Logics of upsets of De Morgan lattices

Adam Přenosil

Università degli Studi di Cagliari, Italy adam.prenosil@gmail.com

Even a very cursory review of the existing literature on non-classical logics will quickly reveal two facts. Firstly, many of the non-classical logics which have attracted the most attention among the community of algebraic logicians have a conjunction which is interpreted by a binary meet operation in some algebra with a distributive lattice reduct. Secondly, logics with such a lattice conjunction are almost inevitably assumed to satisfy the rule of *adjunction*:

 $x, y \vdash x \land y.$

This rule, together with the rules $x \land y \vdash x$ and $x \land y \vdash y$, ensures that the designated sets of these logics form lattice filters in some appropriate class of distributive lattice-ordered algebras.

In this contribution, we develop tools which will enable us to study logics with a distributive lattice conjunction where the rule of adjunction fails. In other words, we will be concerned with *logics of upsets*, rather than logics of lattice filters.

As a case study, we shall consider logics determined by a class of matrices of the form $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is a De Morgan lattice and F is an upset of \mathbf{A} . However, the results stated below are much more general. The only feature of De Morgan lattices which we use is that they are generated as a quasivariety by a finite algebra, namely the four-element subdirectly-irreducible De Morgan lattice \mathbf{DM}_1 , and that each prime filter on De Morgan lattice is a homomorphic preimage of a certain prime filter Q_1 on \mathbf{DM}_1 , namely the filter $\{\mathbf{t}, \mathbf{b}\}$.

Logics of filters of De Morgan lattices have in fact recently been studied under the name *super-Belnap logics* [4, 1, 3]. The results presented below can be interpreted as extending the super-Belnap universe to cover natural logics such as Shramko's logic of "anything but falsehood" [5] which do not validate the rule of adjunction but which fit in well with the rest of the super-Belnap family in terms of their motivation. Indeed, extending the notion of a super-Belnap logic to cover such logics was first proposed by Shramko [6].

Our main results are the following two finite basis theorems. Their proofs are constructive: we provide an algorithm which finds the required axiomatizations. The second theorem yields finite Gentzen-style calculi even for logics which have no finite Hilbert-style calculus, such as the extension of Belnap–Dunn logic by the infinite set of rules $(x_1 \land \neg x_1) \lor \cdots \lor (x_n \land \neg x_n) \vdash y$, which is complete with respect to an eight-element matrix.

Theorem 1. Each logic determined by a finite set of finite matrices of the form $\langle \mathbf{A}, F \rangle$, where **A** is a De Morgan lattice and F is a prime upset of **A**, has a finite Hilbert-style axiomatization.

Theorem 2. Each logic determined by a finite set of finite matrices of the form $\langle \mathbf{A}, F \rangle$, where \mathbf{A} is a De Morgan lattice and F is a lattice filter of \mathbf{A} , has a finite Gentzen-style axiomatization.

The key tool in proving these theorems will be the notion of an n-filter. The theorems will follow easily once we extend basic facts about filters on distributive lattices to n-filters.

An upset F of a distributive lattice A will be called an *n*-filter, for $n \ge 1$, if for each non-empty finite $X \subseteq \mathbf{A}$

$$\bigwedge Y \in F \text{ for each } Y \subseteq_n X \implies \bigwedge X \in F,$$

where we use the notation

$$X \subseteq_n Y \iff X \subseteq Y \text{ and } 1 \leq |X| \leq n.$$

We may restrict without loss of generality to |X| = n + 1 and |Y| = n in this definition. Equivalently, F is an n-filter if the matrix $\langle \mathbf{A}, F \rangle$ validates the rule of n-adjunction:

$$\{\bigwedge_{j\neq i} x_j \mid 1 \le i \le n+1\} \vdash x_1 \land \dots \land x_{n+1},$$

where $\bigwedge_{j \neq i} x_j$ denotes the submeet of $x_1 \land \cdots \land x_{n+1}$ obtained by omitting x_i . For example, 1-adjunction is the ordinary rule of adjunction, while 2-adjunction is the rule

$$x \wedge y, y \wedge z, z \wedge x \vdash x \wedge y \wedge z.$$

Of course, each *m*-filter is an *n*-filter for $m \leq n$.

Because *n*-filters are closed under arbitrary intersection, we may talk about the *n*-filter $[U]_n$ generated by a subset U of **A**. While understanding filter generation in arbitrary lattices is easy, we only have a good description of *n*-filter generation for n > 1 in distributive lattices.

Lemma 3. Let U be an upset of a distributive lattice **A**. Then $a \in [U]_n$ if and only if there is a non-empty finite set $X \subseteq \mathbf{A}$ such that $\bigwedge Y \in U$ for each $Y \subseteq_n X$ and $\bigwedge X \leq a$.

Understanding how *n*-filters are generated allows us to prove the following theorem.

Theorem 4. Each n-filter on a distributive lattice is an intersection of prime n-filters.

An easy way of constructing *n*-filters is to take the union of a family of at most *n* filters. This does not suffice to construct all *n*-filters, but it does suffice to construct all prime *n*-filters. Here an upset U is called *prime* if $a \lor b \in U$ implies that either $a \in U$ or $b \in U$.

Theorem 5. Each prime n-filter on a distributive lattice is a union of at most n prime filters.

It remains to describe unions of at most n prime filters as the homomorphic preimages of a certain fixed upset. To this end, the *dual product* construction is useful. Given a family of matrices $\langle \mathbf{A}_i, F_i \rangle$ for $i \in I$, its dual product $\bigotimes_{i \in I} \langle \mathbf{A}_i, F_i \rangle$ is the matrix $\langle \mathbf{A}, F \rangle$ with $\mathbf{A} :=$ $\prod_{i \in I} \mathbf{A}_i$ and $F := \bigcup_{i \in I} \pi_i^{-1}[F_i]$, where $\pi : \mathbf{A} \to \mathbf{A}_i$ are the projection maps. In other words, a tuple $a \in \mathbf{A}$ is designated in the dual product if and only if some component $a_i \in \mathbf{A}_i$ of this tuple is designated in $\langle \mathbf{A}_i, F_i \rangle$. Let $\langle \mathbf{B}_n, P_n \rangle$ be the *n*-th dual power of the matrix $\langle \mathbf{B}_1, P_1 \rangle$. That is, $a \in P_n$ if and only if a > f in \mathbf{B}_n , where f denotes the bottom element of \mathbf{B}_n .

Lemma 6. An upset U of a distributive lattice is a union of at most n prime filters if and only if it is a homomorphic preimage of the upset P_n of \mathbf{B}_n .

Summing up: *n*-filters on distributive lattices are defined syntactically as upsets which satisfy the rule of *n*-adjunction, but they an also be characterized semantically as the intersections of homomorphic preimages of the prime *n*-filter $P_n \subseteq \mathbf{B}_n$.

This allows us to describe all logics of upsets of distributive lattices, i.e. logics determined by some class of matrices of the form $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is a distributive lattice and F is an upset of \mathbf{A} . These are precisely the extensions of the logic \mathcal{DL}_{∞} of all upsets of distributive lattices. Let \mathcal{DL}_n be the extension of \mathcal{DL}_{∞} by the rule of *n*-adjunction, or equivalently let \mathcal{DL}_n be the logic of all *n*-filters of distributive lattices. It will be convenient to take \mathbf{B}_0 to be the trivial lattice, 0-adjunction to be the rule $x \vdash y$, and P_0 to be the empty set. **Theorem 7.** The logic \mathcal{DL}_n is complete with respect to the matrix $\langle \mathbf{B}_n, P_n \rangle$. Moreover, the logics \mathcal{DL}_n for $n \in \omega$ are the only non-trivial proper extensions of \mathcal{DL}_∞ .

Moving to the setting of De Morgan lattices, much of the above argument remains valid if we replace the prime filter P_1 on \mathbf{B}_1 by a prime filter Q_1 on \mathbf{DM}_1 . (This filter consists of the top element and one of the fixpoints of negation.) We again define the matrix $\langle \mathbf{DM}_n, Q_n \rangle$ to be the *n*-th dual power of the matrix $\langle \mathbf{DM}_1, Q_1 \rangle$ and obtain the following completeness theorems for the logics \mathcal{BD}_n of *n*-filters of De Morgan lattices, which extend the logic \mathcal{BD}_∞ of all upsets of De Morgan lattices by the rule of *n*-adjunction.

Theorem 8. The logic \mathbf{DM}_n is complete with respect to the matrix $\langle \mathbf{DM}_n, Q_n \rangle$.

The problem of axiomatizing the logic given by a finite set of prime upsets of De Morgan lattices reduces to the problem of axiomatizing the logic \mathcal{L} given by a set S of submatrices of the finite matrix $\langle \mathbf{DM}_n, Q_n \rangle$ for some n: each upset of a finite De Morgan lattice is in fact an n-filter for some n, and if it is moreover prime, then it is a homomorphic image of Q_n . Furthermore, for each submatrix $\langle \mathbf{A}, F \rangle$ of $\langle \mathbf{DM}_n, Q_n \rangle$ there is either a finitary semantic construction of $\langle \mathbf{A}, F \rangle$ in terms of matrices from S witnessing that it is a model of \mathcal{L} or a finitary rule which fails in $\langle \mathbf{A}, F \rangle$ but holds in \mathcal{L} . This yields a finite set of finitary rules R such that \mathcal{L} is the smallest extension of \mathcal{BD}_n which validates each rule in R and which is complete with respect to a class of prime upsets. This is equivalent to the claim that \mathcal{L} is axiomatized relative to \mathcal{BD}_n by what we call the *disjunctive variants* of the rules in R. This yields a finite Hilbert-style axiomatization for each logic determined by a finite set of prime upsets of De Morgan lattices.

As a concrete application of the algorithm sketched above, we obtain an axiomatization of the logic "anything but falsehood" introduced recently by Shramko [5] as the semantic dual to the logic of "nothing but the truth" introduced by Pietz and Rivieccio [2]. This is the logic determined by the matrix $\langle \mathbf{DM}_1, \{t, n, b\} \rangle$, where n and b are the two fixpoints of negation in \mathbf{DM}_1 and t is the top element. The last rule in the axiomatization below is what we call the disjunctive variant of the rule $x, \neg x \vdash x \land \neg x$.

Theorem 9. The logic of the structure $\langle \mathbf{DM}_1, \{\mathsf{t}, \mathsf{n}, \mathsf{b}\} \rangle$ is the extension of \mathcal{BD}_{∞} by the 2adjunction rule, the law of the excluded middle $\emptyset \vdash x \lor \neg x$, and the rule $x \lor y, \neg x \lor y \vdash (x \land \neg x) \lor y$.

To obtain the following theorem, it now suffices to observe that a finitary extension \mathcal{L} of \mathcal{BD}_{∞} is complete with respect to some class of matrices of the form $\langle \mathbf{A}, F \rangle$ where F is a prime upset if and only if it satisfies the *proof by cases property (PCP)*:

$$\Gamma, \varphi_1 \lor \varphi_2 \vdash_{\mathcal{L}} \psi \iff \Gamma, \varphi_1 \vdash_{\mathcal{L}} \psi \text{ and } \Gamma, \varphi_2 \vdash_{\mathcal{L}} \psi.$$

Theorem 10. The following are equivalent for each extension \mathcal{L} of \mathcal{BD}_{∞} :

- (i) \mathcal{L} is a finitary extension of \mathcal{BD}_n with the PCP,
- (ii) \mathcal{L} is complete with respect to some set of substructures of $\langle \mathbf{DM}_n, Q_n \rangle$,
- (iii) \mathcal{L} is complete with respect to some finite set of finite structures of the form $\langle \mathbf{L}, F \rangle$ where \mathbf{L} is a De Morgan lattice and F is a prime n-filter of \mathbf{L} .

Some such n exists whenever \mathcal{L} has the PCP and is complete w.r.t. a finite set of finite matrices.

The case of logics determined by a finite set of filters (rather than prime upsets) of De Morgan lattices admits an analogous analysis, but we need to consider n-prime filters (rather than prime

n-filters). A filter F on a distributive lattice \mathbf{A} will be called *n*-prime if it is a meet *n*-prime element of the lattice of all filters on \mathbf{A} , i.e. if for each non-empty finite family of filters \mathcal{F} on \mathbf{A}

$$\bigcap \mathcal{F} \subseteq F \implies \bigcap \mathcal{G} \subseteq F \text{ for some } \mathcal{G} \subseteq_n \mathcal{F}.$$

Equivalently, n-prime filters are precisely the complements of prime n-ideals.

A finitary extension \mathcal{L} of \mathcal{BD}_1 is complete with respect to a class of *n*-prime filters if and only if it satisfies what we call the *n*-proof by cases property (*n*-PCP):

$$\Gamma, \bigvee_{j \neq 1} \varphi_j \vdash_{\mathcal{L}} \psi \text{ and } \dots \text{ and } \Gamma, \bigvee_{j \neq n+1} \varphi_j \vdash_{\mathcal{L}} \psi \implies \Gamma, \varphi_1 \lor \dots \lor \varphi_{n+1} \vdash_{\mathcal{L}} \psi.$$

In particular, the 2-PCP states the following:

 $\Gamma, \varphi_1 \lor \varphi_2 \vdash_{\mathcal{L}} \psi \text{ and } \Gamma, \varphi_2 \lor \varphi_3 \vdash_{\mathcal{L}} \psi \text{ and } \Gamma, \varphi_3 \lor \varphi_1 \vdash_{\mathcal{L}} \psi \implies \Gamma, \varphi_1 \lor \varphi_2 \lor \varphi_3 \vdash_{\mathcal{L}} \psi.$

We now obtain the following theorem in a manner entirely analogous to the previous one.

Theorem 11. The following are equivalent for each extension \mathcal{L} of \mathcal{BD}_1 :

- (i) \mathcal{L} is a finitary and enjoys the n-PCP,
- (ii) \mathcal{L} is complete with respect to some set of substructures of $(\mathbb{D}M_1)^n$,
- (iii) \mathcal{L} is complete with respect to some finite set of finite structures of the form $\langle \mathbf{L}, F \rangle$ where \mathbf{L} is a De Morgan lattice and F is an n-prime upset of \mathbf{L} .

Some such n exists whenever \mathcal{L} is complete w.r.t. a finite set of finite matrices.

In this case, \mathcal{L} is the smallest logic satisfying the *n*-PCP and a certain finite set of finitary rules R. This description of \mathcal{L} cannot, in general, be transformed into a finite Hilbert-style axiomatization of \mathcal{L} : some logics determined by a filter on a finite De Morgan lattice do not admit any finite Hilbert-style axiomatization. We do, however, obtain a finite Gentzen-style axiomatization of \mathcal{L} , the key Gentzen-style rule being the *n*-PCP.

References

- Hugo Albuquerque, Adam Přenosil, and Umberto Rivieccio. An algebraic view of super-Belnap logics. Studia Logica, (105):1051–1086, 2017.
- [2] Andreas Pietz and Umberto Rivieccio. Nothing but the Truth. Journal of Philosophical Logic, (42):125-135, 2013.
- [3] Adam Přenosil. The lattice of super-Belnap logics. The Review of Symbolic Logic, 2021.
- [4] Umberto Rivieccio. An infinity of super-Belnap logics. Journal of Applied Non-Classical Logics, (22):319–335, 2012.
- [5] Yaroslav Shramko. Dual-Belnap logic and anything but falsehood. Journal of Applied Logics IfCoLoG Journal of Logics and their Applications, 6(2):413–430, 2019.
- [6] Yaroslav Shramko. Hilbert-style axiomatization of first-degree entailment and a family of its extensions. Annals of Pure and Applied Logic, 172, 2020.