quantifier-free interpolation; (ii) T has the strong amalgamation
property.
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Strong Amalgamability and Equality Interpolating
Condition

Recall that a universal theory T has the strong amalgamation property iff
every pair of models M1,M2 of T sharing a common submodel A can be
amalgamated over A into a model M in such a way that the
A-embeddings µ1, µ2 satisfy the following additional condition: if for some
m1,m2 we have µ1(m1) = µ2(m2), then there exists an element a in |A|
such that m1 = a = m2.
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Transfer of Quantifier-free Interpolants

Theorem (Sufficient Condition [YM05, BGR14])

Let T1 and T2 be two universal, convex, stably infinite theories over
disjoint signatures Σ1 and Σ2. If both T1 and T2 are equality interpolating
and have quantifier-free interpolation property, then so does T1 ∪ T2.

There is a converse of the previous result:

Theorem (Necessary Condition [BGR14])

Let T be a stably infinite, universal, convex theory admitting quantifier-free
interpolation and let Σ be a signature disjoint from the signature of T
containing at least a unary predicate symbol. Then, T ∪ EUF(Σ) has
quantifier-free interpolation iff T is equality interpolating.
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Convex Theories
• Every Σi-theory Ti from now on is convex, stably infinite, equality

interpolating, universal and admitting a model completion T ∗i .

• For i = 1, . . . , n, we let the formula ImplDefTφ,yi
(x) be the

quantifier-free formula equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i)

where the y′ are renamed copies of the y = y1, . . . , yn.
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Convex Theories
• Every Σi-theory Ti from now on is convex, stably infinite, equality

interpolating, universal and admitting a model completion T ∗i .
• For i = 1, . . . , n, we let the formula ImplDefTφ,yi

(x) be the
quantifier-free formula equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i)

where the y′ are renamed copies of the y.
The following Lemma supplies terms used as ingredients in the combined
covers algorithm:

Lemma (Useful Terms)
Let Li1(x) ∨ · · · ∨ Liki

(x) be the disjunctive normal form (DNF) of
ImplDefTφ,yi

(x). Then, for every j = 1, . . . , ki, there is a Σ(x)-term tij(x)
such that T ` Lij(x) ∧ φ(x, y)→ yi = tij

The terms tij are obtained thanks to the Beth definability property, that
holds because of the Key Theorem.
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Computing Combined Covers
• Given a Σ1-theory T1 and a Σ2-theory T2, we want to compute a
T1 ∪ T2-cover for ∃e φ(x, e) (Initial Formula).

• By applying rewriting purification steps, we can assume that φ is of the kind
φ1 ∧ φ2, where φi is a Σi-formula (i = 1, 2).

• Assume that φ1 and φ2 contain ei 6= ej (for i 6= j): guess a partition of the e
and replace each ei with the representative element of its equivalence class.

• The algorithm employs acyclic explicit definitions ExplDef(z, x)∧m
i=1 zi = ti(z1, . . . , zi−1, x) where the term ti is pure.

• A working formula is ∃z (ExplDef(z, x) ∧ ∃e (ψ1(x, z, e) ∧ ψ2(x, z, e))),
where ψi is a Σi-formula (i = 1, 2) and x are called parameters, z defined
variables and e (truly) existential variables. ψ1, ψ2 always contain the literals
ei 6= ej (for distinct ei, ej from e) as a conjunct.

• A working formula is terminal iff for every ei ∈ e
T1 ` ψ1 → ¬ImplDefT1

ψ1,ei
(x, z) and T2 ` ψ2 → ¬ImplDefT2

ψ2,ei
(x, z)
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Combined Covers Algorithm
Lemma (Main Lemma)
Every working formula is equivalent (modulo T1 ∪ T2) to a disjunction of
terminal working formulae.

Start from an Initial Formula. The non-deterministic procedure to compute
the terminal working formulae applies one of the following alternatives:

(1) Add to ψ1 a disjunct from the DNF of∧
ei∈e ¬ImplDefT1

ψ1,ei
(x, z) and to ψ2 a disjunct from the

DNF of
∧
ei∈e ¬ImplDefT2

ψ2,ei
(x, z);

(2.i) Select ei ∈ e and h ∈ {1, 2}; then add to ψh a disjunct Lij
from the DNF of ImplDefTh

ψh,ei
(x, z); add ei = tij (where tij

is the term mentioned in Useful Terms Lemma) to
ExplDef(z, x); the variable ei becomes defined.

The output is the disjunction of all possible outcomes.
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Transfer of covers

Proposition

A cover of a terminal working formula can be obtained by unravelling the
explicit definitions of the variables z from
∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the previous Proposition and the ‘Covers and QE’
Theorem, we get:

Combination of Uniform Interpolants ... July 2021 24 / 32



Transfer of covers

Proposition

A cover of a terminal working formula can be obtained by unravelling the
explicit definitions of the variables z from
∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the previous Proposition and the ‘Covers and QE’
Theorem, we get:

Combination of Uniform Interpolants ... July 2021 24 / 32



Transfer of covers

Proposition

A cover of a terminal working formula can be obtained by unravelling the
explicit definitions of the variables z from
∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)), where θ1(x, z) is the T1-cover of
∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

From the Main Lemma, the previous Proposition and the ‘Covers and QE’
Theorem, we get:

Theorem
Let T1, T2 be convex, stably infinite, equality interpolating, universal
theories over disjoint signatures admitting a model completion.
Then T1 ∪ T2 admits a model completion too. Covers in T1 ∪ T2 can be
effectively computed as shown above.
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Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.

Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+19].
Consider the formula:

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3


Applying exhaustively Step (1) and Step (2.i), we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]

Combination of Uniform Interpolants ... July 2021 25 / 32



Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+19].

Consider the formula:

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3


Applying exhaustively Step (1) and Step (2.i), we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]

Combination of Uniform Interpolants ... July 2021 25 / 32



Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+19].
Consider the formula:

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3



Applying exhaustively Step (1) and Step (2.i), we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]

Combination of Uniform Interpolants ... July 2021 25 / 32



Combined Algorithm: an Example
Let T1 be EUF(Σ) and T2 be linear real arithmetic.
Covers are computed in real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm
from [CGG+19].
Consider the formula:

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3


Applying exhaustively Step (1) and Step (2.i), we get:

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

]

Combination of Uniform Interpolants ... July 2021 25 / 32



Equality Interpolating is a necessary condition

Equality interpolating is a necessary condition for a transfer result, in the
sense that it is already required for minimal combinations with signatures
adding uninterpreted symbols:

Theorem
Let T be a convex, stably infinite, universal theory admitting a model
completion and let Σ be a signature disjoint from the signature of T
containing at least a unary predicate symbol. Then T ∪ EUF(Σ) admits a
model completion iff T is equality interpolating.

The necessity can be easily deduced from the Necessity Theorem for
Equality Interpolating.
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Non-transfer of Covers in the Non-convex case

Convexity hypothesis cannot be eliminated.

Consider the cover transfer for T1 ∪ T2, where:
• T1 := integer difference logic IDL (integer numbers with successor

and predecessor, 0 and the strict order <): it is not convex, but it
satisfies the equality interpolating condition for non-convex theories.
• T2:= EUF(Σf ), where Σf has only one unary free function symbol f

(not belonging to the signature of T1).

Proposition
Let T1, T2 be as above; the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does
not have a cover in T1 ∪ T2.

The counterexample still applies when replacing integer difference
logic with linear integer arithmetics.

Combination of Uniform Interpolants ... July 2021 28 / 32



Non-transfer of Covers in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the cover transfer for T1 ∪ T2, where:
• T1 := integer difference logic IDL (integer numbers with successor

and predecessor, 0 and the strict order <): it is not convex, but it
satisfies the equality interpolating condition for non-convex theories.
• T2:= EUF(Σf ), where Σf has only one unary free function symbol f

(not belonging to the signature of T1).

Proposition
Let T1, T2 be as above; the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does
not have a cover in T1 ∪ T2.

The counterexample still applies when replacing integer difference
logic with linear integer arithmetics.

Combination of Uniform Interpolants ... July 2021 28 / 32



Non-transfer of Covers in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the cover transfer for T1 ∪ T2, where:
• T1 := integer difference logic IDL (integer numbers with successor

and predecessor, 0 and the strict order <): it is not convex, but it
satisfies the equality interpolating condition for non-convex theories.
• T2:= EUF(Σf ), where Σf has only one unary free function symbol f

(not belonging to the signature of T1).

Proposition
Let T1, T2 be as above; the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does
not have a cover in T1 ∪ T2.

The counterexample still applies when replacing integer difference
logic with linear integer arithmetics.

Combination of Uniform Interpolants ... July 2021 28 / 32



Non-transfer of Covers in the Non-convex case

Convexity hypothesis cannot be eliminated.
Consider the cover transfer for T1 ∪ T2, where:
• T1 := integer difference logic IDL (integer numbers with successor

and predecessor, 0 and the strict order <): it is not convex, but it
satisfies the equality interpolating condition for non-convex theories.
• T2:= EUF(Σf ), where Σf has only one unary free function symbol f

(not belonging to the signature of T1).

Proposition
Let T1, T2 be as above; the formula ∃e (0 < e ∧ e < x ∧ f(e) = 0) does
not have a cover in T1 ∪ T2.

The counterexample still applies when replacing integer difference
logic with linear integer arithmetics.
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Conclusions

• Problem of combined covers.

• Sufficient and necessary conditions for transferring covers to
combinations in the convex case.

• General method and algorithm for computing combined covers for
convex theories, based on the use of Beth definability.

• Non-transfer of covers in the non-convex case, in general.
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Future Work
• Investigate cover transfer for ‘tame’ theory combinations (codomain

sorts are shared): already available in the ArXiv version;
• Cover transfer properties for non-disjoint signatures combinations.
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