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Equational completeness theorems

I The completeness theorem of intuitionistic propositional logic
IPC w.r.t. the variety HA of Heyting algebras states that

Γ `IPC ϕ⇐⇒ for every A ∈ HA and every hom f : Fm → A,

if f (γ) = 1 for all γ ∈ Γ, then f (ϕ) = 1.

I Given a class of similar algebras K and a set of equations
Θ ∪ {ϕ ≈ ψ}, we write Θ �K ϕ ≈ ψ when

for every A ∈ K and every hom f : Fm → A,

if f (ε) = f (δ) for all ε ≈ δ ∈ Θ, then f (ϕ) = f (ψ).

When viewed as a relation, �K is called the
equational consequence relative to K.

I In this terminology, the equational completeness theorem of
IPC can be written, more concisely, as

Γ `IPC ϕ⇐⇒ {γ ≈ 1 : γ ∈ Γ} �HA ϕ ≈ 1.

I Furthermore, given a set of equations τ(x) and a set of
formulas Γ ∪ {ϕ}, we write

τ(ϕ) := {ε(ϕ) ≈ δ(ϕ) : ε ≈ δ ∈ τ}
τ[Γ] :=

⋃
γ∈Γ

τ(γ).

I Taking τ(x) := {x ≈ 1}, we get

Γ `IPC ϕ⇐⇒{γ ≈ 1 : γ ∈ Γ} �HA ϕ ≈ 1
⇐⇒ τ[Γ] �HA τ(ϕ).

Rmk. The essence of this equational completeness theorem is that

IPC can be interpreted into �HA.

This is made possible by translating formulas into equations by
means of the set of equations τ(x) as follows:

ψ 7−→ τ(ψ), i.e., {ψ ≈ 1}.



I A (propositional) logic ` is a consequence relation on the set
of formulas of an arbitrary algebraic language that, moreover,
is substitution invariant, i.e.,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ),

for every set of formulas Γ ∪ {ϕ} and every substitution σ.

Definition (Blok & Pigozzi)
A logic ` admits an equational completeness theorem if there
are a class of algebras K and a set of equations τ(x) such that

Γ ` ϕ⇐⇒ τ[Γ] �K τ(ϕ),

for every set of formulas Γ ∪ {ϕ}.

Examples. IPC admits an equational completeness theorem w.r.t.
the class of Heyting algebras. Similarly, every extension of IPC
admits one w.r.t. an ISP-class of Heyting algebras.

Collateral damage.
I Glivenko’s Theorem connects CPC and IPC as follows:

Γ `CPC ϕ⇐⇒ {¬¬γ : γ ∈ Γ} `IPC ¬¬ϕ.

Thus, taking τ(x) := {¬¬x ≈ 1}, we get

Γ `CPC ϕ⇐⇒{¬¬γ : γ ∈ Γ} `IPC ¬¬ϕ

⇐⇒{¬¬γ ≈ 1 : γ ∈ Γ} �HA ¬¬ϕ ≈ 1
⇐⇒ τ[Γ] �HA τ(ϕ),

where HA is the variety of Heyting algebras.

Observation
CPC admits an equational completeness theorem w.r.t. the variety
of Heyting algebras (although certainly not the intended one).

I Notably, the situation does not improve if we restrict to the
case where τ(x) = {x ≈ 1}. Actually, there is no escape from
nonstandard equational completeness theorems.

Sometimes nonstandard equational completeness theorems are the
sole possible ones. Let CPC∧∨ be the 〈∧,∨〉-fragment of CPC.

Observation
CPC∧∨ does not admit any equational completeness theorem
w.r.t. the variety of distributive lattices.

Proof.
I Suppose the contrary. Then there exists a set of equations

τ(x) witnessing an equational completeness theorem of
CPC∧∨ w.r.t. the variety DL of distributive lattices.

I As all equations in a single variable are valid in DL, we get

DL � τ(x), that is, ∅ �DL τ(x).

I By the equational completeness theorem, ∅ �DL τ(x) implies
∅ `CPC∧∨ x , which is of course false. QED

Observation
CPC∧∨ admits a (nonstandard) equational completeness theorem.

Proof sketch.
I Consider the three-element algebra

A = 〈{1, 0+, 0−};∧,∨〉

with commutative operations defined by the tables
∧ 0− 0+ 1
0− 0+ 0+ 0+

0+ 0− 0+

1 1

∨ 0− 0+ 1
0− 0+ 0+ 1
0+ 0− 1
1 1

I Then CPC∧∨ admits an equational completeness theorem
w.r.t. K := {A} witnessed by the set of equations

τ(x) = {x ≈ x ∧ x}. QED

I Blok and Rebagliato generalized this construction to all logics
with a lattice-based matrix semantics.



A modal example. The local consequence K` of the modal system
K is the logic defined as follows:

Γ `K`
ϕ⇐⇒ for all Kripke frame 〈W ,R〉,w ∈ W , and valuation v ,

if w , v 
 Γ, then w , v 
 ϕ.

I One can replace K by K4, S4 (or any normal modal logic).
I By Blok and Rebagliato’s trick, K` admits an equational

completeness theorem, but not a standard one:

Observation
The local consequence of the modal system K (resp. K4, S4) does
not admit an equational completeness theorem w.r.t. the variety of
modal algebras (resp. of K4-algebras, resp. of interior algebras).

Proof sketch.
I Suppose, by contradiction, that K` admits an equational

completeness theorem w.r.t. the variety of modal algebras MA.
I This must be witnessed by some τ(x) containing an equation

ε ≈ δ that fails in MA. Thus, w.l.o.g. ε 0K`
δ.

I Since ε ≈ δ ∈ τ, we get

x ,2(δ→ δ) `K`
2(ε→ δ).

I Then there are a Kripke frame 〈W ,R〉, a valuation v , and a
world w ∈ W such that

w , v 
 ε and w , v 1 δ.

I Attach to 〈W ,R〉 a new point w+ that sees everything.
I Extend the valuation v to the new frame, stipulating that x

holds at w+. Then

w+, v 
 x and w+, v 1 2(ε→ δ).

I Thus, x ,2(δ→ δ) 0K`
2(ε→ δ), a contradiction. QED

I On the other hand, some logics lack any equational
completeness theorem.

Theorem (Raftery 2006)
Let ` be a consistent logic whose language comprises only an
implication connective →. If ` is weaker than or equal to the
relevance logic P–W axiomatized by

∅ � x → x x , x → y � y ,

∅ � (x → y)→((z → x)→ (z → y))

∅ � (x → y)→((y → z)→ (x → z)),

then ` lacks any equational completeness theorem.

I Despite the simplicity of the concept, equational completeness
theorems are poorly understood in general.

Aim of the talk
Characterize logics admitting an equational completeness theorem.

A general construction



Definition
Let ` be a logic. Two formulas ϕ and ψ are logically equivalent if

δ(ϕ,~y) a` δ(ψ,~y),

for every formula δ(x ,~y). In this case, we write ϕ ≡` ψ.

I In IPC or K` this specializes to

ϕ ≡ ψ⇐⇒ ∅ ` ϕ↔ ψ⇐⇒ ϕ a` ψ.

Definition
A logic ` is said to be graph-based if the arity of its connective is
bounded above by one and, moreover, ` has at most one unary
connective.

Example. The 〈3, 0, 1〉-fragment of any modal logic is
graph-based, while the 〈3,2, 0, 1〉-one is not.

Theorem
Let ` a logic that is not graph-based. If there are two distinct
logically equivalent formulas ϕ and ψ such that

Var(ϕ) ∪ Var(ψ) = {x},

then ` admits an equational completeness theorem.

Proof strategy.
I As ` is not graph-based, it has either two distinct unary

connectives 2 and 3, or an n-ary connective f with n > 2.
I Suppose the first case holds and let k ∈N be greater than the

length of all branches in the subformula trees of ϕ and ψ.
I Take

ϕ′ := 22k3ϕ(2k3x) and ψ′ := 22k3ψ(2k3x).

and
τ(x) := {ϕ′ ≈ ψ′}.

I To prove that ` admits an equational completeness theorem,
it suffices to show that for all set of formulas Γ ∪ {γ},

if τ(γ) ⊆ CgFm(τ[Γ]), then Γ ` γ, (∗)

since, in this case, ` has an equational completenss thm w.r.t.

K := {Fm/CgFm(τ[Γ]) : Γ is a theory of `}

witnessed by the set of equations τ.
I The hearth of the proof amounts to establishing (∗). But this

is a problem about congruence generation. Then we use

Maltsev’s Lemma
Let A be an algebra, X ⊆ A× A, and a, c ∈ A. Then
〈a, c〉 ∈ CgA(X ) if and only if there are e0, . . . , en ∈ A,
〈b0, d0〉, . . . , 〈bn−1, dn−1〉 ∈ X , and unary polynomial functions
p0, . . . , pn−1 of A such that

a = e0, c = en, and {ei , ei+1} = {pi (bi ), pi (di )}, for every i < n.

plus a combinatorial induction on subformula trees.

Corollary
Every logic is term-equivalent to one admitting an equational
completeness theorem.

Proof.
I Take a logic ` and add to its language two unary operations 2

and 3 that behave like the identity map.
I Clearly, ` and the new logic `+ are term-equivalent.
I The new logic `+ is not graph-based (because its language

comprises 2 and 3) and

2x ≡` x ≡` 3x .

I Then `+ has two distinct logically equivalent formulas variable
x , namely 2x and 3x . By the previous Theorem, `+ admits
an equational completeness theorem. QED

Observation. Admitting an equational completeness theorem is
not a property of clones (no obvious decision procedure!).



Locally tabular logics

Definition
A logic ` is locally tabular if for every 1 6 n ∈N up to logical
equivalence there are only finitely formulas in variables x1, . . . , xn.

Example. Any logic complete w.r.t. a class of matrices whose
algebraic reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the previous Theorem, we are done. QED

What about locally tabular graph-based logics? Take one such `.
I The set of connectives of ` comprises a single unary

connective 2 and some constants {ci : i < α}.
I By local tabularity, there are m 6 n such that 2mx ≡` 2n+1x .

Theorem
` admits an equational completeness theorem iff there are i < α
and k 6 n s.t. either x ` 2x or y ` 2kx or y ` 2kci or
1. x ,2t+kx a` 2tci , x for all t 6 n and
2. for all s, g , h, t 6 (2n−m+ 1)2 and
{uj : s > j ∈ ω} ∪ {vj : s > j ∈ ω} ⊆N,

{2tx} ∪ {2uj x : s > j ∈ ω} ∪ {2vj x : s > j ∈ ω} ` 2t+gx

{2uj x : s > j ∈ ω} ∪ {2vj x : s > j ∈ ω} ` 2hci ,

provided that uj < vj 6 n+ n−m+ 1 for all s > j ∈ ω, and
that gcd({vj − uj : s > j ∈ ω}) divides g and h+ k .

I Thus, we have a complete description of locally tabular logics
admitting an equational completeness theorem.

I Using the bounds for the graph-based case, one gets

Corollary
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I The naive decision procedure runs in exponential time.

Open problem. Is this problem is complete for EXPTIME?



Logics with theorems

I A formula ϕ is a theorem of a logic ` if ∅ ` ϕ.

Definition
A logic ` is assertional if there is a class of algebras K with a
term-definable element > s.t. for all set of formulas Γ ∪ {ϕ},

Γ ` ϕ⇐⇒ τ[Γ] �K τ(ϕ)

where τ(x) := {x ≈ >}.

I Assertional logics admit an equational completeness theorem
by definition. They have theorems, since ∅ ` >.

Theorem (essentially Suszko)
A logic ` is assertional iff it has theorems and

x , y , δ(x ,~z) ` δ(y ,~z),

for every formula δ(v ,~z).

I Logics with theorems admitting an equational completeness
theorem can be described as follows:

Theorem
Let ` a logic with a theorem ε such that Var(ε) 6= ∅. Then `
admits an equational completeness theorem iff
1. ` is graph-based and assertional; or
2. ` is not graph-based and there are distinct logically equivalent

formulas ϕ and ψ s.t.

Var(ϕ) ∪ Var(ψ) = {x}.

Open problem. Extend this characterization beyond logics with
theorems (ideally, to all logics).

Definition
A logic ` is protoalgebraic if there is a set of formulas ∆(x , y) s.t.

∅ ` ∆(x , x) and x ,∆(x , y) ` y .

Example. Almost every logic with a respectable implication
connective x → y . To see this, take

∆ := {x → y}.

Theorem
A nontrivial protoalgebraic logic ` admits an equational
completeness theorem iff there are two distinct logically equivalent
formulas, that is, syntactic equality differs from logical equivalence.

I Essentially all reasonable protoalgebraic logics admit
equational completeness theorems.

I However, P–W is a protoalgebraic logic lacking any equational
completeness theorem.



Decision problems

We know that:
I Determining whether a logic admits an equational

completeness theorem is decidable for locally tabular logics.
We shall see that:
I The same problem becomes undecidable for logics presented

by an arbitrary Hilbert calculus.
I Undecidability persists if we restrict to protoalgebraic logics.

Strategy:
I We code the halting problem inside that of determining

whether a protoalgebraic logic (presented by a finite Hilbert
calculus) admits an equational completeness theorem.

Difficulty:
I A protoalgebraic logic admits an equational completeness

theorem iff its has two distinct logically equivalent formulas.
We need to code the halting problem without letting the logic
know that word composition is associative.

Turing machines.
I A Turing machine M is a tuple 〈P,Q, q0, δ〉 where P and Q

are sets of states, q0 ∈ Q is the initial state, Q the set of
non-final states, P the set of final states, and

δ : Q × {0, 1,∅} → (Q ∪ P)× {0, 1} × {L,R}.

I Instruction of the form δ(q, a) = 〈q′, b, L〉 mean: if the
machine M reads a at state q, then it replaces a with b,
moves left, and switches to state q′.

I Our Turing machines can write only zeros and ones, but can
read 0, 1, and the empty symbol ∅.

Configurations.
I A configuration for M is a tuple 〈q, ~w , v ,~u〉 where q ∈ Q ∪ P ,

~w and ~u are either finite non-empty sequences of zeros and
ones or the one-element sequence 〈∅〉, and

v ∈ {〈0〉, 〈1〉, 〈∅〉}.

I Given two configurations c and d for M, we say that c yields d
if M allows to move from c to d in a single step.

I Let L(M) be the algebraic language with constant symbols in

P ∪Q ∪ {0, 1,∅},
a binary connective x · y , and a ternary one λ(x , y , z).

I The logic of M `M is axiomatized by the rules

q · λ(x · y , a, z)� q′ · λ(x , y , b · z)
q̂ · λ(x , â, y · z)� q̂′ · λ(x · b̂, y , z)
p · λ(x , y , z)�� p · λ(∅ · x , y , z)
p · λ(x , y , z)�� p · λ(x , y , z ·∅)

for all p, q, q′, q̂, q̂′ ∈ P ∪Q and a, â, b, b̂ ∈ {0, 1,∅} s.t.
δ(q, a) = 〈q′, b, L〉 and δ(q̂, â) = 〈q̂′, b̂,R〉.

I We can code configurations c = 〈q, ~w , v ,~u〉 for M, where

~w = 〈w1, . . . ,wn〉, v = 〈a〉, and ~u = 〈u1, . . . , um〉,
with formulas of L (M) as follows:

ϕc := q ·λ((· · · (w1 ·w2) · · · ) ·wn, a, u1 · (. . . (um−1 ·um) . . . )).

I If c yields d, then ϕc `M ϕd.



Let M be a Turing machine and ~t and input. Let also In(M,~t ) be
the initial configuration of M on input ~t.
I Let `~tM be the expansion of the logic of M with a new

connective ↔ and rules

∅ � ϕIn(M,~t )

p · y � x ↔ (x · x)
∅ � x ↔ x

x , x ↔ y � y

x1 ↔ y1, . . . , xn ↔ yn � ∗(x1, . . . , xn)↔ ∗(y1, . . . , yn)

for every final state p, every positive integer n, and every n-ary
connective ∗.

Notice that
I The last three rules guarantee that ↔ captures logical

equivalence, in the sense that

ε ≡`~tM δ⇐⇒ ∅ `~tM ε↔ δ.

I The logic `~tM is protoalgebraic with ∆(x , y) := {x ↔ y}.

Theorem
Let M a Turing machine and ~t an input. Then M halts on ~t iff the
logic `~tM admits an equational completeness theorem.

Proof sketch (easy part).
I If M halts on ~t, there is a sequence of configurations

c1, . . . , ck s.t. c1 = In(M,~t ), each ci yields ci+1, and the
state p of ck is final.

I Since each ci yields ci+1,

ϕIn(M,~t ) `
~t
M ϕc2 `

~t
M · · · `

~t
M ϕck .

I By definition, ∅ `~tM ϕIn(M,~t ), whence ∅ `~tM ϕck .
I Since ϕck = p · ψ for some ψ, we can apply the rule

p · y � x ↔ (x · x), obtaining

∅ `~tM x ↔ (x · x).
I Thus, x and x · x are logically equivalent distinct formulas. As
`~tM is protoalgebraic, it admits an equational completeness
theorem. QED

Corollary
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable.

Summary.
We characterized logics admitting an equational completeness
theorem in the following settings:
I Locally tabular logics, logics with theorems, protoalgebraic

logics.
The problem of determining whether a logic admits an equational
completeness theorem is:
I Decidable for logics presented by a finite set of finite matrices

and locally tabular logics presented by a finite Hilbert calculus;
I Undecidable for arbitrary (protoalgebraic) logics presented by a

finite Hilbert calculus.
Open problems. Standard equational completeness theorem,
complexity issues, logics lacking theorems etc.

Thank you very much for your attention!


