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Originating as an attempt to provide solid logical foundations for fuzzy set theory [19], and
motivated also by philosophical and computational problems of vagueness and imprecision [16],
Mathematical Fuzzy Logic (MFL) has become a significant subfield of mathematical logic [17].
Throughout the years many particular many-valued logics and families of logics have been pro-
posed and investigated by MFL and numerous deep mathematical results have been proven
about them (see the three volumes of handbook of MFL [5]). In the early years, the necessay
exploratory work of the pionneers resulted naturally in a certain amount of repetition in the pa-
pers published on this topic; it was common to encounter articles that studied slightly different
logics by repeating the same definitions and essentially obtaining the same results by means of
analogous proofs. Therefore, MFL was an area of science screaming for systematization through
the development and application of uniform, general, and abstract methods.

Abstract algebraic logic presented itself as the ideal toolbox to rely on; indeed, this general
theory is applicable to all non-classical logics and provides an abstract insight into the funda-
mental (meta)logical properties at play. However, the existing works in that area (summarized
in excellent monographs [2,14,15]) did not readily give the desired answers. Despite their many
merits, these texts live at a level of abstraction a little too far detached from the intended
field of application in MFL. They are indeed great sources of knowledge and inspiration, but
there is still a lot of work to be done in order to bring the theory closer to the characteristic
particularities of MFL, in particular in first-order logics.

These considerations led us, the authors of this contribution, to writing an extensive series of
papers (e.g., [1,3,4,6–8,10–12,18] to name the most important ones) in which we have developed
various aspects of the general theory of MFL at different levels of generality and abstraction.

Our first attempt at systematizing this bulk of research was a chapter published in 2011 in
the Handbook of Mathematical Fuzzy Logic [9] where we provided rudiments of a well rounded
theory constituting solid foundations sufficient (and necessary!) for a rapid development of
new particular fuzzy logics demanded by emerging applications. The goal of this talk is to
summarize the subsequent 10 years of development and refinements of this theory and present
its now matured state of the art as described in our recent monograph [13].
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Cintula, Petr Hájek, and Carles Noguera, editors, Handbook of Mathematical Fuzzy Logic - Volume
1, volume 37 of Studies in Logic, Mathematical Logic and Foundations, pages 103–207. College
Publications, London, 2011.

[10] Petr Cintula and Carles Noguera. The proof by cases property and its variants in structural
consequence relations. Studia Logica, 101:713–747, 2013.

[11] Petr Cintula and Carles Noguera. A Henkin-style proof of completeness for first-order algebraizable
logics. Journal of Symbolic Logic, 80:341–358, 2015.

[12] Petr Cintula and Carles Noguera. Implicational (semilinear) logics III: Completeness properties.
Archive for Mathematical Logic, 57:391–420, 2018.

[13] Petr Cintula and Carles Noguera. Logic and Implication: An Introduction to the General Algebraic
Study of Non-classical Logics, volume 57 of Trends in Logic. Springer, 2021.

[14] Janusz Czelakowski. Protoalgebraic Logics, volume 10 of Trends in Logic. Kluwer, 2001.

[15] Josep Maria Font. Abstract Algebraic Logic. An Introductory Textbook, volume 60 of Studies in
Logic, Mathematical Logic and Foundations. College Publications, London, 2016.

[16] Joseph Amadee Goguen. The logic of inexact concepts. Synthese, 19:325–373, 1969.
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