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Even a very cursory review of the existing literature on non-classical logics will quickly reveal
two facts. Firstly, many of the non-classical logics which have attracted the most attention
among the community of algebraic logicians have a conjunction which is interpreted by a binary
meet operation in some algebra with a distributive lattice reduct. Secondly, logics with such a
lattice conjunction are almost inevitably assumed to satisfy the rule of adjunction:

x, y ⊢ x ∧ y.

This rule, together with the rules x ∧ y ⊢ x and x ∧ y ⊢ y, ensures that the designated sets of
these logics form lattice filters in some appropriate class of distributive lattice-ordered algebras.

In this contribution, we develop tools which will enable us to study logics with a distributive
lattice conjunction where the rule of adjunction fails. In other words, we will be concerned with
logics of upsets, rather than logics of lattice filters.

As a case study, we shall consider logics determined by a class of matrices of the form ⟨A, F ⟩
where A is a De Morgan lattice and F is an upset of A. However, the results stated below
are much more general. The only feature of De Morgan lattices which we use is that they are
generated as a quasivariety by a finite algebra, namely the four-element subdirectly-irreducible
De Morgan lattice DM1, and that each prime filter on De Morgan lattice is a homomorphic
preimage of a certain prime filter Q1 on DM1, namely the filter {t, b}.

Logics of filters of De Morgan lattices have in fact recently been studied under the name
super-Belnap logics [4, 1, 3]. The results presented below can be interpreted as extending
the super-Belnap universe to cover natural logics such as Shramko’s logic of “anything but
falsehood” [5] which do not validate the rule of adjunction but which fit in well with the rest
of the super-Belnap family in terms of their motivation. Indeed, extending the notion of a
super-Belnap logic to cover such logics was first proposed by Shramko [6].

Our main results are the following two finite basis theorems. Their proofs are constructive:
we provide an algorithm which finds the required axiomatizations. The second theorem yields
finite Gentzen-style calculi even for logics which have no finite Hilbert-style calculus, such as
the extension of Belnap–Dunn logic by the infinite set of rules (x1∧¬x1)∨ · · ·∨ (xn∧¬xn) ⊢ y,
which is complete with respect to an eight-element matrix.

Theorem 1. Each logic determined by a finite set of finite matrices of the form ⟨A, F ⟩, where
A is a De Morgan lattice and F is a prime upset of A, has a finite Hilbert-style axiomatization.

Theorem 2. Each logic determined by a finite set of finite matrices of the form ⟨A, F ⟩, where
A is a De Morgan lattice and F is a lattice filter of A, has a finite Gentzen-style axiomatization.

The key tool in proving these theorems will be the notion of an n-filter. The theorems will
follow easily once we extend basic facts about filters on distributive lattices to n-filters.

An upset F of a distributive lattice A will be called an n-filter, for n ≥ 1, if for each
non-empty finite X ⊆ A ∧

Y ∈ F for each Y ⊆n X =⇒
∧
X ∈ F,



where we use the notation

X ⊆n Y ⇐⇒ X ⊆ Y and 1 ≤ |X| ≤ n.

We may restrict without loss of generality to |X| = n + 1 and |Y | = n in this definition.
Equivalently, F is an n-filter if the matrix ⟨A, F ⟩ validates the rule of n-adjunction:

{
∧
j ̸=i

xj | 1 ≤ i ≤ n+ 1} ⊢ x1 ∧ · · · ∧ xn+1,

where
∧

j ̸=i xj denotes the submeet of x1 ∧ · · · ∧ xn+1 obtained by omitting xi. For example,
1-adjunction is the ordinary rule of adjunction, while 2-adjunction is the rule

x ∧ y, y ∧ z, z ∧ x ⊢ x ∧ y ∧ z.

Of course, each m-filter is an n-filter for m ≤ n.
Because n-filters are closed under arbitrary intersection, we may talk about the n-filter [U ]n

generated by a subset U of A. While understanding filter generation in arbitrary lattices is
easy, we only have a good description of n-filter generation for n > 1 in distributive lattices.

Lemma 3. Let U be an upset of a distributive lattice A. Then a ∈ [U ]n if and only if there is
a non-empty finite set X ⊆ A such that

∧
Y ∈ U for each Y ⊆n X and

∧
X ≤ a.

Understanding how n-filters are generated allows us to prove the following theorem.

Theorem 4. Each n-filter on a distributive lattice is an intersection of prime n-filters.

An easy way of constructing n-filters is to take the union of a family of at most n filters.
This does not suffice to construct all n-filters, but it does suffice to construct all prime n-filters.
Here an upset U is called prime if a ∨ b ∈ U implies that either a ∈ U or b ∈ U .

Theorem 5. Each prime n-filter on a distributive lattice is a union of at most n prime filters.

It remains to describe unions of at most n prime filters as the homomorphic preimages of
a certain fixed upset. To this end, the dual product construction is useful. Given a family
of matrices ⟨Ai, Fi⟩ for i ∈ I, its dual product

⊗
i∈I⟨Ai, Fi⟩ is the matrix ⟨A, F ⟩ with A :=∏

i∈I Ai and F :=
⋃

i∈I π
−1
i [Fi], where π : A → Ai are the projection maps. In other words, a

tuple a ∈ A is designated in the dual product if and only if some component ai ∈ Ai of this
tuple is designated in ⟨Ai, Fi⟩. Let ⟨Bn, Pn⟩ be the n-th dual power of the matrix ⟨B1, P1⟩.
That is, a ∈ Pn if and only if a > f in Bn, where f denotes the bottom element of Bn.

Lemma 6. An upset U of a distributive lattice is a union of at most n prime filters if and only
if it is a homomorphic preimage of the upset Pn of Bn.

Summing up: n-filters on distributive lattices are defined syntactically as upsets which
satisfy the rule of n-adjunction, but they an also be characterized semantically as the inter-
sections of homomorphic preimages of the prime n-filter Pn ⊆ Bn.

This allows us to describe all logics of upsets of distributive lattices, i.e. logics determined
by some class of matrices of the form ⟨A, F ⟩ where A is a distributive lattice and F is an upset
of A. These are precisely the extensions of the logic DL∞ of all upsets of distributive lattices.
Let DLn be the extension of DL∞ by the rule of n-adjunction, or equivalently let DLn be the
logic of all n-filters of distributive lattices. It will be convenient to take B0 to be the trivial
lattice, 0-adjunction to be the rule x ⊢ y, and P0 to be the empty set.



Theorem 7. The logic DLn is complete with respect to the matrix ⟨Bn, Pn⟩. Moreover, the
logics DLn for n ∈ ω are the only non-trivial proper extensions of DL∞.

Moving to the setting of De Morgan lattices, much of the above argument remains valid if
we replace the prime filter P1 on B1 by a prime filter Q1 on DM1. (This filter consists of the
top element and one of the fixpoints of negation.) We again define the matrix ⟨DMn, Qn⟩ to be
the n-th dual power of the matrix ⟨DM1, Q1⟩ and obtain the following completeness theorems
for the logics BDn of n-filters of De Morgan lattices, which extend the logic BD∞ of all upsets
of De Morgan lattices by the rule of n-adjunction.

Theorem 8. The logic DMn is complete with respect to the matrix ⟨DMn, Qn⟩.

The problem of axiomatizing the logic given by a finite set of prime upsets of De Morgan
lattices reduces to the problem of axiomatizing the logic L given by a set S of submatrices of the
finite matrix ⟨DMn, Qn⟩ for some n: each upset of a finite De Morgan lattice is in fact an n-filter
for some n, and if it is moreover prime, then it is a homomorphic image of Qn. Furthermore, for
each submatrix ⟨A, F ⟩ of ⟨DMn, Qn⟩ there is either a finitary semantic construction of ⟨A, F ⟩
in terms of matrices from S witnessing that it is a model of L or a finitary rule which fails in
⟨A, F ⟩ but holds in L. This yields a finite set of finitary rules R such that L is the smallest
extension of BDn which validates each rule in R and which is complete with respect to a class of
prime upsets. This is equivalent to the claim that L is axiomatized relative to BDn by what we
call the disjunctive variants of the rules in R. This yields a finite Hilbert-style axiomatization
for each logic determined by a finite set of prime upsets of De Morgan lattices.

As a concrete application of the algorithm sketched above, we obtain an axiomatization of
the logic “anything but falsehood” introduced recently by Shramko [5] as the semantic dual to
the logic of “nothing but the truth” introduced by Pietz and Rivieccio [2]. This is the logic
determined by the matrix ⟨DM1, {t, n, b}⟩, where n and b are the two fixpoints of negation in
DM1 and t is the top element. The last rule in the axiomatization below is what we call the
disjunctive variant of the rule x,¬x ⊢ x ∧ ¬x.

Theorem 9. The logic of the structure ⟨DM1, {t, n, b}⟩ is the extension of BD∞ by the 2-
adjunction rule, the law of the excluded middle ∅ ⊢ x∨¬x, and the rule x∨y,¬x∨y ⊢ (x∧¬x)∨y.

To obtain the following theorem, it now suffices to observe that a finitary extension L of
BD∞ is complete with respect to some class of matrices of the form ⟨A, F ⟩ where F is a prime
upset if and only if it satisfies the proof by cases property (PCP):

Γ, φ1 ∨ φ2 ⊢L ψ ⇐⇒ Γ, φ1 ⊢L ψ and Γ, φ2 ⊢L ψ.

Theorem 10. The following are equivalent for each extension L of BD∞:

(i) L is a finitary extension of BDn with the PCP,

(ii) L is complete with respect to some set of substructures of ⟨DMn, Qn⟩,

(iii) L is complete with respect to some finite set of finite structures of the form ⟨L, F ⟩ where
L is a De Morgan lattice and F is a prime n-filter of L.

Some such n exists whenever L has the PCP and is complete w.r.t. a finite set of finite matrices.

The case of logics determined by a finite set of filters (rather than prime upsets) of De Morgan
lattices admits an analogous analysis, but we need to consider n-prime filters (rather than prime



n-filters). A filter F on a distributive lattice A wil be called n-prime if it is a meet n-prime
element of the lattice of all filters on A, i.e. if for each non-empty finite family of filters F on A⋂

F ⊆ F =⇒
⋂

G ⊆ F for some G ⊆n F .

Equivalently, n-prime filters are precisely the complements of prime n-ideals.
A finitary extension L of BD1 is complete with respect to a class of n-prime filters if and

only if it satisfies what we call the n-proof by cases property (n-PCP):

Γ,
∨
j ̸=1

φj ⊢L ψ and . . . and Γ,
∨

j ̸=n+1

φj ⊢L ψ =⇒ Γ, φ1 ∨ · · · ∨ φn+1 ⊢L ψ.

In particular, the 2-PCP states the following:

Γ, φ1 ∨ φ2 ⊢L ψ and Γ, φ2 ∨ φ3 ⊢L ψ and Γ, φ3 ∨ φ1 ⊢L ψ =⇒ Γ, φ1 ∨ φ2 ∨ φ3 ⊢L ψ.

We now obtain the following theorem in a manner entirely analogous to the previous one.

Theorem 11. The following are equivalent for each extension L of BD1:

(i) L is a finitary and enjoys the n-PCP,

(ii) L is complete with respect to some set of substructures of (DM1)
n,

(iii) L is complete with respect to some finite set of finite structures of the form ⟨L, F ⟩ where
L is a De Morgan lattice and F is an n-prime upset of L.

Some such n exists whenever L is complete w.r.t. a finite set of finite matrices.

In this case, L is the smallest logic satisfying the n-PCP and a certain finite set of finitary
rules R. This description of L cannot, in general, be transformed into a finite Hilbert-style
axiomatization of L: some logics determined by a filter on a finite De Morgan lattice do not
admit any finite Hilbert-style axiomatization. We do, however, obtain a finite Gentzen-style
axiomatization of L, the key Gentzen-style rule being the n-PCP.
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