Algebraic Properties Of enriched Priestley SPACES

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk/

Algebraic Properties Of enriched Priestley SPACES

DUALITY,

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk/

Algebraic Properties Of enriched Priestley SPACES

DUALITY, ORDER,

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk/

Algebraic Properties Of enriched Priestley SPACES

Duality, Order, (Co)algebras,

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk/

Algebraic Properties Of enriched Priestley SPACES

Duality, Order, (Co)algebras, Topology,

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk/

Algebraic Properties Of enriched Priestley

 SPACESDuality, Order, (Co)algebras, Topology, and Related topics

Dirk Hofmann (joint work with Pedro Nora)
July 8, 2021
CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk/

TERMINAL COALGEBRA?

A question

For "the" Vietoris functor V , is the category $\mathrm{CoAlg}(\mathrm{V})$ of coalgebras for V complete (or has at least a terminal object)?

TERMINAL COALGEBRA?

A question

For "the" Vietoris functor V , is the category $\mathrm{CoAlg}(\mathrm{V})$ of coalgebras for V complete (or has at least a terminal object)?

Recall

- For a functor $\mathrm{F}: \mathbf{C} \longrightarrow \mathbf{C}$, a coalgebra

TERMINAL COALGEBRA?

A question

For "the" Vietoris functor V , is the category $\mathrm{CoAlg}(\mathrm{V})$ of coalgebras for V complete (or has at least a terminal object)?

Recall

- For a functor $\mathrm{F}: \mathbf{C} \longrightarrow \mathbf{C}$, a coalgebra homomorphism:

TERMINAL COALGEBRA?

A question

For "the" Vietoris functor V , is the category $\mathrm{CoAlg}(\mathrm{V})$ of coalgebras for V complete (or has at least a terminal object)?

Recall

- For a functor $\mathrm{F}: \mathbf{C} \longrightarrow \mathbf{C}$, a coalgebra homomorphism:

- Think of "the" Vietoris functor as a "topological powerset functor".

TERMINAL COALGEBRA?

A question

For "the" Vietoris functor V , is the category $\mathrm{CoAlg}(\mathrm{V})$ of coalgebras for V complete (or has at least a terminal object)?

Recall

- For a functor $\mathrm{F}: \mathbf{C} \longrightarrow \mathbf{C}$, a coalgebra homomorphism:

- Think of "the" Vietoris functor as a "topological powerset functor".

Example

The powerset functor P: Set \longrightarrow Set does not admit a terminal coalgebra.

VIETORIS FUNCTORS ON TOPOLOGICAL SPACES

"Das Orginal"

For a compact Hausdorff space X, the classic Vietoris space ${ }^{a}$ VX consists of the set of all closed subsets of X

$$
V X=\{K \subseteq X \mid K \text { is closed }\}
$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$
U^{\diamond}=\{A \in V X \mid A \cap U \neq \varnothing\}, \quad U^{\square}=\left\{A \in V X \mid A \cap U^{\complement}=\varnothing\right\} .
$$

We obtain V: CompHaus \longrightarrow CompHaus.

[^0]
VIETORIS FUNCTORS ON TOPOLOGICAL SPACES

"Das Orginal"

For a compact Hausdorff space X, the classic Vietoris space ${ }^{a}$ VX consists of the set of all closed subsets of X

$$
V X=\{K \subseteq X \mid K \text { is closed }\}
$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$
U^{\diamond}=\{A \in V X \mid A \cap U \neq \varnothing\}, \quad U^{\square}=\left\{A \in V X \mid A \cap U^{\complement}=\varnothing\right\} .
$$

We obtain V: CompHaus \longrightarrow CompHaus.
${ }^{a}$ Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258-280.

Remark

This definition can be generalised to other topological spaces ... but does not always define a functor!!

VIETORIS FUNCTORS ON TOPOLOGICAL SPACES

"Das Orginal"

For a compact Hausdorff space X, the classic Vietoris space ${ }^{a}$ VX consists of the set of all closed subsets of X

$$
V X=\{K \subseteq X \mid K \text { is closed }\}
$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$
U^{\diamond}=\{A \in V X \mid A \cap U \neq \varnothing\}, \quad U^{\square}=\left\{A \in V X \mid A \cap U^{\complement}=\varnothing\right\} .
$$

We obtain V: CompHaus \longrightarrow CompHaus.
${ }^{a}$ Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258-280.

Remark

We consider here the following two variants on Top:

- Lower Vietoris: closed subsets, but only "miss topology".

VIETORIS FUNCTORS ON TOPOLOGICAL SPACES

"Das Orginal"

For a compact Hausdorff space X, the classic Vietoris space ${ }^{a}$ VX consists of the set of all closed subsets of X

$$
V X=\{K \subseteq X \mid K \text { is closed }\}
$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$
U^{\diamond}=\{A \in V X \mid A \cap U \neq \varnothing\}, \quad U^{\square}=\left\{A \in V X \mid A \cap U^{\complement}=\varnothing\right\} .
$$

We obtain V: CompHaus \longrightarrow CompHaus.
${ }^{a}$ Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258-280.

Remark

We consider here the following two variants on Top:

- lower Vietoris: closed subsets, but only "miss topology".
- compact Vietoris: compact subsets, "hit-and-miss topology".

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: X \longmapsto \mathbf{2}^{X}$

- The exponential is taken in PsTop.

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: X \longmapsto \mathbf{2}^{X}$

- The exponential is taken in PsTop.
- The convergence of 2^{x} can be split into a function $\mu: ~ U\left(2^{x}\right) \longrightarrow 2^{x}$ and the order relation \subseteq :

$$
\mathfrak{p} \rightarrow A \Longleftrightarrow \mu(\mathfrak{p}) \subseteq A
$$

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: \quad X \longmapsto\left(\mathbf{2}^{X}\right)^{\text {op }}$

- The exponential is taken in PsTop.
- The convergence of 2^{x} can be split into a function $\mu: ~ U\left(2^{x}\right) \longrightarrow 2^{x}$ and the order relation \subseteq :

$$
\mathfrak{p} \rightarrow A \Longleftrightarrow \mu(\mathfrak{p}) \subseteq A
$$

We dualise the order but keep $\mu \ldots$

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: \quad X \longmapsto\left(\mathbf{2}^{X}\right)^{\text {op }}=\mathrm{VX}$.

- The exponential is taken in PsTop.
- The convergence of 2^{X} can be split into a function $\mu: U\left(2^{x}\right) \longrightarrow 2^{x}$ and the order relation \subseteq :

$$
\mathfrak{p} \rightarrow A \Longleftrightarrow \mu(\mathfrak{p}) \subseteq A
$$

We dualise the order but keep $\mu \ldots$ and obtain the lower Vietoris space.

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: \quad X \longmapsto\left(\mathbf{2}^{X}\right)^{\text {op }}=\mathrm{VX}$.

- The exponential is taken in PsTop.
- The convergence of 2^{x} can be split into a function $\mu: ~ U\left(2^{x}\right) \longrightarrow 2^{x}$ and the order relation \subseteq :

$$
\mathfrak{p} \rightarrow A \Longleftrightarrow \mu(\mathfrak{p}) \subseteq A
$$

We dualise the order but keep $\mu \ldots$ and obtain the lower Vietoris space.

Restricting to (stably) compact spaces

The lower Vietoris functor restricts to V: StablyComp \longrightarrow StablyComp
(those topological spaces X where the convergence splits "nicely" into a compact Hausdorff topology $\alpha: \mathbb{U X} \longrightarrow X$ and a partial order \leq on X)

VIETORIS FUNCTORS MORE ABSTRACT (?)

Covariant presheafs

Consider, for a topological space $X: \quad X \longmapsto\left(\mathbf{2}^{X}\right)^{\text {op }}=\mathrm{VX}$.

- The exponential is taken in PsTop.
- The convergence of 2^{x} can be split into a function $\mu: ~ U\left(2^{x}\right) \longrightarrow 2^{x}$ and the order relation \subseteq :

$$
\mathfrak{p} \rightarrow A \Longleftrightarrow \mu(\mathfrak{p}) \subseteq A
$$

We dualise the order but keep $\mu \ldots$ and obtain the lower Vietoris space.

Restricting to (stably) compact spaces

The lower Vietoris functor restricts to V: StablyComp \longrightarrow StablyComp and can be transferred along the adjunction

which leads to the classic Vietoris functor V: CompHaus \longrightarrow CompHaus.

WHAT IS KNOWN (TO US)?

Theorem

The compact Vietoris functor V: Haus \longrightarrow Haus preserves codirected limits. Hence, $\operatorname{CoAlg}(\mathrm{V})$ is complete. ${ }^{a}$
${ }^{\text {a }}$ Zenor, Phillip (1970). "On the completeness of the space of compact subsets". In: Proceedings of the American Mathematical Society 26.(1), pp. 190-192.

Some references

围 Hofmann, Dirk, Neves, Renato, and Nora, Pedro (2019). "Limits in categories of Vietoris coalgebras". In: Mathematical Structures in Computer Science 29.(4), pp. 552-587.

WHAT IS KNOWN (TO US)?

Theorem

The compact Vietoris functor V: Haus \longrightarrow Haus preserves codirected limits. Hence, $\mathrm{CoAlg}(\mathrm{V})$ is complete. ${ }^{a}$
${ }^{\text {a }}$ Zenor, Phillip (1970). "On the completeness of the space of compact subsets". In: Proceedings of the American Mathematical Society 26.(1), pp. 190-192.

Some references

Hofmann, Dirk, Neves, Renato, and Nora, Pedro (2019). "Limits in categories of Vietoris coalgebras". In: Mathematical Structures in Computer Science 29.(4), pp. 552-587.

目 Abramsky, Samson (2005). "A Cook's Tour of the Finitary Non-Well-Founded Sets". In: We Will Show Them! Essays in Honour of Dov Gabbay. Ed. by S. Artemov, H. Barringer, and A. A. Garcez. Vol. 1. London: College Publications, pp. 1-18.

䡒 Kupke, Clemens, Kurz, Alexander, and Venema, Yde (2004). "Stone coalgebras". In: Theoretical Computer Science 327.(1-2), pp. 109-134.

DUALITY THEORY FOR COALGEBRAS ON BOOLEAN SPACES

Remark

For V: Boosp \longrightarrow Boosp, the dual equivalence

$$
\mathrm{CoAlg}(\mathrm{~V}) \sim \mathbf{B A O}^{\circ \mathrm{p}}
$$

follows immediately from Halmos ${ }^{a}$ duality:

$$
\mathbf{B o o S p}_{\mathbb{V}} \sim \text { FinSup }_{\mathrm{BA}}^{\mathrm{op}} .
$$

[^1]
DUALITY THEORY FOR COALGEBRAS ON BOOLEAN SPACES

Remark

For V: BooSp \longrightarrow Boosp, the dual equivalence

$$
\mathrm{CoAlg}(\mathrm{~V}) \sim \mathbf{B A O}^{\circ \mathrm{p}}
$$

follows immediately from Halmos ${ }^{a}$ duality:

$$
\mathbf{B o o S p}_{\mathbb{V}} \sim \text { FinSup }_{\mathrm{BA}}^{\mathrm{op}} .
$$

- Coalgebra $X \rightarrow \mathrm{VX}=$ endomorphism in $\mathbf{B o o S p}_{\mathbb{V}}$.
- Boolean algebra with operator $=$ endomorphism in FinSup ${ }_{B A}$.

[^2]
DUALITY THEORY FOR COALGEBRAS ON BOOLEAN SPACES

Remark

For V: Boosp \longrightarrow Boosp, the dual equivalence

$$
\operatorname{CoAlg}(\mathrm{V}) \sim \mathbf{B A O}^{\mathrm{op}}
$$

follows immediately from Halmos ${ }^{a}$ duality:

$$
\mathbf{B o o S p}_{\mathbb{V}} \sim \text { FinSup }_{\mathrm{BA}}^{\mathrm{op}} .
$$

- Coalgebra $X \rightarrow \mathrm{VX}=$ endomorphism in $\mathbf{B o o S p}_{\mathbb{V}}$.
- Boolean algebra with operator $=$ endomorphism in FinSup ${ }_{\mathrm{BA}}$.
- $X \rightarrow Y$ is a function $\Longleftrightarrow B \rightarrow A$ preserves finite infima.

[^3]
DUALITY THEORY FOR COALGEBRAS ON BOOLEAN SPACES

Remark

For V: Boosp \longrightarrow Boosp, the dual equivalence

$$
\operatorname{CoAlg}(\mathrm{V}) \sim \mathbf{B A O}^{\mathrm{op}}
$$

follows immediately from Halmos ${ }^{a}$ duality:

$$
\mathbf{B o o S p}_{\mathbb{V}} \sim \text { FinSup }_{\mathrm{BA}}^{\mathrm{op}} .
$$

- Coalgebra $X \rightarrow \mathrm{VX}=$ endomorphism in $\mathbf{B o o S p}_{\mathbb{V}}$.
- Boolean algebra with operator $=$ endomorphism in FinSup ${ }_{\mathrm{BA}}$.
- $X \rightarrow Y$ is a function $\Longleftrightarrow B \rightarrow A$ preserves finite infima.

[^4]
Objective

Develop a similar duality theory for StablyComp $_{\mathbb{V}}$ and beyond ...

PASSING TO ALL (ORDERED) COMPACT SPACES?

Remark

Consider now:

Then: η_{X} is an isomorphism $\Longleftrightarrow(f: X \longrightarrow \mathbf{2})_{f}$ is point separating $\Longleftrightarrow X$ is a Boolean space.

PASSING TO ALL (ORDERED) COMPACT SPACES?

Remark

Consider now:

Then: η_{X} is an embedding $\Longleftrightarrow(f: X \longrightarrow[0,1])_{f}$ is point separating \Longleftarrow Urysohn Lemma.

PASSING TO ALL (ORDERED) COMPACT SPACES?

Remark

Consider now:

$$
\mathrm{C}=\mathrm{hom}(-,[0,1])
$$

CompHaus

Then: η_{X} is an embedding $\Longleftrightarrow(f: X \longrightarrow[0,1])_{f}$ is point separating \Longleftarrow Urysohn Lemma.

Theorem

For every compact Hausdorff space, η_{x} is an isomorphism if we consider above distributive lattices with constants from $[0,1]^{a}{ }^{a}$

[^5]
KeEP the definition, change the logic

Our thesis ...

\ldots is that the passage from the two-element space $\mathbf{2}$ to the compact Hausdorff space $[0,1]$ one one side of the duality should be matched by a move from ordered structures to

$$
\text { order structures "in the logic of }[0, \infty] \text { or }[0,1] \text { ". }
$$

图 Hofmann, Dirk and Nora, Pedro (2018). "Enriched Stone-type dualities". In: Advances in Mathematics 330, pp. 307-360.

KeEP the definition, change the logic

Our thesis ...

\ldots is that the passage from the two-element space $\mathbf{2}$ to the compact Hausdorff space $[0,1]$ one one side of the duality should be matched by a move from ordered structures to

$$
\text { order structures "in the logic of }[0, \infty] \text { or }[0,1] \text { ". }
$$

图 Hofmann, Dirk and Nora, Pedro (2018). "Enriched Stone-type dualities". In: Advances in Mathematics 330, pp. 307-360.

Theorem

The functor CompHaus $\xrightarrow{\text { C=hom }(-,[0,1])}([0,1]-\mathrm{DL})^{\text {op }}$ is fully faithful. ${ }^{a}$

[^6]
Quantale-Enriched categories

Definition

A quantale $\mathcal{V}=(\mathcal{V}, \otimes, k)$ is a complete lattice \mathcal{V} equipped with a commutative monoid structure \otimes, with identity k, so that, for each $u \in \mathcal{V}$,
$u \otimes-: \mathcal{V} \longrightarrow \mathcal{V}$ has a right adjoint $\operatorname{hom}(u,-): \mathcal{V} \longrightarrow \mathcal{V}$.

Quantale-Enriched categories

Definition

A quantale $\mathcal{V}=(\mathcal{V}, \otimes, k)$ is a complete lattice \mathcal{V} equipped with a commutative monoid structure \otimes, with identity k, so that, for each $u \in \mathcal{V}$, $u \otimes-: \mathcal{V} \longrightarrow \mathcal{V}$ has a right adjoint $\operatorname{hom}(u,-): \mathcal{V} \longrightarrow \mathcal{V}$.

Definition

1. A \mathcal{V}-category is a pair (X, a) consisting of a set X and a map $a: X \times X \longrightarrow \mathcal{V}$ satisfying

$$
k \leq a(x, x) \quad \text { and } \quad a(x, y) \otimes a(y, z) \leq a(x, z) .
$$

Example: $\quad \mathcal{V}$ with hom $(-,-)$.

Quantale-Enriched categories

Definition

A quantale $\mathcal{V}=(\mathcal{V}, \otimes, k)$ is a complete lattice \mathcal{V} equipped with a commutative monoid structure \otimes, with identity k, so that, for each $u \in \mathcal{V}$, $u \otimes-: \mathcal{V} \longrightarrow \mathcal{V}$ has a right adjoint $\operatorname{hom}(u,-): \mathcal{V} \longrightarrow \mathcal{V}$.

Definition

1. A \mathcal{V}-category is a pair (X, a) consisting of a set X and a map $a: X \times X \longrightarrow \mathcal{V}$ satisfying

$$
k \leq a(x, x) \quad \text { and } \quad a(x, y) \otimes a(y, z) \leq a(x, z) .
$$

2. A \mathcal{V}-functor $f:(X, a) \longrightarrow(Y, b)$ between \mathcal{V}-categories is a map $f: X \longrightarrow Y$ such that

$$
a\left(x, x^{\prime}\right) \leq b\left(f(x), f\left(x^{\prime}\right)\right) .
$$

QUANTALE-ENRICHED CATEGORIES

Definition

A quantale $\mathcal{V}=(\mathcal{V}, \otimes, k)$ is a complete lattice \mathcal{V} equipped with a commutative monoid structure \otimes, with identity k, so that, for each $u \in \mathcal{V}$, $u \otimes-: \mathcal{V} \longrightarrow \mathcal{V}$ has a right adjoint $\operatorname{hom}(u,-): \mathcal{V} \longrightarrow \mathcal{V}$.

Definition

1. A \mathcal{V}-category is a pair (X, a) consisting of a set X and a map $a: X \times X \longrightarrow \mathcal{V}$ satisfying

$$
k \leq a(x, x) \quad \text { and } \quad a(x, y) \otimes a(y, z) \leq a(x, z) .
$$

2. A \mathcal{V}-functor $f:(X, a) \longrightarrow(Y, b)$ between \mathcal{V}-categories is a map $f: X \longrightarrow Y$ such that

$$
a\left(x, x^{\prime}\right) \leq b\left(f(x), f\left(x^{\prime}\right)\right)
$$

3. \mathcal{V}-categories and \mathcal{V}-functors define the category \mathcal{V}-Cat.

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then 2-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;

Then ${\widetilde{0, \infty}]_{+}}_{+ \text {Cat } \sim \text { Met }}$

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then $\mathbf{2}$-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;
- or with $\otimes=$ max, denoted as $[0, \infty]_{\wedge}$.

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then 2-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;
- or with $\otimes=$ max, denoted as $[0, \infty]_{\wedge}$.

3. The unit interval $[0,1]$ with the "greater or equal" relation \geqslant and the tensor $u \oplus v=\min \{1, u+v\}$, denoted as $[0,1]_{\oplus}$. Then $\overleftarrow{[0,1}]_{\oplus}-$ Cat \sim BMet.

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then 2-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;
- or with $\otimes=$ max, denoted as $[0, \infty]_{\wedge}$.

3. The unit interval $[0,1]$ with the "greater or equal" relation \geqslant and the tensor $u \oplus v=\min \{1, u+v\}$, denoted as $[0,1]_{\oplus}$.
Then $\overleftarrow{[0,1]}{ }_{\oplus}$-Cat \sim BMet.
4. The unit interval $[0,1]$ with the usual order \leqslant and $\otimes=\wedge$ the minumum,

Then $[\mathbf{0}, \mathbf{1}]_{\wedge}$-Cat \sim UMet,

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then 2-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;
- or with $\otimes=$ max, denoted as $[0, \infty]_{\wedge}$.

3. The unit interval $[0,1]$ with the "greater or equal" relation \geqslant and the tensor $u \oplus v=\min \{1, u+v\}$, denoted as $[0,1]_{\oplus}$.
Then $\overleftarrow{[0,1}]_{\oplus}$-Cat \sim BMet.
4. The unit interval $[0,1]$ with the usual order \leqslant and $\otimes=\wedge$ the minumum, or $\otimes=*$ the usual multiplication,

Then $[0,1]_{\wedge}-$ Cat \sim UMet, $\quad[0,1]_{*}$-Cat \sim Met,

EXAMPLES

Examples

1. The two element chain $\mathbf{2}=\{\mathbf{0}, \mathbf{1}\}$ with $\otimes=\&$. Then 2-Cat \sim Ord.
2. The extended real half line $\overleftarrow{[0, \infty]}$ ordered by the "greater or equal" relation \geqslant and

- the tensor product given by addition + , denoted by $\overleftarrow{[0, \infty]_{+}}$;
- or with $\otimes=$ max, denoted as $\left[\boxed{[0, \infty]_{\wedge}}\right.$.

Then $\overleftarrow{[0, \infty}+_{+}$-Cat \sim Met and $\overleftarrow{[0, \infty]}_{\wedge}-$ Cat \sim UMet.
3. The unit interval $[0,1]$ with the "greater or equal" relation \geqslant and the tensor $u \oplus v=\min \{1, u+v\}$, denoted as $[0,1]_{\oplus}$.
Then $\overleftarrow{[0,1]}{ }_{\oplus}$-Cat \sim BMet.
4. The unit interval $[0,1]$ with the usual order \leqslant and $\otimes=\wedge$ the minumum, or $\otimes=*$ the usual multiplication, or $\otimes=\odot$ the Lukasiewicz sum defined by $u \odot v=\max \{0, u+v-1\}$. Then $[0,1]_{\wedge}$-Cat \sim UMet, $\quad[0,1]_{*}$-Cat \sim Met, $\quad[0,1]_{\odot}$-Cat \sim BMet.

ABOUT SOME CONCEPTS

Remark

There are corresponding notions to most of classic notions from order theory:

- (down/up)-closed subset: $X \longrightarrow \mathcal{V}$,
- supremum/infimum: weighted (co)limits,
- (co)completeness,
- Cauchy comleteness,
- (complete) distributivity,
- adjunction,
- ...

OUR GOAL(s)

Metric Stone-type dualities

Here each "question mark category" should be a " \mathcal{V}-categorical" counterpart of the corresponding category in the "ordered picture".

OUR GOAL(s)

Metric Stone-type dualities

Here each "question mark category" should be a " $\mathcal{\nu}$-categorical" counterpart of the corresponding category in the "ordered picture".

We should(?) also generalise the left-hand side:

- ordered compact space \rightsquigarrow (certain) \mathcal{V}-categorical compact space $X \times X \longrightarrow \mathbf{2} \leadsto X \times X \longrightarrow \mathcal{V}$

OUR GOAL(s)

Metric Stone-type dualities

Here each "question mark category" should be a " $\mathcal{\nu}$-categorical" counterpart of the corresponding category in the "ordered picture".

We should(?) also generalise the left-hand side:

- ordered compact space \rightsquigarrow (certain) \mathcal{V}-categorical compact space $X \times X \longrightarrow 2 \quad \leadsto \quad X \times X \longrightarrow \mathcal{V}$
- Vietoris space $\mathrm{V} X=\{X \rightarrow \mathbf{2}\} \rightsquigarrow V X=\{X \rightarrow \mathcal{V}\}$
- relation $X \times Y \longrightarrow \mathbf{2} \rightsquigarrow \mathcal{V}$-relation $X \times Y \longrightarrow \mathcal{V}$.

ORDERED COMPACT HAUSDORFF SPACES

Recall

- Ordered topological structures are sets X equipped with order and topology so that the order relation is closed in $X \times X$.
(NACHBIN, Leopoldo (1950). Topologia e Ordem. University of Chicago Press.

Tholen, Walter (2009). "Ordered topological structures". In: Topology and its Applications 156.(12), pp. 2148-2157.

Ordered compact Hausdorff spaces

Recall

- Ordered topological structures are sets X equipped with order and topology so that the order relation is closed in $X \times X$.
- For a compact Hausdorff topology α : UX $\longrightarrow X$ and an order relation $\leq: X \longrightarrow X$, the following are equivalent.
(i) The order \leq is closed in $X \times X$.
(ii) $\alpha:(\mathrm{UX}, \mathrm{U} \leq) \longrightarrow(X, \leq)$ is monotone.

NAChBIN, Leopoldo (1950). Topologia e Ordem. University of Chicago Press.

Tholen, Walter (2009). "Ordered topological structures". In: Topology and its Applications 156.(12), pp. 2148-2157.

Ordered compact Hausdorff spaces

Recall

- Ordered topological structures are sets X equipped with order and topology so that the order relation is closed in $X \times X$.
- For a compact Hausdorff topology α : UX $\longrightarrow X$ and an order relation $\leq: X \longrightarrow X$, the following are equivalent.
(i) The order \leq is closed in $X \times X$.
(ii) $\alpha:(\mathrm{UX}, \mathrm{U} \leq) \longrightarrow(X, \leq)$ is monotone.
- An ordered compact Hausdorff space is Priestley if and only if the family $\left(f: X \longrightarrow \mathbf{2}^{\text {op }}\right)_{f}$ in OrdCH is point-separating and initial.

NAChBIN, Leopoldo (1950). Topologia e Ordem. University of Chicago Press.

Tholen, Walter (2009). "Ordered topological structures". In: Topology and its Applications 156.(12), pp. 2148-2157.

SOME CONDITIONS ON \mathcal{V}

Assumption

From now on we work with a (ccd) quantale \mathcal{V}.

SOME CONDITIONS ON \mathcal{V}

Assumption

From now on we work with a (ccd) quantale \mathcal{V}.

Remark

- The Lawson topology on \mathcal{V} is compact Hausdorff; with respect to this topology, an ultrafilter \mathfrak{v} in \mathcal{V} converges to

$$
\xi(\mathfrak{v})=\bigwedge_{A \in \mathfrak{v}} \bigvee A \in \mathcal{V}
$$

Note:

Scott topology:
Dual of Scott topology:

$$
\mathfrak{v} \longrightarrow x \Longleftrightarrow \xi(\mathfrak{v}) \geq x
$$

$$
\mathfrak{v} \longrightarrow x \Longleftrightarrow \xi(\mathfrak{v}) \leq x
$$

SOME CONDITIONS ON \mathcal{V}

Assumption

From now on we work with a (ccd) quantale \mathcal{V}.

Remark

- The Lawson topology on \mathcal{V} is compact Hausdorff; with respect to this topology, an ultrafilter \mathfrak{v} in \mathcal{V} converges to

$$
\xi(\mathfrak{v})=\bigwedge_{A \in \mathfrak{v}} \bigvee A \in \mathcal{V}
$$

- The sets

$$
\uparrow v=\{u \in \mathcal{V} \mid v \leq u\} \quad(v \in \mathcal{V})
$$

form a subbase for the closed sets of the dual of the Scott topology of \mathcal{V}. We denote (the convergence of) this topology by ξ_{\leq}.

SOME CONDITIONS ON \mathcal{V}

Assumption

From now on we work with a (ccd) quantale \mathcal{V}.

Remark

- The Lawson topology on \mathcal{V} is compact Hausdorff; with respect to this topology, an ultrafilter \mathfrak{v} in \mathcal{V} converges to

$$
\xi(\mathfrak{v})=\bigwedge_{A \in \mathfrak{v}} \bigvee A \in \mathcal{V}
$$

- The sets

$$
\uparrow v=\{u \in \mathcal{V} \mid v \leq u\} \quad(v \in \mathcal{V})
$$

form a subbase for the closed sets of the dual of the Scott topology of \mathcal{V}. We denote (the convergence of) this topology by ξ_{\leq}.

- The convergence $\xi: U \mathcal{V} \longrightarrow \mathcal{V}$ together with the ultrafilter monad $\mathbb{U}=(U, m, e)$ and the quantale \mathcal{V} defines a topological theory and therefore allows for an extension of the ultrafilter monad \mathbb{U} to \mathcal{V}-Cat.

\mathcal{V}-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V} - $\mathbf{C a t C H}$.

Example

For $\mathcal{V}=\mathbf{2}$, we obtain Nachbin's ordered compact Hausdorff spaces.

V-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V}-CatCH.

Example

- For $\mathcal{V}=\overleftarrow{[0, \infty}]_{+}$, we obtain metric spaces equipped with a compatible compact Hausdorff topology.
- These spaces should be thought of as natural generalisations of compact metric spaces.

V-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V}-CatCH.

Example

- For $\mathcal{V}=\overleftarrow{[0, \infty}]_{+}$, we obtain metric spaces equipped with a compatible compact Hausdorff topology.
- These spaces should be thought of as natural generalisations of compact metric spaces.
- For instance, the underlying metric of a metric compact Hausdorff space is Cauchy-complete, generalising the classic result that every compact metric space is Cauchy-complete.

\mathcal{V}-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V}-CatCH.

Example

$\mathcal{V}=(\mathcal{V}$, hom,$\xi)$ is a \mathcal{V}-categorical compact Hausdorff spaces.

\mathcal{V}-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V}-CatCH.

Definition

A \mathcal{V}-categorical compact Hausdorff space X is called Priestley whenever the cone $\left(f: X \longrightarrow \mathcal{V}^{\mathrm{op}}\right)_{f}$ in \mathcal{V}-CatCH is point-separating and initial.

\mathcal{V}-CATEGORICAL COMPACT HAUSDORFF SPACES

Definition

A \mathcal{V}-categorical compact Hausdorff spaces is a triple (X, a, α) where

- (X, a) is a \mathcal{V}-category and
- $\alpha: \mathbf{U X} \longrightarrow X$ is the convergence of a compact Hausdorff topology on X such that $\alpha:(\mathrm{UX}, \mathrm{Ua}) \longrightarrow(X, a)$ is a \mathcal{V}-functor.

We denote the corresponding category as \mathcal{V}-CatCH.

Definition

A \mathcal{V}-categorical compact Hausdorff space X is called Priestley whenever the cone $\left(f: X \longrightarrow \mathcal{V}^{\mathrm{op}}\right)_{f}$ in \mathcal{V}-CatCH is point-separating and initial.

Proposition

For a \mathcal{V}-category (X, a) and a compact Hausdorff space (X, α) with the same underlying set X, the following assertions are equivalent.
(i) $\alpha: ~ U(X, a) \longrightarrow(X, a)$ is a \mathcal{V}-functor.
(ii) $a:(X, \alpha) \times(X, \alpha) \longrightarrow\left(\mathcal{V}, \xi_{\leq}\right)$is continuous.

EXAMPLE: A DUALITY RESULT

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot$ on $[0,1]$, and take the enriched Vietoris monad where $\mathrm{V} X=\{X \rightarrow[0,1]\}$.

Theorem

The functor

$$
([0,1] \text {-Priest })_{\mathbb{V}} \xrightarrow{\mathrm{C}=\text { hom }(-, 1)}[0,1]-\text { FinSup }^{\mathrm{op}}
$$

is fully faithful and restricts to a fully faithful functor

$$
[0,1] \text {-Priest } \xrightarrow{\mathrm{C}=\text { hom }(-,[0,1])}[0,1] \text {-FinLat }{ }^{\mathrm{op}} \text {. }
$$

ABOUT (QUASI)-VARIETIES)

Remark

The classic Stone duality

$$
\text { BooSp }^{\mathrm{op}} \sim \mathrm{BA}
$$

implies in particular that BooSp ${ }^{\text {op }}$ is a finitary variety.

ABOUT (QUASI)-VARIETIES)

Remark

The classic Stone duality

$$
\text { Boosp }^{\mathrm{op}} \sim B A
$$

implies in particular that BooSp ${ }^{\text {op }}$ is a finitary variety.
This can be also seen abstractly:

Theorem

A complete and cocomplete category is a finitary variety iff it has

1. a finitely presentable, regularly projective regular generator, and
2. effectivity of equivalence relations.

ABOUT (QUASI)-VARIETIES)

Remark

The classic Stone duality

$$
\text { Boosp }^{\mathrm{op}} \sim B A
$$

implies in particular that BooSp ${ }^{\text {op }}$ is a finitary variety.
This can be also seen abstractly:

- BooSp has all colimits and limits,

Theorem

A complete and cocomplete category is a finitary variety iff it has

1. a finitely presentable, regularly projective regular generator, and
2. effectivity of equivalence relations.

About (quasi)-varieties)

Remark

The classic Stone duality

$$
\text { Boosp }^{\mathrm{op}} \sim \text { BA }
$$

implies in particular that BooSp ${ }^{\mathrm{op}}$ is a finitary variety.
This can be also seen abstractly:

- BooSp has all colimits and limits,
- regular monomorphism = subspace embedding,
- the two-element space is a regularly injective regular cogenerator,
- the two-element space is finitely copresentable.

Theorem

A complete and cocomplete category is a finitary variety iff it has

1. a finitely presentable, regularly projective regular generator, and
2. effectivity of equivalence relations.

"WARM UP": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety.

Proof.

Use that

- regular monomorphism = embedding.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\mathrm{OP}}$ is a quasivariety.

Proof.

Use that

- regular monomorphism = embedding.
- \mathcal{V} is injective and $(f: X \longrightarrow \mathcal{V})_{f}$ is initial.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety.

Proof.

Use that

- regular monomorphism = embedding.
- \mathcal{V} is injective and $(f: X \longrightarrow \mathcal{V})_{f}$ is initial.
- \mathcal{V}_{I} (indiscrete structure) is a cogenerator.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety.
If time $\ll 18$ mins then

Proof.

Use that

- regular monomorphism = embedding.
- \mathcal{V} is injective and $(f: X \longrightarrow \mathcal{V})_{f}$ is initial.
- \mathcal{V}_{I} (indiscrete structure) is a cogenerator.
- Hence $\mathcal{V} \times \mathcal{V}_{1}$ is a regular injective regular cogenerator.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\mathrm{op}}$ is a quasivariety.

Proof.

Use that

- regular monomorphism = embedding.
- \mathcal{V} is injective and $(f: X \longrightarrow \mathcal{V})_{f}$ is initial.
- \mathcal{V}_{I} (indiscrete structure) is a cogenerator.
- Hence $\mathcal{V} \times \mathcal{V}_{\text {l }}$ is a regular injective regular cogenerator.
- There is no rank since the "discrete" functor $\mathrm{D}:$ Set $\longrightarrow \mathcal{V}$-Cat preserves non-empty limits:

$$
\operatorname{hom}(-,|X|) \simeq \operatorname{hom}(D-, X)
$$

Therefore $|-|: \mathcal{V}$-Cat \longrightarrow Set preserves copresentable objects.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\mathrm{OP}}$ is a quasivariety.
If time $\ll 18$ mins then

Theorem (just for comparision)

Top ${ }^{\text {op }}$ is a quasivariety.
Barr, Michael and Pedicchio, M. Cristina (1995). "Top ${ }^{\text {op }}$ is a quasi-variety". In: Cahiers de Topologie et Géométrie Différentielle Catégoriques 36.(1), pp. 3-10.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety. If time $\ll 18$ mins then stip
Theorem (just for comparision)
Top ${ }^{\circ p}$ is a quasivariety.

Remark

Top $_{o}^{\mathrm{op}}$ and \mathcal{V}-Cat ${ }_{\text {sep }}^{\mathrm{op}}$ do not seem to be quasivarieties.

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety. If time $\ll 18$ mins then stip
Theorem (just for comparision)
Top ${ }^{\text {op }}$ is a quasivariety.

Remark

Top $_{o}^{\mathrm{op}}$ and \mathcal{V}-Cat ${ }_{\text {sep }}^{\mathrm{op}}$ do not seem to be quasivarieties.

Remark

However, Pos $^{\mathrm{op}}$ is a quasivariety. Are we missing something ...??

"WARM Up": V-CATEGORIES

Theorem
\mathcal{V}-Cat ${ }^{\text {op }}$ is a quasivariety. If time $\ll 18$ mins then $<$ stip
Theorem (just for comparision)
Top ${ }^{\circ \mathrm{p}}$ is a quasivariety.

Remark

Top ${ }_{o}^{\mathrm{op}}$ and \mathcal{V}-Cat ${ }_{\text {sep }}^{\mathrm{op}}$ do not seem to be quasivarieties.

Remark
 However, Pos $^{\text {op }}$ is a quasivariety
 Are we missing something ...??

Theorem
The \mathcal{V}-category \mathcal{V} is a regular injective regular cogenerator in \mathcal{V}-Cat ${ }_{\text {sep,cc }}$. Hence, $\left(\mathcal{V} \text {-Cat }_{\text {sep }, \text { cc }}\right)^{\text {op }}$ is a quasivariety.

FROM GABRIEL AND ULMER (1971)

Theorem

1. A set X is copresentable in Set if and only if $\operatorname{card}(X)=1$.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, Vol. 221. Berlin: Springer-Verlag. v+200.

Ulmer, Friedrich (1971). "Locally α-presentable and locally α-generated categories". In: Reports of the Midwest Category Seminar V. ed. by John W. Gray. Springer Berlin Heidelberg, pp. 230-247.

From Gabriel and Ulmer (1971)

Theorem

1. A set X is copresentable in Set if and only if $\operatorname{card}(X)=1$.
2. The finitely copresentable compact Hausdorff spaces are precisely the finite ones.
3. The \aleph_{1}-copresentable compact Hausdorff spaces are precisely the metrisable ones. In particular, the unit interval $[0,1]$ is \aleph_{1}-copresentable in CompHaus.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, Vol. 221. Berlin: Springer-Verlag. v+200.

Ulmer, Friedrich (1971). "Locally α-presentable and locally α-generated categories". In: Reports of the Midwest Category Seminar V. ed. by John W. Gray. Springer Berlin Heidelberg, pp. 230-247.

FROM GABRIEL AND ULMER (1971)

Theorem

1. A set X is copresentable in Set if and only if $\operatorname{card}(X)=1$.
2. The finitely copresentable compact Hausdorff spaces are precisely the finite ones.
3. The \aleph_{1}-copresentable compact Hausdorff spaces are precisely the metrisable ones. In particular, the unit interval $[0,1]$ is \aleph_{1}-copresentable in CompHaus.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, Vol. 221. Berlin: Springer-Verlag. v + 200.

Ulmer, Friedrich (1971). "Locally α-presentable and locally α-generated categories". In: Reports of the Midwest Category Seminar V. ed. by John W. Gray. Springer Berlin Heidelberg, pp. 230-247.

Theorem

The "connected component functor" $\pi_{0}:$ CompHaus \longrightarrow BooSp preserves cofiltered limits.

AN IMMEDIATE CONSEQUENCE FOR V-CatCH

Remark

In

the "discrete" functor $\mathrm{D}:$ CompHaus $\longrightarrow \mathcal{V}$ - $\mathbf{C a t C H}_{\text {(sep) }}$ preserves non-empty limits.

AN IMMEDIATE CONSEQUENCE FOR \mathcal{V}-CatCH

Remark

In

$$
\text { CompHaus } \frac{D}{\frac{\perp}{1-1}} \mathcal{V} \text {-CatCH } \text { (sep) } \text {, }
$$

the "discrete" functor $\mathrm{D}:$ CompHaus $\longrightarrow \mathcal{V}$ - $\mathbf{C a t C H}_{\text {(sep) }}$ preserves non-empty limits.

Corollary

For every regular cardinal $\lambda,|-|: \mathcal{V}$-CatCH \longrightarrow CompHaus preserves λ-copresentable objects.
In particular:

1. Every finitely copresentable \mathcal{V}-categorical compact Hausdorff space is finite
2. Every \aleph_{1}-copresentable \mathcal{V}-categorical compact Hausdorff space has a metrizable topology.

EvEN MORE CONDITIONS ON \mathcal{V}

Assumption

We also assume that there is a countable subset $D \subseteq \mathcal{V}$ so that, for all $v \in \mathcal{V}$,

$$
v=\bigvee\{u \in D \mid u \lll v\} .
$$

Proposition

A subbase for the Lawson topology on \mathcal{V} is given by the sets

$$
\{u \in \mathcal{V} \mid v \lll u\} \quad \text { and } \quad\{u \in \mathcal{V} \mid v \not \leq u\} \quad(v \in D) .
$$

Hence, the Lawson topology on \mathcal{V} has a countable base and therefore is metrisable.

Corollary

The compact Hausdorff space \mathcal{V} (with the Lawson topology) is \aleph_{1}-copresentable in CompHaus.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set. ${ }^{a}$
${ }^{a}$ Kelly, G. Max and Lack, Stephen (2001). "V-Cat is locally presentable or locally bounded if V is so". In: Theory and Applications of Categories 8.(23), pp. 555-575.

Proof.

Use the bijection between the sets

$$
\begin{aligned}
&\{X \rightarrow \mathcal{V}\} \quad \text { and } \quad\left\{\left(B_{u}\right)_{u \in D} \mid B_{u} \subseteq X \& B_{u}=\bigcap_{v \lll u} B_{v}\right\} ; \\
&\left(\varphi: X \rightarrow \mathcal{V}_{\leq}\right) \longmapsto\left(\varphi^{-1}(\uparrow u)_{u \in D}\right) \\
&\left(B_{u}\right)_{u \in D} \longmapsto\left(\varphi: X \rightarrow \mathcal{V}, x \mapsto \bigvee\left\{u \in D \mid x \in B_{u}\right\}\right)
\end{aligned}
$$

then a map $a: X \times X \longrightarrow \mathcal{V}$ corresponds to a family $\left(R_{u}\right)_{u \in D}$ of binary relations R_{u} on X.

Using LIMIT SKETCHES

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Proof.

Use the bijection between the sets

$$
\begin{aligned}
&\left\{X \rightarrow \mathcal{V}_{\leq} \text {continuous }\right\} \quad \text { and } \quad\left\{\left(B_{u}\right)_{u \in D} \mid B_{u} \subseteq X \text { closed } \& B_{u}=\bigcap_{v \ll u} B_{v}\right\} ; \\
&(\varphi: X \rightarrow \mathcal{V}) \longmapsto\left(\varphi^{-1}(\uparrow u)_{u \in D}\right) \\
&\left(B_{u}\right)_{u \in D} \longmapsto\left(\varphi: X \rightarrow \mathcal{V}, x \mapsto \bigvee\left\{u \in D \mid x \in B_{u}\right\}\right)
\end{aligned}
$$

then a continuous map $a:(X, \alpha) \times(X, \alpha) \longrightarrow\left(\mathcal{V}, \xi_{\leq}\right)$corresponds to a family $\left(R_{u}\right)_{u \in D}$ of closed binary relations R_{u} on X.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Remark

Therefore $(\mathcal{V} \text {-CatCH })^{\text {op }}$ is the model category of a colimit sketch in the locally \aleph_{1}-presentable category CompHaus ${ }^{\mathrm{op}}$ and therefore locally presentable (we don't know the rank). ${ }^{a}$

[^7]
Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

USING LIMIT SKETCHES

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Corollary

An object is \aleph_{1}-ary copresentable in \mathcal{V}-CatCH if and only if its underlying compact Hausdorff space is metrizable.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Corollary

An object is \aleph_{1}-ary copresentable in \mathcal{V}-CatCH if and only if its underlying compact Hausdorff space is metrizable. In particular, $\mathcal{V}^{\text {op }}$ is \aleph_{1}-ary copresentable.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Corollary

An object is \aleph_{1}-ary copresentable in \mathcal{V}-CatCH if and only if its underlying compact Hausdorff space is metrizable. In particular, $\mathcal{V}^{\text {op }}$ is \aleph_{1}-ary copresentable.
If the quantale \mathcal{V} is finite, then the finitely copresentable objects of \mathcal{V}-CatCH are precisely the finite ones.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Remark

The conclusion of the lemma above is not necessarily optimal:

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch.
Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Remark

The conclusion of the lemma above is not necessarily optimal:

- $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ is \aleph_{1}-copresentable in CompHaus.
- Hence, we conclude that \mathbb{T} is \aleph_{1}-copresentable in CompHausAb.

Using Limit Sketches

Proposition

1. \mathcal{V}-Cat is the model category of a countable \aleph_{1}-ary limit sketch in Set.
2. \mathcal{V}-CatCH is the model category of a countable \aleph_{1}-ary limit sketch in CompHaus.

Lemma

Let λ be a regular cardinal and let $\mathcal{S}=(\mathbf{C}, \mathcal{L}, \sigma)$ be a λ-small limit sketch. Then a model of \mathcal{S} in a category \mathbf{X} is λ-copresentable in $\operatorname{Mod}(\mathcal{S}, \mathbf{X})$ provided that each component is λ-copresentable in \mathbf{X}.

Remark

The conclusion of the lemma above is not necessarily optimal:

- $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ is \aleph_{1}-copresentable in CompHaus.
- Hence, we conclude that \mathbb{T} is \aleph_{1}-copresentable in CompHausAb.
- However, by the famous Pontryagin duality theorem, \mathbb{T} is even finitely copresentable in CompHausAb.

Theorem
Let D: I CompHaus be a cofiltered diagram. Then a cone
($\left.p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \quad \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the image of each p_{i} is as large as possible".

THE "BOURBAKI-CRITERION"

Theorem

Let D: I CompHaus be a cofiltered diagram. Then a cone $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in 1}$ for D is a limit cone if and only if

1. $\left(p_{i}: L \longrightarrow D(i)\right)_{i \in I}$ is mono and,
2. for every $i \in I: \bigcap_{j \rightarrow i} \operatorname{im} D(j \rightarrow i)=\operatorname{im} p_{i}$.

That is, "the image of each p_{i} is as large as possible".

Example

Every Boolean space X is a cofiltered limit of finite spaces.

PASSING TO PRIESTLEY SPACES

Proposition

The reflection functor $\pi_{0}: \mathcal{V}$-CatCH $\longrightarrow \mathcal{V}$-Priest preserves \aleph_{1}-cofiltered limits (and even cofiltered limits if \mathcal{V} is finite).

Proof.

... Gabriel and Ulmer (1971) use Stone duality ... but here the "Bourbaki-criterion" also works ...

PASSING TO PrIESTLEY SPACES

Proposition

The reflection functor $\pi_{0}: \mathcal{V}$-CatCH $\longrightarrow \mathcal{V}$-Priest preserves \aleph_{1}-cofiltered limits (and even cofiltered limits if \mathcal{V} is finite).

Proof.

... Gabriel and Ulmer (1971) use Stone duality ... but here the "Bourbaki-criterion" also works ...

Remark

For $\mathcal{V}=[0,1]$ and $\otimes=\odot$, we can use "Stone-duality": the dualising object [0,1] induces a natural dual adjunction

$$
[0,1]_{\odot}-\text { CatCH } \underset{\operatorname{hom}(-,[0,1])}{\stackrel{\text { C=hom }(-,[0,1])}{\perp}}[0,1]_{\odot}-\text { FinLat }^{\mathrm{op}}
$$

where the fixed subcategory on the left-hand side is precisely $[0,1]_{\odot}$-Priest.

PASSING TO PRIESTLEY SPACES

Proposition

The reflection functor $\pi_{0}: \mathcal{V}$-CatCH $\longrightarrow \mathcal{V}$-Priest preserves \aleph_{1}-cofiltered limits (and even cofiltered limits if \mathcal{V} is finite).

Corollary

1. An object is \aleph_{1}-ary copresentable in \mathcal{V}-Priest if and only if its underlying compact Hausdorff space is metrizable. In particular, $\mathcal{V}^{\mathrm{op}}$ is \aleph_{1}-ary copresentable in \mathcal{V}-Priest.

PASSING TO PRIESTLEY SPACES

Proposition

The reflection functor $\pi_{0}: \mathcal{V}$-CatCH $\longrightarrow \mathcal{V}$-Priest preserves \aleph_{1}-cofiltered limits (and even cofiltered limits if \mathcal{V} is finite).

Corollary

1. An object is \aleph_{1}-ary copresentable in \mathcal{V}-Priest if and only if its underlying compact Hausdorff space is metrizable. In particular, $\mathcal{V}^{\mathrm{op}}$ is \aleph_{1}-ary copresentable in \mathcal{V}-Priest.
2. Assume that \mathcal{V} is finite. Then an object is finitely copresentable in \mathcal{V}-Priest if and only if it is finite. In particular, $\mathcal{V}^{\mathrm{op}}$ is finitely copresentable in \mathcal{V}-Priest.

Proposition

The reflection functor $\pi_{0}: \mathcal{V}$-CatCH $\longrightarrow \mathcal{V}$-Priest preserves \aleph_{1}-cofiltered limits (and even cofiltered limits if \mathcal{V} is finite).

Corollary

1. An object is \aleph_{1}-ary copresentable in \mathcal{V}-Priest if and only if its underlying compact Hausdorff space is metrizable. In particular, $\mathcal{V}^{\mathrm{op}}$ is \aleph_{1}-ary copresentable in \mathcal{V}-Priest.
2. Assume that \mathcal{V} is finite. Then an object is finitely copresentable in \mathcal{V}-Priest if and only if it is finite. In particular, $\mathcal{V}^{\text {op }}$ is finitely copresentable in \mathcal{V}-Priest.

Theorem

The category \mathcal{V}-Priest is locally \aleph_{1}-ary copresentable (and even locally finite copresentable if \mathcal{V} is finite).

Some consequences

Corollary

The fully faithful right adjoint functor

$$
\mathrm{C}:[0,1]_{\odot}-\text { Priest }^{\mathrm{op}} \longrightarrow[0,1]_{\odot}-\text { FinLat }
$$

preserves \aleph_{1}-filtered colimits.

Corollary

The fully faithful right adjoint functor

$$
\mathrm{C}:[0,1]_{\odot}-\text { Priest }^{\mathrm{op}} \longrightarrow[0,1]_{\odot} \text {-FinLat }
$$

preserves \aleph_{1}-filtered colimits.

Corollary

The category $\operatorname{CoAlg}(\mathrm{V})$ of coalgebras and homomorphisms for the enriched Vietoris functor V: $[0,1]_{\odot}$-Priest $\longrightarrow[0,1]_{\odot}$-Priest is locally \aleph_{1}-ary copresentable. In particular, $\mathrm{CoAlg}(\mathrm{V})$ is complete.

Some consequences

Proof.

- Write \mathbf{A} for the isomorphism closure of the image of

$$
\mathrm{C}:\left([0,1]_{\odot}-\text { Priest }\right)^{\mathrm{op}} \longrightarrow[0,1]_{\odot}-\text { FinLat } ;
$$

Some consequences

Proof.

- Write \mathbf{A} for the isomorphism closure of the image of

$$
\mathrm{C}:\left([0,1]_{\odot}-\text { Priest }\right)^{\mathrm{op}} \longrightarrow[0,1]_{\odot}-\text { FinLat } ;
$$

- The category Un([0, 1].-FinSup) of unary algebras and homomorphisms in $[0,1]_{\odot}$-FinSup is locally \aleph_{1}-ary presentable

Some consequences

Proof.

- Write \mathbf{A} for the isomorphism closure of the image of

$$
\mathrm{C}:\left([0,1]_{\odot}-\text { Priest }\right)^{\mathrm{op}} \longrightarrow[0,1]_{\odot}-\text { FinLat } ;
$$

- The category Un([0, 1].-FinSup) of unary algebras and homomorphisms in $[0,1]_{\odot}$-FinSup is locally \aleph_{1}-ary presentable and the forgetful functor Un $\left([0,1]_{\odot}-\right.$ FinSup $) \longrightarrow[0,1]_{\odot}$-FinSup preserves \aleph_{1}-filtered colimites.

Some consequences

Proof.

- Write \mathbf{A} for the isomorphism closure of the image of

$$
\mathrm{C}:\left([0,1]_{\odot}-\text { Priest }\right)^{\mathrm{op}} \longrightarrow[0,1]_{\odot}-\text { FinLat } ;
$$

- The category Un([0, 1].-FinSup) of unary algebras and homomorphisms in $[0,1]_{\odot}$-FinSup is locally \aleph_{1}-ary presentable and the forgetful functor $\operatorname{Un}\left([0,1]_{\odot}\right.$-FinSup $) \longrightarrow[0,1]_{\odot}$-FinSup preserves \aleph_{1}-filtered colimites.
- $\mathrm{CoAlg}(\mathrm{V})^{\text {op }}$ is equivalent to the category \mathbf{B} obtained as the pullback

of \aleph_{1}-accessible functors.

[^0]: a Vietoris, Leopold (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258-280.

[^1]: ${ }^{a}$ Halmos, Paul R. (1956). "Algebraic logic I. Monadic Boolean algebras". In: Compositio Mathematica 12, pp. 217-249.

[^2]: ${ }^{a}$ Halmos, Paul R. (1956). "Algebraic logic I. Monadic Boolean algebras". In: Compositio Mathematica 12, pp. 217-249.

[^3]: ${ }^{a}$ Halmos, Paul R. (1956). "Algebraic logic I. Monadic Boolean algebras". In: Compositio Mathematica 12, pp. 217-249.

[^4]: ${ }^{a}$ Halmos, Paul R. (1956). "Algebraic logic I. Monadic Boolean algebras". In: Compositio Mathematica 12, pp. 217-249.

[^5]: ${ }^{a}$ Banaschewski, Bernhard (1983). "On lattices of continuous functions". In:
 Quaestiones Mathematicæ 6.(1-3), pp. 1-12.

[^6]: ${ }^{\text {a Banaschewski, Bernhard (1983). "On lattices of continuous functions". In: }}$
 Quaestiones Mathematicæ 6.(1-3), pp. 1-12.

[^7]: ${ }^{a}$ Adámek, Jiři and Rosický, Jiři (1994). Locally presentable and accessible categories. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. xiv + 316, Remark 2.63.

