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This talk is about the finite model property of propositional normal modal logics.

normal modal logics )

Kripke complete logics )
logics with the finite model property

)
logics that admit filtration )

locally finite logics

Part I. If a logic admits filtration then we can enrich it with the converse and transitive closure modalities and modalities
for union and composition, preserving the finite model property.

1 S. Kikot, E. Zolin, Sh
Filtration safe operations on frames. In Advances in Modal Logic, volume 10, pages 333–352, 2014.

2 S. Kikot, E. Zolin, Sh
Modal logics with transitive closure: completeness, decidability, filtration. In Advances in Modal Logic, volume 13, pages 369–388, 2020.

Part II. Local finiteness of modal logics/algebras via filtrations.

1 V. Shehtman, Sh
Local tabularity without transitivity. In Advances in Modal Logic, volume 11, pages 520–534, 2016.

2 Sh
Modal logics of finite direct powers of ω have the finite model property. In WoLLIC 2019, Lecture Notes in Computer Science, pages 610–618, 2019.

2 / 19



This talk is about the finite model property of propositional normal modal logics.

normal modal logics )

Kripke complete logics )
logics with the finite model property )

logics that admit filtration )
locally finite logics

Part I. If a logic admits filtration then we can enrich it with the converse and transitive closure modalities and modalities
for union and composition, preserving the finite model property.

1 S. Kikot, E. Zolin, Sh
Filtration safe operations on frames. In Advances in Modal Logic, volume 10, pages 333–352, 2014.

2 S. Kikot, E. Zolin, Sh
Modal logics with transitive closure: completeness, decidability, filtration. In Advances in Modal Logic, volume 13, pages 369–388, 2020.

Part II. Local finiteness of modal logics/algebras via filtrations.

1 V. Shehtman, Sh
Local tabularity without transitivity. In Advances in Modal Logic, volume 11, pages 520–534, 2016.

2 Sh
Modal logics of finite direct powers of ω have the finite model property. In WoLLIC 2019, Lecture Notes in Computer Science, pages 610–618, 2019.

2 / 19



Preliminaries

Unimodal language: a countable set Var (propositional variables), Boolean connectives,
a unary connective ♦ (� abbreviates ¬♦¬).

Normal modal logics: Definition 1

A set of modal formulas L is a normal modal logic if L contains

all tautologies

♦⊥ ↔ ⊥, ♦(p ∨ q) ↔ ♦p ∨ ♦q

and is closed under MP, Sub, and Mon:
if (ϕ→ ψ) ∈ L, then (♦ϕ→ ♦ψ) ∈ L.

Normal modal logics: Definition 2

A modal algebra is a BA endowed with a unary operation that
distributes over finite disjunctions.

A set of modal formulas L is a normal modal logic if L is the logic
of a modal algebra A: L = {ϕ | A � ϕ = >}
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Normal modal logics: Definition 2

A modal algebra is a BA endowed with a unary operation that
distributes over finite disjunctions.

A set of modal formulas L is a normal modal logic if L is the logic
of a modal algebra A: L = {ϕ | A � ϕ = >}

Kripke semantics

A (Kripke) frame F is a pair (W ,R), where W 6= ∅, R ⊆ W ×W .
A model M on F is a pair (F , θ) where θ : Var→ P(W ).

M, x � p iff x ∈ θ(p), M, x � ♦ϕ iff M, y � ϕ for some y with xRy .

Log(F )= {ϕ | F � ϕ}, where F � ϕ means that M, x � ϕ for every M on F and every x in M.

The algebra Alg(F ) of a frame F = (W ,R) is the modal algebra (P(W ),R−1).

Hence: F � ϕ iff Alg(F ) � ϕ = >.

A logic L is Kripke complete if L is the logic of a class C of Kripke frames: L =
⋂
{Log(F ) | F ∈ C}.

A logic L has the finite model property if L is the logic of a class C of finite models (algebras, frames).
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Preliminaries

If a logic L has the fmp and the class of its finite frames (algebras) is decidable, then L is co-RE.

In particular, if L has the fmp and is finitely axiomatizable, then it is decidable.

Example

[McKinsey, 1941] The logic S4= [p → ♦p,♦♦p → ♦p] has the fmp and hence is decidable.
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PDLization

A general problem:

To increase expressive power of a logic L preserving positive results on
decidability/completeness.

Assume that we want to enrich a modal logic L with:

universal modality — corresponds to S = W ×W , or

converse modality — corresponds to S = R−1, or

transitive closure modality — corresponds to S = R+, or

modalities for union, composition of relations, etc.

This means:
– add a new modality [new] to the language of L, and
– add new axioms to L that govern the behaviour of [new].

Question

Which properties of the logic L are preserved?
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PDLization

The transitive closure of a binary relation R is denoted by R+.
Given a frame F = (W ,R), we write F (+) = (W ,R,R+).
For a class F of frames, denote F (+) = {F (+) | F ∈ F}.
The extension of a normal unimodal logic L with the transitive closure modality is the
minimal normal bimodal logic L+ that contains L and the axioms [Segerberg, 1970s]:

(A1) �p → �p (A2) �p → ��p (A3) �p ∧ �(p → �p)→ �p.

Proposition

(W ,R,S) |= (A1) ∧ (A2) ∧ (A3) iff S = R+.

Proposition

Frames(L+) = Frames(L)(+).
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PDLization

Are decidability, the FMP, Kripke completeness of a logic preserved?

In general, no.

Counterexamples:

L is decidable 6=⇒ Lu is decidable [Spaan, 1996]

(here Lu extends L with the universal modality)

L has the FMP 6=⇒ Lt has the FMP [Wolter, 1995]

(here Lt extends L with the converse modality)

L is decidable 6=⇒ L+ is decidable [Spaan, 1996]

(here L+ extends L with the transitive closure modality)

L has the FMP 6=⇒ Lu has the FMP [Wolter, 1994]

L is Kripke complete 6=⇒ Lu is Kripke complete [Kracht, 1999]

.....

Filtrability is preserved!
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Filtrations

For a model M and a set of formulas Γ,
x ∼Γ y � ∀ψ ∈ Γ (M, x |= ψ ⇔ M, y |= ψ).

Definition (Filtration)

Let Γ be a subformula-closed set of formulas. A filtration of a
model M = (W ,R, θ) through Γ (or Γ-filtration, for short) is a

model M̂ = (Ŵ , R̂, θ̂) s.t.

1 Ŵ = W/∼ for some equivalence relation ∼ such that
∼ ⊆ ∼Γ, i.e.,

if x ∼ y , then ∀ψ ∈ Γ (M, x |= ψ ⇔ M, y |= ψ).

2 M̂, x̂ |= p ⇔ M, x |= p for all p ∈ Γ

Here x̂ is the class of x modulo ∼.

3 R∼ ⊆ R̂ ⊆ RΓ
∼, where

x̂ R∼ ŷ � ∃x′ ∼ x ∃y ′ ∼ y (x′ R y ′)

x̂ RΓ
∼ ŷ � ∀ψ

(
♦ψ ∈ Γ & M, y |= ψ ⇒ M, x |= ♦ψ

)
The relations R∼ and RΓ

∼ on Ŵ are called the minimal and
the maximal filtered relations, respectively.

Filtration lemma

∀ψ ∈ Γ
(
M, x |= ψ ⇔ M̂, x̂ |= ψ

)

K, T = [p → ♦p], KB = [p → �♦p], [♦p → ♦ . . .♦p]

Very simple: use Kripke completeness and put

∼ = ∼Γ, R̂ = R∼.

K4 = [♦♦p → ♦p]; K4.2 = [♦♦p → ♦p, ♦�p → �♦p]

Simple: consider ∼Γ and the transitive closure of R∼;
for K4.2, assume that M is rooted.

S4.1 = S4 + �♦p → ♦�p; [♦ . . .♦p → ♦p]

Require more steps. In particular, ∼Γ should be refined.

Some products, expanding products...

Constructions might be very complicated.
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PDLization

A class of frames F admits filtration if, for any finite Sub-closed set
of formulas Γ and an F-model M, there exists a finite F-model
that is a Γ-filtration of M.
A class of models M admits filtration if, for any finite Sub-closed
set of formulas Γ and any M ∈ M, there is a finite model in M
that is a Γ-filtration of M.

Various versions of the AF property:
[Goranko & Passy 1992]
[G. Bezhanishvili & Zakharyaschev, 1997]
[N. Bezhanishvili & Ten Cate, 2006]
[Schmidt & Tishkovsky, 2008]
[Ilin, 2018]
· · ·

If L is Kripke complete and the class of its frames Frames(L)
admits filtration, then L has the FMP.

If the class of models Mod(L) of a logic L admits filtration, then L
has the FMP and hence is Kripke complete.
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Theorem (Filtration safe operations on frames)

Suppose that a class F of frames admits filtration. Then the
classes Fu , F t , F+ admit filtrations too.

Corollary

Suppose that the class of frames of a logic L admits filtration.
Then Lu , Lt , L+ have the fmp provided that they are Kripke
complete.

The statements about the universal modality are due to [Goranko
& Passy, 1992].

The statements about the converse and the transitive closure
modalities are due to [Kikot & Zolin & Sh, 2014].
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If a logic L is canonical, then Lt and Lu are canonical (so Kripke
complete).
This is not the case for L+.
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has the FMP and hence is Kripke complete.

Theorem (Filtration safe operations on frames)

Suppose that a class F of frames admits filtration. Then the
classes Fu , F t , F+ admit filtrations too.

Corollary

Suppose that the class of frames of a logic L admits filtration.
Then Lu , Lt , L+ have the fmp provided that they are Kripke
complete.

The statements about the universal modality are due to [Goranko
& Passy, 1992].

The statements about the converse and the transitive closure
modalities are due to [Kikot & Zolin & Sh, 2014].

If a logic L is canonical, then Lt and Lu are canonical (so Kripke
complete).
This is not the case for L+.

There is a semantic condition of L sufficient for the Kripke
completeness of L+.
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If L is Kripke complete and the class of its frames Frames(L)
admits filtration, then L has the FMP.

If the class of models Mod(L) of a logic L admits filtration, then L
has the FMP and hence is Kripke complete.

A Γ-filtration M̂ = (W/∼, . . .) is definable if ∼ = ∼Ψ for some
set of formulas Ψ ⊇ Γ.

Theorem ([Zolin, Sh, 2015])

If the class Mod(L) admits definable filtration, then so does the
class Mod(L+).
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A Γ-filtration M̂ = (W/∼, . . .) is definable if ∼ = ∼Ψ for some
set of formulas Ψ ⊇ Γ.

Theorem ([Zolin, Sh, 2015])

If the class Mod(L) admits definable filtration, then so does the
class Mod(L+).

For any logic L, if Mod(L) admits (definable) filtration, then so
does Frames(L).

Proposition (ADF for frames implies ADF for models)

If L is a canonical logic, then Frames(L) admits definable filtration
iff so does Mod(L).
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PDLization

For an alphabet Σ, let Σ] = Σ ∪ {(e ◦ f ), (e ∪ f ), e+ | e, f ∈ Σ}, assuming that the added symbols are not in Σ. Put Σ(0) = Σ,

Σ(n+1) = (Σ(n))].

For a frame F = (W , (Re)e∈Σ), put F ] = (W , (Re)
e∈Σ] ), where for e, c ∈ Σ,

Re◦c = Re ◦ Rc , Re∪c = Re ∪ Rc , Re+ = (Re)+.

Put F (0) = F , F (n+1) = (F (n))].

For a logic L over Σ, let L] be the smallest (normal) logic over Σ] that contains L and the following PDL-like axioms, for all e, c ∈ Σ:

[e ∪ c]p ↔[e]p ∧[c]p,
[e ◦ c]p ↔[e][c]p,
[e+]p →[e]p, [e+]p →[e][e+]p, [e+](p →[e]p)→ ([e]p →[e+]p).

We put L(0) = L, L(n+1) = (L(n))].

Corollary ([Kikot, Zolin, Sh, 2020])

Let L be a logic over a finite alphabet Σ. If the class of its models Mod(L) admits definable filtration, then, for every n < ω, we have:

1 Mod(L(n)) admits definable filtration.

2 L(n) has the finite model property; a fortiori, L(n) is Kripke complete.

3 If L is finitely axiomatizable, then L(n) is decidable.

Example

Let each L1, . . . , Lk be any of the logics K,T,B,K4, S4, S5. Then, for any n < ω, the logic (L1 ∗ . . . ∗ Lk )(n) has the fmp and is decidable.
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That the class Mod(L) admits definable filtration is sufficient for the Kripke completeness of L+.

Problem

Syntactic condition(s) on L for the Kripke completeness of L+.

[Kikot, 2015] Sufficient firs-order conditions on admits definable filtrations (in some strict sense: ∼=∼Γ).

[Ilin, 2016] A family of extensions of PDL with the FMP.

Question

Is there a transitive canonical logic L which has the FMP, but does not admit filtration?

Negative answer might be useful for negative results about decidability.
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An algebra A is locally finite if every finitely generated subalgebra of A is finite.

A logic L is locally finite (or locally tabular) if for all k < ω there are only finitely many k-formulas
(i.e., formulas in k variables) up to ↔L.

TFAE:

L is locally finite. Every finitely generated
Lindenbaum-Tarski (i.e.,
free) algebra of L is finite.

The variety of L-algebras is
locally finite, i.e., every
finitely generated L-algebra is
finite.

Log(F ) is LF ⇒ Alg(F ) is LF ⇒ Log(F ) has the FMP
: :
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[Shehtman, 2014] If L is locally finite, then it admits definable filtration.
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Characterization of locally finite frame algebras: Franzen’s filtrations

Let F = (W ,R) be a frame. A partition A of W is tuned if for
every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of F admits a
finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.

15 / 19



Characterization of locally finite frame algebras: Franzen’s filtrations

Let F = (W ,R) be a frame. A partition A of W is tuned if for
every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of F admits a
finite tuned refinement.

The key tool: The algebra of F is locally finite iff F is tunable.

TFAE:

A is tuned in F

The equivalence ∼ defined by A = W/∼ satisfies the
condition

∼ ◦R ⊆ R◦ ∼,
i.e., ∼ is a bisimulation w.r.t. R on W .

x 7→ [x]A is a p-morphism from F onto the “Franzen’s
filtration” (A,RA), where for U,V ∈ A,

URAV iff ∃u ∈ U ∃v ∈ V uRv

[Segerberg, K.: Franzen’s proof of Bull’s theorem. Ajatus 35,
216–221 (1973)]

Unions of elements of A form a subalgebra of Alg(F ).
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f : ω → ω s.t. the cardinality of a subalgebra of A generated by
m < ω elements is ≤ f (m).

Corollary [Shehtman & Sh, 2016]

Log(F ) is LF iff there exists f : ω → ω s.t. every finite partition A
of F admits a tuned finite refinement B with |B| ≤ f (|A|).

[Segerberg, 1971; Maksimova, 1975] A transitive logic L is locally
finite iff L is of finite height.

The non-transitive case is much more complicated and less
investigated.
[Shehtman, Sh, 2016] This criterion holds for all logics containing
♦mp → ♦p ∨ p, m > 1.

L is pretransitive if there is a formula ♦∗(p) (‘master modality’)
s.t. ♦∗(ϕ) expresses the satisfiability of ϕ in cones on models of L.

Pretransitive examples:

K4,wK4 = [♦♦p → ♦p ∨ p], K5 = [♦p → �♦p], [♦np → ♦mp]
for n > m, products of transitive logics

Shehtman, Sh, 2016: Every 1-finite (a fortiori, locally finite) modal
logic is a pretransitive logic of finite height.

Makinson, 1981: In general, the converse is not true.
There exists a pretransitive L s.t. L[1], the extension of L with the

axiom of height 1, is not 1-finite. (Put L = [♦3p → ♦2p].)
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f : ω → ω s.t. the cardinality of a subalgebra of A generated by
m < ω elements is ≤ f (m).

Corollary [Shehtman & Sh, 2016]

Log(F ) is LF iff there exists f : ω → ω s.t. every finite partition A
of F admits a tuned finite refinement B with |B| ≤ f (|A|).

A logic is said to be k-finite if, up to the provable equivalence,
there exist only finitely many k-formulas.
[Maksimova, 1975]
A transitive logic is locally finite iff it is 1-finite.

Strange fact. If the logic (algebra) of a frame F is locally finite,
then the logic (algebra) of any subframe of F is also locally finite.

Corollary. There exists a unimodal 1-finite logic which is not locally
finite:
There is a frame F s.t. every 2-element partition can be tuned,
while F contains a subframe of infinite hight.
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Characterization of locally finite frame algebras: Franzen’s filtrations
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The variety Var(A) of a finite signature is LF iff there exists
f : ω → ω s.t. the cardinality of a subalgebra of A generated by
m < ω elements is ≤ f (m).

Corollary [Shehtman & Sh, 2016]

Log(F ) is LF iff there exists f : ω → ω s.t. every finite partition A
of F admits a tuned finite refinement B with |B| ≤ f (|A|).

It is unknown whether 2-finiteness of a modal logic implies local
finiteness.

Chagrov’s modal formulas correspond to

∀x0, . . . , xm+1

x0Rx1 . . .Rxm+1 →
∨
i<j

xi = xj

 .

[Chagrov, Shehtman, 1994] Logics containing Chagrov’s formulas
are LF.

Consider the following first-order properties Pm:

∀x0, . . . , xm+1

x0Rx1 . . .Rxm+1 →
∨
i<j

xi = xj ∨
∨

i+1<j

xiRxj

 .

Observation. If the logic of F is 2-finite, then Pm holds in F for
some m.
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Final remark: Franzen’s filtrations might be very useful to prove the FMP when the axiomatization is unknown.
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Example

For x = (x1, . . . , xn) ∈ Rn, µ(x) = −x2
n +

∑n−1
i=1 x2

i

Chronological ≺ and causal � future:
x ≺ y 
 µ(x − y) < 0 & xn < yn
x � y 
 µ(x − y) ≤ 0 & xn ≤ yn
Goldblatt, 1980; Shehtman, 1983: For n ≥ 2, the modal logic of (Rn,�) is S4.2 = [♦♦p → ♦p, p → ♦p, ♦�p → �♦p].
Problems of Goldblatt:

1 Axiomatize the logics corresponding to ≺ in the various dimensions.

2 Axiomatize the bimodal logics of (Rn,�,�) and of (Rn,≺,�).

3 Analyze the logic of discrete spacetime.

Problems 1 and 3 were formulated in 1980, Problem 2 in 1992.
Solutions and partial solutions:

1 Shehtman & Sh, 2002: Finite axiomatization and the FMP of the logic of ≺ (all dimensions).

2 Hirsch & Reynolds, 2018: The logic of (R2,�,�) is decidable (in PSPACE).

Hirsch & McLean, 2018: The logic of (R2,≺,�) is decidable (in PSPACE).

3 Sh, 2019: (Z2,≺) and (Z2,�) have logics with the FMP

(Explanation: the direct squares (ω,<)2, (ω,≤)2 are tunable).
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In the 2-dimensional case, the above structures are direct squares of linear orders.

Question

Let frames F1 and F2 be tunable. Is the direct product F1 × F2 tunable?

In the other words:
if Alg(F1) and Alg(F2) are LF, is the algebra Alg(F1 × F2) LF?
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Thank you!
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