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1 Introduction

Duality between modal algebras and modal spaces on the one hand and Heyting algebras and
Esakia spaces on the other have been central to the study of modal and intermediate logics [4, 6].
Many important results such as Sahlqvist canonicity and correspondence use duality [13]. In [5],
duality between modal algebras and modal spaces is extended to modal distributive lattices
(i.e. with distributive lattices taking the role of Boolean algebras) and modal Priestley spaces.
Among other things, this led to Sahlqvist theory for positive distributive modal logic.

When the algebraic side of a duality is based on Boolean algebras or distributive lattices, in
the spatial side of the duality one works with the space of prime filters of a given lattice. This no
longer works for non-distributive lattices. There have been many attempts to extend a duality
for Boolean algebras and distributive lattices to the setting of all lattices, e.g. by Urquhart,
Hartonas, Gehrke and van Gool, and Goldblatt (we skip the references for lack of space). While
this has proven a fruitful and interesting approach, it is quite different from known dualities for
propositional logics such as Stone and Priestley duality. As a consequence, it can be difficult
to modify existing tools and techniques from other propositional bases for these dualities.

An approach towards duality for non-distributive meet-semilattices was developed by Hof-
mann, Mislove and Stralka (HMS) [10], along the same lines of the proof of the Van Kampen-
Pontryagin duality for locally compact abelian groups. This was later modified to a duality
for lattices by Jipsen and Moshier [12]. In HMS duality the dual space is based not on prime
filters, but all (proper) filters of a lattice. This is closely related to the possibility semantics
of modal logic (Holiday) and to choice-free duality for Boolean algebras (N. Bezhanishvili and
Holliday), where again one works with the space of all proper filters. Such an approach was
also developed for ortholattices by Goldblatt [9] and later extended by Bimbo [3].

Here we restrict HMS duality to a Stone type duality for lattices, which in turn we extend
to modal lattices. As a result we obtain a new Kripke style semantics for non-distributive pos-
itive logic, and Sahlqvist correspondence and completeness results for (modal) non-distributive
positive logic with their Kripke-style semantics. We also obtain an alternative proof of Bakers
and Hales’ result [1] that every variety of lattices is closed under ideal completions and extend
this result to varieties of modal lattices. This abstract is based on [7, 2].

∗Speaker.



2 Non-distributive positive logic

Let L be the language of positive logic. We investigate the logic L consisting of consequence
pairs, whose algebraic semantics are (not necessarily distributive) lattices. From a semantic
point of view, the move from distributive to non-distributive positive logic is given by:

(Step 1) replace “poset” with “meet-semilattice;”

(Step 2) replace “upset” with “filter.”

2.1 Definition. A lattice Kripke frame or L-frame is a meet-semilattice (X,∧). An L-
morphism from (X,∧) to (X ′,∧′) is a meet-preserving function f : (X,∧) → (X ′,∧′) that
satisfies for all x ∈ X and y′, z′ ∈ X ′: if y′ ∧ z′ ≤ f(x) then there exist y, z ∈ X such that
y′ ≤′ f(y) and z′ ≤′ f(z) and y ∧ z ≤ x (see figure on the right).
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An L-model (X,∧, V ) is an L-frame with a valua-
tion that assigns to each proposition letter a filter of
(X,∧). The interpretation JφK of φ ∈ L is given by

J>K = X J⊥K = ∅
JpK = V (p) Jφ ∧ ψK = JφK ∩ JψK

Jφ ∨ ψK = JφK ∪ JψK ∪ ↑{x ∧ y | x ∈ JφK, y ∈ JψK}

It can be shown that the interpretation of every formula is a filter. We say that a frame (X,∧)
validates the consequence pair φ P ψ if JφK ⊆ JψK for every model based on it, and write
(X,∧)  φ P ψ. We obtain a duality for the category Lat of lattices by restricting HMS duality.

2.2 Definition. An HMS space is a tuple (X,∧, τ) such that (X,∧) is a meet-semilattice and
(X, τ) is a compact topological space, which additionally satisfies the HMS separation axiom:

if x 6≤ y then there exists a clopen filter a such that x ∈ a and y /∈ a.

(Here ≤ is the order induced by ∧.) An HMS space is called an L-space if for every pair of
clopen filters a, b, the filter ag b := a ∪ b ∪ ↑{x ∧ y | x ∈ a, y ∈ b} is clopen as well.

We write HMS for the category of HMS spaces and continuous meet-semilattice morphisms,
and LSpace for the category of L-spaces and continuous L-morphisms.

2.3 Theorem. We have MSL ≡op HMS [10], and this restricts to Lat ≡op LSpace.

Here MSL denotes the category of meet-semilattices. Clearly, every L-space X has an under-
lying L-frame, denoted by κX. A clopen valuation for an L-space is a valuation that assigns to
each proposition letter a clopen filter. This gives rise to completeness as usual. Using standard
techniques of modal logic (see e.g. [4, Section 3.6]), we obtain the following Sahlqvist results.

2.4 Theorem. Let φ P ψ be a consequence pair of L-formulae.

1. ψ P χ locally corresponds to a first-order formula with one free variable.

2. For every L-space X, if X  φ P ψ then κX  φ P ψ.

3. If Γ is a set of consequence pairs, then L(Γ) is sound and complete with respect to the
class of L-frames validating all consequence pairs in Γ.

The duality for the Lat gives rise to a new type of lattice completion. We define the F 2-
completion of a lattice L to be the lattice of all filters of the L-space dual to L. As a consequence
of Theorem 3.7 we get the following analogue of [1, Theorem B]:

2.5 Theorem. Every variety of lattices is closed under taking F 2-completions.



3 Modal lattices

We extend the logic from above with modal operators and . We leave the precise definition
of the resulting logic L implicit, and instead give its algebraic semantics in Definition 3.3
below. As a starting point we extend L-frames with an additional relation (used to interpret the
modalities), and we stipulate conditions ensuring that every formula is interpreted as a filter.

3.1 Definition. A modal L-frame is a tuple (X,∧, R) where (X,∧) is an L-frame (with induced
order ≤) and R is a binary relation on X such that:

1. If x ≤ y and yRz then there exists a w ∈ X such that xRw and w ≤ y;

2. If x ≤ y and xRw then there exists a z ∈ X such that yRz and w ≤ z;
3. If (x ∧ y)Rz then there exist v, w ∈ X such that xRv and yRw and v ∧ w ≤ z;
4. If xRv and yRw then (x ∧ y)R(v ∧ w);

5. For all x ∈ X there exists an y ∈ X such that xRy.
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A bounded L-morphism from (X,∧, R) to (X ′,∧′, R′) is a function f : X → X ′ such that
f : (X,∧)→ (X ′,∧′) is an L-morphism and for all x, y ∈ X and z′ ∈ X ′:

1. If xRy then f(x)R′f(y);

2. If f(x)R′z′ then there exists a z ∈ X such that xRz and f(z) ≤ z′;
3. If f(x)R′z′ then there exists a w ∈ X such that xRz and z′ ≤′ f(w).

A modal L-model is a a modal L-frame with a valuation V that assigns to each proposition
letter a filter of (X,∧). Propositional connectives are interpreted as in Definition 3.1, and

J φK = {x ∈ X | ∀y ∈ X,xRy implies M, y  φ}
J φK = {x ∈ X | ∃y ∈ X such that xRy and M, y  φ}

Satisfaction and validity of formulae and consequence pairs are defined as expected.

3.2 Lemma. The following modal consequence pairs are valid in all modal L-frames:

> P > > P > ⊥ P ⊥ (top and bottom)

(p ∧ q) P p ∧ q p P (p ∨ q) (monotonicity)

p ∧ q P (p ∧ q) p ∧ q P (p ∧ q) (normality and duality)

3.3 Definition. A modal lattice is a tuple (A, , ) where A is a lattice and , : A→ A are
maps satisfying the inequalities from Lemma 3.2, with p and q ranging over A and “P” replaced
with “≤.” With - and -preserving lattice homomorphisms they form the category MLat.

Indeed, is not necessarily normal. This resembles the modal extension of intuitionistic
logic studied by Kojima [11]. This need not worry us: normality of is a Sahlqvist consequence
pair, so we can use the results below to restrict to the “fully normal” case. Besides, we have
to add seriality (> P >) because our joins can no longer adequately describe the connection
between and . We obtain a duality for modal lattices by means of L-spaces with relations.



3.4 Definition. A modal L-space is a tuple X = (X,∧, τ, R) such that:

1. (X,∧, τ) is an L-space, R is a binary relation on X, and each x ∈ X has an R-successor;

2. If a is a clopen filter, then so are [R]a := {x ∈ X | R[x] ⊆ a} and 〈R〉a := {x ∈ X |
R[x] ∩ a 6= ∅};

3. We have xRy iff for all a ∈ FclpX, x ∈ [R]a implies y ∈ a, and y ∈ a implies x ∈ 〈R〉a.

Then it can be shown that (X,∧, R) is a modal L-frame. With continuous bounded L-morphisms
they form the category MLSpace.

3.5 Theorem. The duality between Lat and LSpace lifts to a duality MLat ≡op MLSpace.

Using standard techniques of modal logic we obtain the following Sahlqvist results.

3.6 Definition. A boxed atom is a formula of the form · · · p, with p a proposition letter.
A Sahlqvist antecedent is a formula made from boxed atoms, > and ⊥ by freely using ∧, ∨ and

. A Sahlqvist consequence pair is a consequence pair φ P ψ where φ is a Sahlqvist antecedent.

3.7 Theorem. Let φ P ψ be a Sahlqvist consequence pair of L -formulae.

1. ψ P χ locally corresponds to a first-order formula with one free variable.

2. For every modal L-space X, if X  φ P ψ then κX  φ P ψ.

3. If Γ is a set of Sahlqvist consequence pairs, then L (Γ) is sound and complete with respect
to the class of L-frames validating all consequence pairs in Γ.
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