Logics of upsets of De Morgan lattices

ADAM PŘENOSIL
Università degli Studi di Cagliari, Italy
adam.prenosil@gmail.com

Even a very cursory review of the existing literature on non-classical logics will quickly reveal two facts. Firstly, many of the non-classical logics which have attracted the most attention among the community of algebraic logicians have a conjunction which is interpreted by a binary meet operation in some algebra with a distributive lattice reduct. Secondly, logics with such a lattice conjunction are almost inevitably assumed to satisfy the rule of adjunction:

$$x, y \vdash x \land y.$$

This rule, together with the rules $x \land y \vdash x$ and $x \land y \vdash y$, ensures that the designated sets of these logics form lattice filters in some appropriate class of distributive lattice-ordered algebras.

In this contribution, we develop tools which will enable us to study logics with a distributive lattice conjunction where the rule of adjunction fails. In other words, we will be concerned with logics of upsets, rather than logics of lattice filters.

As a case study, we shall consider logics determined by a class of matrices of the form $\langle A, F \rangle$ where A is a De Morgan lattice and F is an upset of A. However, the results stated below are much more general. The only feature of De Morgan lattices which we use is that they are generated as a quasivariety by a finite algebra, namely the four-element subdirectly-irreducible De Morgan lattice DM_1, and that each prime filter on De Morgan lattice is a homomorphic preimage of a certain prime filter Q_1 on DM_1, namely the filter $\{t, b\}$.

Logics of filters of De Morgan lattices have in fact recently been studied under the name super-Belnap logics [4, 1, 3]. The results presented below can be interpreted as extending the super-Belnap universe to cover natural logics such as Shramko’s logic of “anything but falsehood” [5] which do not validate the rule of adjunction but which fit in well with the rest of the super-Belnap family in terms of their motivation. Indeed, extending the notion of a super-Belnap logic to cover such logics was first proposed by Shramko [6].

Our main results are the following two finite basis theorems. Their proofs are constructive: we provide an algorithm which finds the required axiomatizations. The second theorem yields finite Gentzen-style calculi even for logics which have no finite Hilbert-style calculus, such as the extension of Belnap–Dunn logic by the infinite set of rules $(x_1 \land \neg x_1) \lor \cdots \lor (x_n \land \neg x_n) \vdash y$, which is complete with respect to an eight-element matrix.

Theorem 1. Each logic determined by a finite set of finite matrices of the form $\langle A, F \rangle$, where A is a De Morgan lattice and F is an upset of A, has a finite Hilbert-style axiomatization.

Theorem 2. Each logic determined by a finite set of finite matrices of the form $\langle A, F \rangle$, where A is a De Morgan lattice and F is a lattice filter of A, has a finite Gentzen-style axiomatization.

The key tool in proving these theorems will be the notion of an n-filter. The theorems will follow easily once we extend basic facts about filters on distributive lattices to n-filters.

An upset F of a distributive lattice A will be called an n-filter, for $n \geq 1$, if for each non-empty finite $X \subseteq A$

$$\bigwedge Y \in F \text{ for each } Y \subseteq_n X \implies \bigwedge X \in F,$$
where we use the notation

\[X \subseteq_n Y \iff X \subseteq Y \text{ and } 1 \leq |X| \leq n. \]

We may restrict without loss of generality to \(|X| = n + 1\) and \(|Y| = n\) in this definition. Equivalently, \(F \) is an \(n \)-filter if the matrix \(\langle A, F \rangle \) validates the rule of \(n \)-adjunction:

\[\{ \bigwedge_{j \neq i} x_j \mid 1 \leq i \leq n + 1 \} \vdash x_1 \land \cdots \land x_{n+1}, \]

where \(\bigwedge_{j \neq i} x_j \) denotes the submeet of \(x_1 \land \cdots \land x_{n+1} \) obtained by omitting \(x_i \). For example, 1-adjunction is the ordinary rule of adjunction, while 2-adjunction is the rule

\[x \land y, y \land z, z \land x \vdash x \land y \land z. \]

Of course, each \(m \)-filter is an \(n \)-filter for \(m \leq n \).

Because \(n \)-filters are closed under arbitrary intersection, we may talk about the \(n \)-filter \([U]_n \) generated by a subset \(U \) of \(A \). While understanding filter generation in arbitrary lattices is easy, we only have a good description of \(n \)-filter generation for \(n > 1 \) in distributive lattices.

Lemma 3. Let \(U \) be an upset of a distributive lattice \(A \). Then \(a \in [U]_n \) if and only if there is a non-empty finite set \(X \subseteq A \) such that \(\bigwedge Y \in U \) for each \(Y \subseteq_n X \) and \(\bigwedge X \leq a \).

Understanding how \(n \)-filters are generated allows us to prove the following theorem.

Theorem 4. Each \(n \)-filter on a distributive lattice is an intersection of prime \(n \)-filters.

An easy way of constructing \(n \)-filters is to take the union of a family of at most \(n \) filters. This does not suffice to construct all \(n \)-filters, but it does suffice to construct all prime \(n \)-filters. Here an upset \(U \) is called prime if \(a \lor b \in U \) implies that either \(a \in U \) or \(b \in U \).

Theorem 5. Each prime \(n \)-filter on a distributive lattice is a union of at most \(n \) prime filters.

It remains to describe unions of at most \(n \) prime filters as the homomorphic preimages of a certain fixed upset. To this end, the dual product construction is useful. Given a family of matrices \(\langle A_i, F_i \rangle \) for \(i \in I \), its dual product \(\bigotimes_{i \in I} \langle A_i, F_i \rangle \) is the matrix \(\langle A, F \rangle \) with \(A := \prod_{i \in I} A_i \) and \(F := \bigcup_{i \in I} \pi_i^{-1}[F_i] \), where \(\pi: A \to A_i \) are the projection maps. In other words, a tuple \(a \in A \) is designated in the dual product if and only if some component \(a_i \in A_i \) of this tuple is designated in \(\langle A_i, F_i \rangle \). Let \(\langle B_n, P_n \rangle \) be the \(n \)-th dual power of the matrix \(\langle B_1, P_1 \rangle \). That is, \(a \in P_n \) if and only if \(a > f \) in \(B_n \), where \(f \) denotes the bottom element of \(B_n \).

Lemma 6. An upset \(U \) of a distributive lattice is a union of at most \(n \) prime filters if and only if it is a homomorphic preimage of the upset \(P_n \) of \(B_n \).

Summing up: \(n \)-filters on distributive lattices are defined syntactically as upsets which satisfy the rule of \(n \)-adjunction, but they also be characterized semantically as the intersections of homomorphic preimages of the prime \(n \)-filter \(P_n \subseteq B_n \).

This allows us to describe all logics of upsets of distributive lattices, i.e. logics determined by some class of matrices of the form \(\langle A, F \rangle \) where \(A \) is a distributive lattice and \(F \) is an upset of \(A \). These are precisely the extensions of the logic \(\mathcal{DL}_\infty \) of all upsets of distributive lattices. Let \(\mathcal{DL}_n \) be the extension of \(\mathcal{DL}_\infty \) by the rule of \(n \)-adjunction, or equivalently let \(\mathcal{DL}_n \) be the logic of all \(n \)-filters of distributive lattices. It will be convenient to take \(B_0 \) to be the trivial lattice, 0-adjunction to be the rule \(x \vdash y \), and \(P_0 \) to be the empty set.
Theorem 7. The logic \mathcal{DL}_n is complete with respect to the matrix $\langle B_n, P_n \rangle$. Moreover, the logics \mathcal{DL}_n for $n \in \omega$ are the only non-trivial proper extensions of \mathcal{DL}_∞.

Moving the setting of De Morgan lattices, much of the above argument remains valid if we replace the prime filter P_1 on B_1 by a prime filter Q_1 on \mathcal{DM}_1. (This filter consists of the top element and one of the fixpoints of negation.) We again define the matrix $\langle DM_n, Q_n \rangle$ to be the n-th dual power of the matrix $\langle DM_1, Q_1 \rangle$ and obtain the following completeness theorems for the logics BD_n of n-filters of De Morgan lattices, which extend the logic BD_∞ of all upsets of De Morgan lattices by the rule of n-adjunction.

Theorem 8. The logic \mathcal{DM}_n is complete with respect to the matrix $\langle DM_n, Q_n \rangle$.

The problem of axiomatizing the logic given by a finite set of prime upsets of De Morgan lattices reduces to the problem of axiomatizing the logic \mathcal{L} given by a set S of submatrices of the finite matrix $\langle DM_n, Q_n \rangle$ for some n: each upset of a finite De Morgan lattice is in fact an n-filter for some n, and if it is moreover prime, then it is a homomorphic image of Q_n. Furthermore, for each submatrix $\langle A, F \rangle$ of $\langle DM_n, Q_n \rangle$ there is either a finitary semantic construction of $\langle A, F \rangle$ in terms of matrices from S witnessing that it is a model of \mathcal{L} or a finitary rule which fails in $\langle A, F \rangle$ but holds in \mathcal{L}. This yields a finite set of finitary rules R such that \mathcal{L} is the smallest extension of BD_n which validates each rule in R and which is complete with respect to a class of prime upsets. This is equivalent to the claim that \mathcal{L} is axiomatized relative to BD_n by what we call the disjunctive variants of the rules in R. This yields a finite Hilbert-style axiomatization for each logic determined by a finite set of prime upsets of De Morgan lattices.

As a concrete application of the algorithm sketched above, we obtain an axiomatization of the logic “anything but falsehood” introduced recently by Shramko [5] as the semantic dual to the logic of “nothing but the truth” introduced by Pietz and Rivieccio [2]. This is the logic determined by the matrix $\langle DM_1, \{t, n, b\} \rangle$, where n and b are the two fixpoints of negation in DM_1 and t is the top element. The last rule in the axiomatization below is what we call the disjunctive variant of the rule $x, \neg x \vdash x \land \neg x$.

Theorem 9. The logic of the structure $\langle DM_1, \{t, n, b\} \rangle$ is the extension of BD_∞ by the 2-adjunction rule, the law of the excluded middle $\emptyset \vdash x \lor \neg x$, and the rule $x \lor y, \neg x \lor y \vdash (x \land \neg x) \lor y$.

To obtain the following theorem, it now suffices to observe that a finitary extension \mathcal{L} of BD_∞ is complete with respect to some class of matrices of the form $\langle A, F \rangle$ where F is a prime upset if and only if it satisfies the proof by cases property (PCP):

$$\Gamma, \varphi_1 \lor \varphi_2 \vdash_C \psi \iff \Gamma, \varphi_1 \vdash_C \psi \text{ and } \Gamma, \varphi_2 \vdash_C \psi.$$

Theorem 10. The following are equivalent for each extension \mathcal{L} of BD_∞:

(i) \mathcal{L} is a finitary extension of BD_n with the PCP,

(ii) \mathcal{L} is complete with respect to some set of substructures of $\langle DM_n, Q_n \rangle$,

(iii) \mathcal{L} is complete with respect to some finite set of finite structures of the form $\langle L, F \rangle$ where L is a De Morgan lattice and F is a prime n-filter of L.

Some such n exists whenever \mathcal{L} has the PCP and is complete w.r.t. a finite set of finite matrices.

The case of logics determined by a finite set of filters (rather than prime upsets) of De Morgan lattices admits an analogous analysis, but we need to consider n-prime filters (rather than prime
n-filters). A filter F on a distributive lattice A will be called n-prime if it is a meet n-prime element of the lattice of all filters on A, i.e. if for each non-empty finite family of filters \mathcal{F} on A

$$\bigcap \mathcal{F} \subseteq F \implies \bigcap \mathcal{G} \subseteq F \text{ for some } \mathcal{G} \subseteq_n \mathcal{F}.$$

Equivalently, n-prime filters are precisely the complements of prime n-ideals.

A finitary extension \mathcal{L} of \mathcal{BD}_1 is complete with respect to a class of n-prime filters if and only if it satisfies what we call the n-proof by cases property (n-PCP):

$$\Gamma, \bigvee_{j \neq 1} \varphi_j \vdash_L \psi \text{ and } \ldots \text{ and } \Gamma, \bigvee_{j \neq n+1} \varphi_j \vdash_L \psi \implies \Gamma, \varphi_1 \lor \cdots \lor \varphi_{n+1} \vdash_L \psi.$$

In particular, the 2-PCP states the following:

$$\Gamma, \varphi_1 \lor \varphi_2 \vdash_L \psi \text{ and } \Gamma, \varphi_2 \lor \varphi_3 \vdash_L \psi \text{ and } \Gamma, \varphi_3 \lor \varphi_1 \vdash_L \psi \implies \Gamma, \varphi_1 \lor \varphi_2 \lor \varphi_3 \vdash_L \psi.$$

We now obtain the following theorem in a manner entirely analogous to the previous one.

Theorem 11. The following are equivalent for each extension \mathcal{L} of \mathcal{BD}_1:

(i) \mathcal{L} is a finitary and enjoys the n-PCP,

(ii) \mathcal{L} is complete with respect to some set of substructures of $(\mathcal{DM}_1)^n$,

(iii) \mathcal{L} is complete with respect to some finite set of finite structures of the form (L, F) where L is a De Morgan lattice and F is an n-prime upset of L.

Some such n exists whenever \mathcal{L} is complete w.r.t. a finite set of finite matrices.

In this case, \mathcal{L} is the smallest logic satisfying the n-PCP and a certain finite set of finitary rules R. This description of \mathcal{L} cannot, in general, be transformed into a finite Hilbert-style axiomatization of \mathcal{L}: some logics determined by a filter on a finite De Morgan lattice do not admit any finite Hilbert-style axiomatization. We do, however, obtain a finite Gentzen-style axiomatization of \mathcal{L}, the key Gentzen-style rule being the n-PCP.

References

