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Even a very cursory review of the existing literature on non-classical logics will quickly reveal
two facts. Firstly, many of the non-classical logics which have attracted the most attention
among the community of algebraic logicians have a conjunction which is interpreted by a binary
meet operation in some algebra with a distributive lattice reduct. Secondly, logics with such a
lattice conjunction are almost inevitably assumed to satisfy the rule of adjunction:

T,y xAy.

This rule, together with the rules x Ay F xz and x A y | y, ensures that the designated sets of
these logics form lattice filters in some appropriate class of distributive lattice-ordered algebras.

In this contribution, we develop tools which will enable us to study logics with a distributive
lattice conjunction where the rule of adjunction fails. In other words, we will be concerned with
logics of upsets, rather than logics of lattice filters.

As a case study, we shall consider logics determined by a class of matrices of the form (A, F)
where A is a De Morgan lattice and F' is an upset of A. However, the results stated below
are much more general. The only feature of De Morgan lattices which we use is that they are
generated as a quasivariety by a finite algebra, namely the four-element subdirectly-irreducible
De Morgan lattice DM, and that each prime filter on De Morgan lattice is a homomorphic
preimage of a certain prime filter @1 on DM, namely the filter {t,b}.

Logics of filters of De Morgan lattices have in fact recently been studied under the name
super-Belnap logics [4, 1, 3]. The results presented below can be interpreted as extending
the super-Belnap universe to cover natural logics such as Shramko’s logic of “anything but
falsehood” [5] which do not validate the rule of adjunction but which fit in well with the rest
of the super-Belnap family in terms of their motivation. Indeed, extending the notion of a
super-Belnap logic to cover such logics was first proposed by Shramko [6].

Our main results are the following two finite basis theorems. Their proofs are constructive:
we provide an algorithm which finds the required axiomatizations. The second theorem yields
finite Gentzen-style calculi even for logics which have no finite Hilbert-style calculus, such as
the extension of Belnap—Dunn logic by the infinite set of rules (z1 A—z1) V-V (x, A—xy) F oy,
which is complete with respect to an eight-element matrix.

Theorem 1. Each logic determined by a finite set of finite matrices of the form (A, F), where
A is a De Morgan lattice and F is a prime upset of A, has a finite Hilbert-style axiomatization.

Theorem 2. Each logic determined by a finite set of finite matrices of the form (A, F), where
A is a De Morgan lattice and F is a lattice filter of A, has a finite Gentzen-style axiomatization.

The key tool in proving these theorems will be the notion of an n-filter. The theorems will
follow easily once we extend basic facts about filters on distributive lattices to n-filters.

An upset F' of a distributive lattice A will be called an n-filter, for n > 1, if for each
non-empty finite X C A

/\YEFforeachanX = /\XGF,



where we use the notation
XC, YV <= XCYand1l<|X|<n.

We may restrict without loss of generality to |X| = n+ 1 and |Y| = n in this definition.
Equivalently, F' is an n-filter if the matrix (A, F') validates the rule of n-adjunction:

{/\J;j|1§i§n—|—1}}—m1/\--~/\mn+1,
i

where /\j# x; denotes the submeet of z1 A -+ A 2,41 obtained by omitting x;. For example,
1-adjunction is the ordinary rule of adjunction, while 2-adjunction is the rule

s Ay, yNz,zAzFxzAyAz.

Of course, each m-filter is an n-filter for m < n.

Because n-filters are closed under arbitrary intersection, we may talk about the n-filter [U],
generated by a subset U of A. While understanding filter generation in arbitrary lattices is
easy, we only have a good description of n-filter generation for n > 1 in distributive lattices.

Lemma 3. Let U be an upset of a distributive lattice A. Then a € [U),, if and only if there is
a non-empty finite set X C A such that N\Y € U for eachY C,, X and A\ X < a.

Understanding how n-filters are generated allows us to prove the following theorem.
Theorem 4. Fach n-filter on a distributive lattice is an intersection of prime n-filters.

An easy way of constructing n-filters is to take the union of a family of at most n filters.
This does not suffice to construct all n-filters, but it does suffice to construct all prime n-filters.
Here an upset U is called prime if a V b € U implies that either a € U or b € U.

Theorem 5. FEach prime n-filter on a distributive lattice is a union of at most n prime filters.

It remains to describe unions of at most n prime filters as the homomorphic preimages of
a certain fixed upset. To this end, the dual product construction is useful. Given a family
of matrices (A, F;) for i € I, its dual product @), ;(As, F;) is the matrix (A, F) with A :=
[Lic; Ai and F = {J,; m; '[F}], where 7: A — A, are the projection maps. In other words, a
tuple a € A is designated in the dual product if and only if some component a; € A; of this
tuple is designated in (A;, F;). Let (B, P,) be the n-th dual power of the matrix (By, P;).
That is, a € P, if and only if a > f in B,,, where f denotes the bottom element of B,,.

Lemma 6. An upset U of a distributive lattice is a union of at most n prime filters if and only
if it is a homomorphic preimage of the upset P, of B,.

Summing up: n-filters on distributive lattices are defined syntactically as upsets which
satisfy the rule of n-adjunction, but they an also be characterized semantically as the inter-
sections of homomorphic preimages of the prime n-filter P, C B,,.

This allows us to describe all logics of upsets of distributive lattices, i.e. logics determined
by some class of matrices of the form (A, F') where A is a distributive lattice and F' is an upset
of A. These are precisely the extensions of the logic DL, of all upsets of distributive lattices.
Let DL, be the extension of DL, by the rule of n-adjunction, or equivalently let DL,, be the
logic of all n-filters of distributive lattices. It will be convenient to take By to be the trivial
lattice, 0-adjunction to be the rule z - y, and Py to be the empty set.



Theorem 7. The logic DL, is complete with respect to the matriz (B,, P,). Moreover, the
logics DL, for n € w are the only non-trivial proper extensions of DL .

Moving to the setting of De Morgan lattices, much of the above argument remains valid if
we replace the prime filter P; on B; by a prime filter Q1 on DM;j. (This filter consists of the
top element and one of the fixpoints of negation.) We again define the matrix (DM,,, @,,) to be
the n-th dual power of the matrix (DM, 1) and obtain the following completeness theorems
for the logics BD,, of n-filters of De Morgan lattices, which extend the logic BD, of all upsets
of De Morgan lattices by the rule of n-adjunction.

Theorem 8. The logic DM, is complete with respect to the matriz (DM, Q).

The problem of axiomatizing the logic given by a finite set of prime upsets of De Morgan
lattices reduces to the problem of axiomatizing the logic £ given by a set S of submatrices of the
finite matrix (DM,,, @,,) for some n: each upset of a finite De Morgan lattice is in fact an n-filter
for some n, and if it is moreover prime, then it is a homomorphic image of @,,. Furthermore, for
each submatrix (A, F) of (DM,,, @Q,,) there is either a finitary semantic construction of (A, F)
in terms of matrices from S witnessing that it is a model of £ or a finitary rule which fails in
(A, F) but holds in £. This yields a finite set of finitary rules R such that £ is the smallest
extension of BD,, which validates each rule in R and which is complete with respect to a class of
prime upsets. This is equivalent to the claim that £ is axiomatized relative to BD,, by what we
call the disjunctive variants of the rules in R. This yields a finite Hilbert-style axiomatization
for each logic determined by a finite set of prime upsets of De Morgan lattices.

As a concrete application of the algorithm sketched above, we obtain an axiomatization of
the logic “anything but falsehood” introduced recently by Shramko [5] as the semantic dual to
the logic of “nothing but the truth” introduced by Pietz and Rivieccio [2]. This is the logic
determined by the matrix (DMjy, {t,n, b}), where n and b are the two fixpoints of negation in
DM; and t is the top element. The last rule in the axiomatization below is what we call the
disjunctive variant of the rule x, -z F x A —z.

Theorem 9. The logic of the structure (DMy, {t,n,b}) is the extension of BDy by the 2-
adjunction rule, the law of the excluded middle O & VvV -z, and the rule xVy, ~zVy F (xA—z)Vy.

To obtain the following theorem, it now suffices to observe that a finitary extension £ of
BD, is complete with respect to some class of matrices of the form (A, F') where F is a prime
upset if and only if it satisfies the proof by cases property (PCP):

Pipr Voot <= Tpibepand I' g b 9.
Theorem 10. The following are equivalent for each extension L of BDy:
(i) L is a finitary extension of BD,, with the PCP,
(ii) L is complete with respect to some set of substructures of (DM, Qy),

(iii) L is complete with respect to some finite set of finite structures of the form (L, F') where
L is a De Morgan lattice and F is a prime n-filter of L.

Some such n exists whenever L has the PCP and is complete w.r.t. a finite set of finite matrices.

The case of logics determined by a finite set of filters (rather than prime upsets) of De Morgan
lattices admits an analogous analysis, but we need to consider n-prime filters (rather than prime



n-filters). A filter F' on a distributive lattice A wil be called n-prime if it is a meet n-prime
element of the lattice of all filters on A, i.e. if for each non-empty finite family of filters F on A

ﬂng —, ﬂggFforsomeQQn]:.

Equivalently, n-prime filters are precisely the complements of prime n-ideals.
A finitary extension £ of BD; is complete with respect to a class of n-prime filters if and
only if it satisfies what we call the n-proof by cases property (n-PCP):

D, \/¢jtedand ... and T, \/ @ Fe vy = T,01 V-V onp b o
j#1 j#n+1

In particular, the 2-PCP states the following:
oot Ve ke and I Vs b and Tps Vo e = T Vo Vps b 9.
We now obtain the following theorem in a manner entirely analogous to the previous one.
Theorem 11. The following are equivalent for each extension L of BD;:
(i) L is a finitary and enjoys the n-PCP,
(i) L is complete with respect to some set of substructures of (DM;)",

(iii) L is complete with respect to some finite set of finite structures of the form (L, F') where
L is a De Morgan lattice and F is an n-prime upset of L.

Some such n exists whenever L is complete w.r.t. a finite set of finite matrices.

In this case, £ is the smallest logic satisfying the n-PCP and a certain finite set of finitary
rules R. This description of £ cannot, in general, be transformed into a finite Hilbert-style
axiomatization of £: some logics determined by a filter on a finite De Morgan lattice do not
admit any finite Hilbert-style axiomatization. We do, however, obtain a finite Gentzen-style
axiomatization of £, the key Gentzen-style rule being the n-PCP.
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