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Terminal coalgebra?

A question
For “the” Vietoris functor V, is the category CoAlg(V) of coalgebras for V
complete (or has at least a terminal object)?

Recall

• For a functor F : C −→ C, a coalgebra

homomorphism:

X

FX

Y

FY
c d

f

Ff

• Think of “the” Vietoris functor as a “topological powerset functor”.

Example
The powerset functor P : Set −→ Set does not admit a terminal coalgebra.
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Vietoris functors on topological spaces

“Das Orginal”
For a compact Hausdor� space X, the classic Vietoris spacea VX consists of
the set of all closed subsets of X

VX = {K ⊆ X | K is closed}

equipped with the “hit-and-miss topology” generated by the subbasis of
sets of the form (where U ⊆ X is open)

U♦ = {A ∈ VX | A ∩ U 6= ∅}, U� = {A ∈ VX | A ∩ U{ = ∅}.

We obtain V : CompHaus −→ CompHaus.

aVietoris, Leopold (1922). “Bereiche zweiter Ordnung”. In: Monatshefte für
Mathematik und Physik 32.(1), pp. 258–280.
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Remark
This definition can be generalised to other topological spaces . . . but does
not always define a functor!!
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We consider here the following two variants on Top:
• lower Vietoris: closed subsets, but only “miss topology”.

• compact Vietoris: compact subsets, “hit-and-miss topology”.
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Vietoris functors more abstract (?)

Covariant presheafs

Consider, for a topological space X: X 7−→

(

2X

)op= VX.

• The exponential is taken in PsTop.

• The convergence of 2X can be split into a function µ : U(2x) −→ 2x and
the order relation ⊆:

p→ A ⇐⇒ µ(p) ⊆ A.

We dualise the order but keep µ . . . and obtain the lower Vietoris space.

Restricting to (stably) compact spaces
The lower Vietoris functor restricts to V : StablyComp −→ StablyComp
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(those topological spaces X where the convergence splits “nicely” into a
compact Hausdor� topology α : UX −→ X and a partial order ≤ on X)



Vietoris functors more abstract (?)

Covariant presheafs

Consider, for a topological space X: X 7−→ (2X)op= VX.
• The exponential is taken in PsTop.
• The convergence of 2X can be split into a function µ : U(2x) −→ 2x and

the order relation ⊆:
p→ A ⇐⇒ µ(p) ⊆ A.

We dualise the order but keep µ . . . and obtain the lower Vietoris space.

Restricting to (stably) compact spaces
The lower Vietoris functor restricts to V : StablyComp −→ StablyComp
and can be transferred along the adjunction

CompHaus PosComp ∼ StablyComp
discrete

forgetful

a

which leads to the classic Vietoris functor V : CompHaus −→ CompHaus.



What is known (to us)?
Theorem
The compact Vietoris functor V : Haus −→ Haus preserves codirected
limits. Hence, CoAlg(V) is complete.a

aZenor, Phillip (1970). “On the completeness of the space of compact subsets”. In:
Proceedings of the American Mathematical Society 26.(1), pp. 190–192.

Some references

Hofmann, Dirk, Neves, Renato, and Nora, Pedro (2019). “Limits in
categories of Vietoris coalgebras”. In: Mathematical Structures in
Computer Science 29.(4), pp. 552–587.

Abramsky, Samson (2005). “A Cook’s Tour of the Finitary
Non-Well-Founded Sets”. In: We Will Show Them! Essays in Honour of
Dov Gabbay. Ed. by S. Artemov, H. Barringer, and A. A. Garcez. Vol. 1.
London: College Publications, pp. 1–18.
Kupke, Clemens, Kurz, Alexander, and Venema, Yde (2004). “Stone

coalgebras”. In: Theoretical Computer Science 327.(1-2), pp. 109–134.
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Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp −→ BooSp, the dual equivalence

CoAlg(V) ∼ BAOop

follows immediately from Halmosa duality:

BooSp
V
∼ FinSupop

BA.

• Coalgebra X → VX = endomorphism in BooSp
V

.
• Boolean algebra with operator = endomorphism in FinSupBA.
• X −7−→ Y is a function ⇐⇒ B→ A preserves finite infima.

aHalmos, Paul R. (1956). “Algebraic logic I. Monadic Boolean algebras”. In: Compositio
Mathematica 12, pp. 217–249.

Objective
Develop a similar duality theory for StablyComp

V
and beyond . . .



Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp −→ BooSp, the dual equivalence

CoAlg(V) ∼ BAOop

follows immediately from Halmosa duality:

BooSp
V
∼ FinSupop

BA.

• Coalgebra X → VX = endomorphism in BooSp
V

.
• Boolean algebra with operator = endomorphism in FinSupBA.

• X −7−→ Y is a function ⇐⇒ B→ A preserves finite infima.

aHalmos, Paul R. (1956). “Algebraic logic I. Monadic Boolean algebras”. In: Compositio
Mathematica 12, pp. 217–249.

Objective
Develop a similar duality theory for StablyComp

V
and beyond . . .



Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp −→ BooSp, the dual equivalence

CoAlg(V) ∼ BAOop

follows immediately from Halmosa duality:

BooSp
V
∼ FinSupop

BA.

• Coalgebra X → VX = endomorphism in BooSp
V

.
• Boolean algebra with operator = endomorphism in FinSupBA.
• X −7−→ Y is a function ⇐⇒ B→ A preserves finite infima.

aHalmos, Paul R. (1956). “Algebraic logic I. Monadic Boolean algebras”. In: Compositio
Mathematica 12, pp. 217–249.

Objective
Develop a similar duality theory for StablyComp

V
and beyond . . .



Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp −→ BooSp, the dual equivalence

CoAlg(V) ∼ BAOop

follows immediately from Halmosa duality:

BooSp
V
∼ FinSupop

BA.

• Coalgebra X → VX = endomorphism in BooSp
V

.
• Boolean algebra with operator = endomorphism in FinSupBA.
• X −7−→ Y is a function ⇐⇒ B→ A preserves finite infima.

aHalmos, Paul R. (1956). “Algebraic logic I. Monadic Boolean algebras”. In: Compositio
Mathematica 12, pp. 217–249.

Objective
Develop a similar duality theory for StablyComp

V
and beyond . . .



Passing to all (ordered) compact spaces?
Remark
Consider now:

CompHaus DLop
C=hom(−,2)

hom(−,2)

a

X hom(CX, 2), x evx

2.

ηX

f
evf

Then: ηX is an isomorphism ⇐⇒ (f : X −→ 2)f is point separating
⇐⇒ X is a Boolean space.

Theorem
For every compact Hausdor� space, ηX is an isomorphism if we consider
above distributive lattices with constants from [0, 1].a

aBanaschewski, Bernhard (1983). “On lattices of continuous functions”. In:
Quaestiones Mathematicæ 6.(1-3), pp. 1–12.
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Keep the definition, change the logic

Our thesis . . .
. . . is that the passage from the two-element space 2 to the compact
Hausdor� space [0, 1] one one side of the duality should be matched by a
move from ordered structures to

order structures “in the logic of [0,∞] or [0, 1]”.

Hofmann, Dirk and Nora, Pedro (2018). “Enriched Stone-type
dualities”. In: Advances in Mathematics 330, pp. 307–360.

Theorem

The functor CompHaus C=hom(−,[0,1])−−−−−−−−−−−−−→ ([0, 1]-DL)op is fully faithful.a

aBanaschewski, Bernhard (1983). “On lattices of continuous functions”. In:
Quaestiones Mathematicæ 6.(1-3), pp. 1–12.
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Quantale-enriched categories

Definition
A quantale V = (V,⊗, k) is a complete lattice V equipped with a
commutative monoid structure ⊗, with identity k, so that, for each u ∈ V ,

u⊗− : V −→ V has a right adjoint hom(u,−) : V −→ V .

Definition

1. A V-category is a pair (X,a) consisting of a set X and a map
a : X × X −→ V satisfying

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z).

2. A V-functor f : (X,a) −→ (Y,b) between V-categories is a map
f : X −→ Y such that

a(x, x′) ≤ b(f (x), f (x′)).
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2. A V-functor f : (X,a) −→ (Y,b) between V-categories is a map
f : X −→ Y such that

a(x, x′) ≤ b(f (x), f (x′)).
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3. V-categories and V-functors define the category V-Cat.



Examples

Examples
1. The two element chain 2 = {0, 1} with ⊗ = &. Then 2-Cat ∼ Ord.

2. The extended real half line
←−−−
[0,∞] ordered by the “greater or equal”

relation > and
• the tensor product given by addition +, denoted by

←−−−
[0,∞]+;

• or with ⊗ = max, denoted as
←−−−
[0,∞]∧.

Then
←−−−
[0,∞]+-Cat ∼ Met

and
←−−−
[0,∞]∧-Cat ∼ UMet.

3. The unit interval [0, 1] with the “greater or equal” relation > and the
tensor u⊕ v = min{1,u+ v}, denoted as

←−−
[0, 1]⊕.

Then
←−−
[0, 1]⊕-Cat ∼ BMet.

4. The unit interval [0, 1] with the usual order 6 and ⊗ = ∧ the
minumum,

or ⊗ = ∗ the usual multiplication, or ⊗ = � the
Lukasiewicz sum defined by u� v = max{0,u+ v − 1}.

Then [0, 1]∧-Cat ∼ UMet,

[0, 1]∗-Cat ∼ Met, [0, 1]�-Cat ∼ BMet.
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• the tensor product given by addition +, denoted by
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About some concepts

Remark
There are corresponding notions to most of classic notions from order
theory:

• (down/up)-closed subset: X −→ V ,
• supremum/infimum: weighted (co)limits,
• (co)completeness,
• Cauchy comleteness,
• (complete) distributivity,
• adjunction,
• . . .



Our goal(s)

Metric Stone-type dualities

CompHaus ∼ (??)op PosComp ∼ (??)op

PosCompDist ∼ (??)op

CoAlg(V) ∼ (??)op GEsaDist ∼ (??)op GEsaSp ∼ (??)op

Here each “question mark category” should be a “V-categorical”
counterpart of the corresponding category in the “ordered picture”.

BooSp ∼ BAop Priest ∼ DLop

PriestDist ∼ FinSupop
DL

CoAlg(V) ∼ DLOop EsaDist ∼ FinSupop
HA EsaSp ∼ HAop
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• Vietoris space VX = {X → 2}  VX = {X → V}

• relation X × Y −→ 2  V-relation X × Y −→ V .
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Ordered compact Hausdorff spaces

Recall
• Ordered topological structures are sets X equipped with order and

topology so that the order relation is closed in X × X.

• For a compact Hausdor� topology α : UX −→ X and an order relation
≤ : X −7−→ X, the following are equivalent.

(i) The order ≤ is closed in X × X.

(ii) α : (UX,U≤) −→ (X,≤) is monotone.
• An ordered compact Hausdor� space is Priestley if and only if the

family (f : X −→ 2op)f in OrdCH is point-separating and initial.

Nachbin, Leopoldo (1950). Topologia e Ordem. University of Chicago
Press.
Tholen, Walter (2009). “Ordered topological structures”. In: Topology

and its Applications 156.(12), pp. 2148–2157.
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Some conditions on V

Assumption

From now on we work with a (ccd) quantale V .

Remark

• The Lawson topology on V is compact Hausdor�; with respect to this
topology, an ultrafilter v in V converges to

ξ(v) =
∧
A∈v

∨
A ∈ V.
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Remark
• The Lawson topology on V is compact Hausdor�; with respect to this

topology, an ultrafilter v in V converges to

ξ(v) =
∧
A∈v

∨
A ∈ V.

Note:
Scott topology: v −→ x ⇐⇒ ξ(v) ≥ x
Dual of Scott topology: v −→ x ⇐⇒ ξ(v) ≤ x



Some conditions on V

Assumption

From now on we work with a (ccd) quantale V .

Remark
• The Lawson topology on V is compact Hausdor�; with respect to this

topology, an ultrafilter v in V converges to

ξ(v) =
∧
A∈v

∨
A ∈ V.

• The sets
↑v = {u ∈ V | v ≤ u} (v ∈ V)

form a subbase for the closed sets of the dual of the Scott topology
of V . We denote (the convergence of) this topology by ξ≤.

• The convergence ξ : UV −→ V together with the ultrafilter monad
U = (U,m, e) and the quantale V defines a topological theory and
therefore allows for an extension of the ultrafilter monad U to V-Cat.
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V-categorical compact Hausdorff spaces

Definition
A V-categorical compact Hausdor� spaces is a triple (X,a, α) where
• (X,a) is a V-category and
• α : UX −→ X is the convergence of a compact Hausdor� topology on X

such that α : (UX,Ua) −→ (X,a) is a V-functor.
We denote the corresponding category as V-CatCH.

Example
For V = 2, we obtain Nachbin’s ordered compact Hausdor� spaces.
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Example

• For V =
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[0,∞]+, we obtain metric spaces equipped with a compatible

compact Hausdor� topology.
• These spaces should be thought of as natural generalisations of

compact metric spaces.

• For instance, the underlying metric of a metric compact Hausdor�
space is Cauchy-complete, generalising the classic result that every
compact metric space is Cauchy-complete.
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V-categorical compact Hausdorff spaces

Definition
A V-categorical compact Hausdor� spaces is a triple (X,a, α) where
• (X,a) is a V-category and
• α : UX −→ X is the convergence of a compact Hausdor� topology on X

such that α : (UX,Ua) −→ (X,a) is a V-functor.
We denote the corresponding category as V-CatCH.

Example
V = (V, hom, ξ) is a V-categorical compact Hausdor� spaces.
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Definition
A V-categorical compact Hausdor� space X is called Priestley whenever
the cone (f : X −→ Vop)f in V-CatCH is point-separating and initial.
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For a V-category (X,a) and a compact Hausdor� space (X, α) with the
same underlying set X, the following assertions are equivalent.

(i) α : U(X,a) −→ (X,a) is a V-functor.
(ii) a : (X, α)× (X, α) −→ (V, ξ≤) is continuous.
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Example: a duality result

Assumption
We consider only the Łukasiewicz tensor ⊗ = � on [0, 1], and take the
enriched Vietoris monad where VX = {X → [0, 1]}.

Theorem
The functor (

[0, 1]-Priest
)
V

C=hom(−,1)−−−−−−−−−−−→ [0, 1]-FinSupop

is fully faithful and restricts to a fully faithful functor

[0, 1]-Priest C=hom(−,[0,1])−−−−−−−−−−−−−→ [0, 1]-FinLatop.



About (quasi)-varieties)

Remark
The classic Stone duality

BooSpop ∼ BA

implies in particular that BooSpop is a finitary variety.

This can be also seen abstractly:
• BooSp has all colimits and limits,
• regular monomorphism = subspace embedding,
• the two-element space is a regularly injective regular cogenerator,
• the two-element space is finitely copresentable.

Theorem
A complete and cocomplete category is a finitary variety i� it has

1. a finitely presentable, regularly projective regular generator, and
2. e�ectivity of equivalence relations.
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Proof.
Use that
• regular monomorphism = embedding.

• V is injective and (f : X −→ V)f is initial.
• VI (indiscrete structure) is a cogenerator.
• Hence V × VI is a regular injective regular cogenerator.
• There is no rank since the “discrete” functor D : Set −→ V-Cat

preserves non-empty limits:

hom(−, |X|) ' hom(D−, X).

Therefore |−| : V-Cat −→ Set preserves copresentable objects.
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“Warm Up”: V-categories

Theorem
V-Catop is a quasivariety. If time� 18 mins then skip

Theorem (just for comparision)
Topop is a quasivariety.

Barr, Michael and Pedicchio, M. Cristina (1995). “Topop is a quasi-variety”. In: Cahiers
de Topologie et Géométrie Di�érentielle Catégoriques 36.(1), pp. 3–10.

Remark
Topop

0 and V-Catopsep do not seem to be quasivarieties.

Remark
However, Posop is a quasivariety.

Are we missing something . . . ??

Theorem
The V-category V is a regular injective regular cogenerator in V-Catsep,cc.
Hence,

(
V-Catsep,cc

)op is a quasivariety.
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From Gabriel and Ulmer (1971)

Theorem
1. A set X is copresentable in Set if and only if card(X) = 1.

2. The finitely copresentable compact Hausdor� spaces are precisely the
finite ones.

3. The ℵ1-copresentable compact Hausdor� spaces are precisely the
metrisable ones. In particular, the unit interval [0, 1] is
ℵ1-copresentable in CompHaus.

Gabriel, Peter and Ulmer, Friedrich (1971). Lokal präsentierbare Kategorien. Lecture
Notes in Mathematics, Vol. 221. Berlin: Springer-Verlag. v + 200.

Ulmer, Friedrich (1971). “Locally α-presentable and locally α-generated categories”.
In: Reports of the Midwest Category Seminar V. ed. by John W. Gray. Springer Berlin
Heidelberg, pp. 230–247.

Theorem
The “connected component functor” π0 : CompHaus −→ BooSp preserves
cofiltered limits.
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An immediate consequence for V-CatCH

Remark
In

CompHaus V-CatCH(sep)

D

|−|

a

,

the “discrete” functor D : CompHaus −→ V-CatCH(sep) preserves
non-empty limits.

Corollary
For every regular cardinal λ, |−| : V-CatCH −→ CompHaus preserves
λ-copresentable objects.
In particular:

1. Every finitely copresentable V-categorical compact Hausdor� space is
finite

2. Every ℵ1-copresentable V-categorical compact Hausdor� space has a
metrizable topology.
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Even more conditions on V

Assumption
We also assume that there is a countable subset D ⊆ V so that, for all
v ∈ V ,

v =
∨
{u ∈ D | u≪ v}.

Proposition
A subbase for the Lawson topology on V is given by the sets

{u ∈ V | v≪ u} and {u ∈ V | v � u} (v ∈ D).

Hence, the Lawson topology on V has a countable base and therefore is
metrisable.

Corollary

The compact Hausdor� space V (with the Lawson topology) is
ℵ1-copresentable in CompHaus.



Using limit Sketches

Proposition
1. V-Cat is the model category of a countable ℵ1-ary limit sketch in Set.a

aKelly, G. Max and Lack, Stephen (2001). “V-Cat is locally presentable or locally
bounded if V is so”. In: Theory and Applications of Categories 8.(23), pp. 555–575.

Proof.
Use the bijection between the sets

{X → V} and {(Bu)u∈D | Bu ⊆ X & Bu =
⋂
v≪u

Bv};

(ϕ : X → V≤) 7−→ (ϕ−1(↑u)u∈D)

(Bu)u∈D 7−→ (ϕ : X → V, x 7→
∨
{u ∈ D | x ∈ Bu})

then a map a : X × X −→ V corresponds to a family (Ru)u∈D of binary rela-
tions Ru on X.
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1. V-Cat is the model category of a countable ℵ1-ary limit sketch in Set.
2. V-CatCH is the model category of a countable ℵ1-ary limit sketch in

CompHaus.

Proof.
Use the bijection between the sets

{X → V≤ continuous} and {(Bu)u∈D | Bu ⊆ X closed & Bu =
⋂
v≪u

Bv};

(ϕ : X → V) 7−→ (ϕ−1(↑u)u∈D)

(Bu)u∈D 7−→ (ϕ : X → V, x 7→
∨
{u ∈ D | x ∈ Bu})

then a continuous map a : (X, α)×(X, α) −→ (V, ξ≤) corresponds to a family
(Ru)u∈D of closed binary relations Ru on X.



Using limit Sketches

Proposition
1. V-Cat is the model category of a countable ℵ1-ary limit sketch in Set.
2. V-CatCH is the model category of a countable ℵ1-ary limit sketch in

CompHaus.

Remark

Therefore
(
V-CatCH

)op is the model category of a colimit sketch in the
locally ℵ1-presentable category CompHausop and therefore locally
presentable (we don’t know the rank).a

aAdámek, Jiří and Rosický, Jiří (1994). Locally presentable and accessible categories.
Vol. 189. London Mathematical Society Lecture Note Series. Cambridge: Cambridge
University Press. xiv + 316, Remark 2.63.



Using limit Sketches

Proposition
1. V-Cat is the model category of a countable ℵ1-ary limit sketch in Set.
2. V-CatCH is the model category of a countable ℵ1-ary limit sketch in

CompHaus.

Lemma
Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit sketch.
Then a model of S in a category X is λ-copresentable in Mod(S,X)
provided that each component is λ-copresentable in X.

Remark
The conclusion of the lemma above is not necessarily optimal:

• T = {z ∈ C | |z| = 1} is ℵ1-copresentable in CompHaus.
• Hence, we conclude that T is ℵ1-copresentable in CompHausAb.
• However, by the famous Pontryagin duality theorem, T is even finitely

copresentable in CompHausAb.
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The “Bourbaki-criterion”

Theorem
Let D : I −→ CompHaus be a cofiltered diagram. Then a cone
(pi : L −→ D(i))i∈I for D is a limit cone if and only if

1. (pi : L −→ D(i))i∈I is mono and,

2. for every i ∈ I:
⋂
j→i

imD(j→ i) = impi.

That is, “the image of each pi is as large as possible”.

Example
Every Boolean space X is a cofiltered limit of finite spaces.

X

finite spaces: Xi im(p)

p
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Passing to Priestley spaces

Proposition
The reflection functor π0 : V-CatCH −→ V-Priest preserves ℵ1-cofiltered
limits (and even cofiltered limits if V is finite).

Proof.
. . . Gabriel and Ulmer (1971) use Stone duality . . . but here the
“Bourbaki-criterion” also works . . .

Remark
For V = [0, 1] and ⊗ = �, we can use “Stone-duality”: the dualising object
[0, 1] induces a natural dual adjunction

[0, 1]�-CatCH [0, 1]�-FinLatop
C=hom(−,[0,1])

hom(−,[0,1])

a

where the fixed subcategory on the left-hand side is precisely
[0, 1]�-Priest.
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Corollary
1. An object is ℵ1-ary copresentable in V-Priest if and only if its

underlying compact Hausdor� space is metrizable. In particular, Vop

is ℵ1-ary copresentable in V-Priest.

2. Assume that V is finite. Then an object is finitely copresentable in
V-Priest if and only if it is finite. In particular, Vop is finitely
copresentable in V-Priest.

Theorem
The category V-Priest is locally ℵ1-ary copresentable (and even locally
finite copresentable if V is finite).
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Some consequences

Corollary
The fully faithful right adjoint functor

C : [0, 1]�-Priestop −→ [0, 1]�-FinLat

preserves ℵ1-filtered colimits.

Corollary
The category CoAlg(V) of coalgebras and homomorphisms for the
enriched Vietoris functor V : [0, 1]�-Priest −→ [0, 1]�-Priest is locally
ℵ1-ary copresentable. In particular, CoAlg(V) is complete.
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Some consequences

Proof.
• Write A for the isomorphism closure of the image of

C : ([0, 1]�-Priest)op −→ [0, 1]�-FinLat;

• The category Un([0, 1]�-FinSup) of unary algebras and
homomorphisms in [0, 1]�-FinSup is locally ℵ1-ary presentable

and
the forgetful functor Un([0, 1]�-FinSup) −→ [0, 1]�-FinSup preserves
ℵ1-filtered colimites.

• CoAlg(V)op is equivalent to the category B obtained as the pullback

Un([0, 1]�-FinSup) B

[0, 1]�-FinSup A

of ℵ1-accessible functors.
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