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Quantum logic (QL) has been studied to handle the strange propositions of quantum physics.
Moreover, numerous types of logic and structures have been proposed to represent and analyze
these propositions [8] [9]. In particular, logic based on orthomodular lattices, namely, orthomod-
ular logic (OML), has been studied since 1936, proposed by Birkhoff and Von Neumann [7] [11].
An orthomodular lattice is related to the closed subspaces of a Hilbert space, which is a state
space of a particle in quantum physics. Instead of these lattices, the Kripke model (possible
world model) of OML can be used, which is called the orthomodular-model (OM-model) [9] [12]
[13] . Intuitively, each possible world of an OM-model expresses a one-dimensional subspace of
a Hilbert space, corresponding to a quantum state.

To treat an agent’s knowledge in quantum mechanics, some studies combine epistemic logic
(EL) with QL. EL is a field of modal logic that treats the proposition of an agent’s knowledge.
In the Kripke model of EL, the indistinguishability of states is used to express knowledge. That
is, if a formula ϕ is true at all states that are indistinguishable from the current state for agent
i, then agent i knows that ϕ is true. Furthermore, dynamic EL (DEL) has been studied to
handle the transitions of knowledge. In general, public announcement logic (PAL) is treated as
the most basic and simple logic in DEL. Basic PAL includes only two types of modal symbols:
the symbols for knowledge Ki of individual agents and the symbol [ ] for public announcements.
[ϕ]ψ can be read as “After a public announcement ϕ, ψ is true.” For more details of DEL,
see [10]. Ref [5] and [6] can be cited as one of the studies of logic that deal with the concept
of knowledge with quantum physics. In these studies, the models which incorporate specific
quantum information concepts were used. Ref [3] and [4] can be cited as studies of knowledge
with more general concepts of quantum physics.

Although knowledge in quantum mechanics has been analyzed in some directions in logic,
abstract model for this field wasn’t much discussed, and deduction systems are not well con-
structed. That is, in general, QL has been developed using two primary methods. The first
method is research using models that can express almost all properties of Hilbert spaces. In
this context, the Hilbert space is often employed as a model. The second method is research
using a simple model that uses only essential parts of a Hilbert space. Studies using orthomod-
ular lattices formed by observational propositions of a Hilbert space belong to this category.
The two methods have their advantages and disadvantages. The former method is suitable for
detailed and diverse analysis of quantum mechanics because it can express almost all proposi-
tions for the states or values of physical quantities in quantum mechanics. However, it has the
disadvantage that logical analysis is difficult because logical symbols and models become quite
complex. In the latter method, although detailed analysis is impossible, essential properties
can be abstractly treated. Further, because simple logical symbols and models are used, it is
easy to perform logical analysis and comparison with other logic.

The former method is extremely common when considering propositions about complex
notions in quantum mechanics such as agent’s knowledge. Especially, to date, there are few
logical analyses of knowledge of multiple agents (with multiple particles) using an abstract and



simple model. One of the reasons is related to a problem using orthomodular lattices. An
orthomodular lattice L can be developed by extracting the concept of the closed subspace of
a Hilbert space H. If the state space of one particle is H, the state space of two particles is
represented by H ⊗ H, where ⊗ denotes the tensor products of spaces. However, intuitively,
the tensor product of lattices L ⊗ L does not correspond to H ⊗ H. The tensor products of
orthomodular lattices cannot represent a linear combination in a vector space. For example,
assume that H is a 2D Hilbert space. Then, c(|0 > ⊗|0 > +|1 > ⊗|1 >) is a 1D closed subspace
of H. However, an element corresponding to this space is not included in L ⊗ L, i.e., L ⊗ L
includes only elements corresponding to the states represented by the multiplication, such as
c|0 > ⊗|0 > or c|1 > ⊗|1 >). Therefore, when handling multiple particles, using the tensor
product of orthomodular lattices does not include essential elements such as entanglement in
the model [1]. This situation is the same even when using the OM-model.

The situation where multiple agents have their particles is common in quantum mechanics.
Therefore, it is meaningful to develop a method that can abstractly discuss propositions in such
situations. In this study, we propose some methods and models to overcome the above problem
and construct and analyze new logic for knowledge of multiple agents or multiple particles in
quantum mechanics.

As a new logic, MDEQL (Multi-particle dynamic epistemic quantum logic) is constructed
and discussed. It is desirable to avoid the models that introduce the concept of certain notions
of Hilbert space concretely. Therefore, for the basic model of MDEQL, OM-model is adopted
the same as OML. By using the OML model and language almost as they are, it becomes
easier to analyze and prove the theorem. Then, we limit models to those that satisfy important
conditions of a tensor product Hilbert space, i.e., intuitively, it is assumed that a model already
corresponds to the tensor product H ⊗Hof Hilbert spaces, and several properties of individual
Hilbert spaces H are represented by additional conditions. This method avoids the above-
mentioned deficiencies in developing a tensor product model from models. Based on these
models, the models of MDEQL are defined by adding modality relations of knowledge.

The language for MDEQL is defined as follows. We index propositional variables into
multiple classes to indicate which particle’s proposition each propositional variable represents.
Such an expression method is often used [2]. Furthermore, for technical reasons, formulas are
defined in two parts. One corresponds to the language of OML and the other corresponds to
formulas for expressing knowledge.

q-formula A ::= pi | ∼ A | A ∧A

g-formula ϕ ::= A | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [A]ϕ

∼ is quantum negation, whereas ¬ is classical negation. Only q-formulas can be placed in
the modal symbol [ ] because only the situation of acquiring information on the quantum states
is discussed.

We construct the deduction system which satisfies the soundness and completeness theorem
with respect to the new models. Sequent calculus style of deduction system is constructed
because it is compatible with OML [16] [17] [18].

As another approach to the problem, we consider another language for multiple particles.We
want to treat the concepts as abstractly and simply as possible; therefore, we avoid symbols
that primarily represent the concepts of quantum mechanics. However, there is a limit to what
can be expressed with ordinary languages of OML itself. For instance, we can confirm that the
following non implications of propositions of individual particles, which are important in multi



particle systems, cannot be expressed. “Suppose that A is a proposition about the i-th space
and B is a proposition about the j-th space. If A ̸= ⊤,A ̸= ⊥, B ̸= ⊤, and B ̸= ⊥, there exists
states x, y such that x |= A, x ̸|= B, y ̸|= A, and y |= B”. That is, in tensor space H3⊗H3 of 3D
Hilbert space H3, consider the following propositions. “The value of a physical quantity (which
is associated with |0 >, |1 >, |2 >) of the first particle is 0.” “The value of a physical quantity
(which is associated with |0 >, |1 >, |2 >) of the second particle is 1.” At |0 > ⊗|0 >∈ H3⊗H3,
the first proposition is true but the second is false; moreover, at |1 > ⊗|1 >, the first proposition
is false but the second proposition is true.

Because of these circumstances, we extend a language that is not as complicated as possible.

Importantly, we use the relationship between OML and modal logic B. B denotes the logic
developed on the frame assuming symmetry and reflectivity in the binary relation of
the Kripke frame. B and OML are associated by McKinsey-Tarski transfer [9]. This
correspondence is the same as that of intuitionistic logic and modal logic S4. As in
the case of S4 and intuitionistic logic, the corresponding modal logic can express a finer
concept via a formula. For example, in both OML and intuitionistic logic, negation can
be decomposed into 2¬ in modal logic, and 2 and ¬(classical negation) can be separately
used. Because it is convenient to handle 2 alone, we develop the language and models
based on B rather than OML.

A quantification symbol ∀pi is used for propositional variables. That is, ∀pi(ϕ) is added to
the definition of formulas. This is necessary to express properties such as entanglement
concisely. This conceptually belongs to the category of the second-order propositional
logic; however, only the quantification of propositional variables is employed, and not the
quantification of the entire formula. Therefore, intuitively, the complex problems in the
second-order propositional logic do not occur and can be handled fairly simply.

Using this language has the disadvantage of being a bit more complicated than the previous
language, but it has the advantage of increasing the expressiveness of the model’s conditions.
In this study, the correspondences between various formulas with the above new definition and
model conditions for a Hilbert space are proven. Some examples are shown below.(Ai, Bi, . . .
represent formulas which includes only pi, qi, ri, . . .as propositional variables).

For all x, y ∈W , there exists z ∈W such that xRz and zRy.

22A→ 2nA (for each n ∈ N)

Each propositional variable represents a one-dimensional subspace of each Hilbert space.

(pi ∧Ai) → 22(pi → Ai)

Non-implications of propositions of an individual particle.

(¬22Ai ∧ ¬22¬Ai ∧ ¬22Bj ∧ ¬22¬Bj) → 33(¬Ai ∧Bj) ∧33(Ai ∧ ¬Bj) (i ̸= j)

”Particle i and j are entangled”

Ei,j = ∀pi(¬pi) ∧ ∀qj(¬qj) ∧ ∀pi∃qj [pi]qj ∧ ∀qj∃pi[ql]pi

The contributions of this study are the following.

1. New abstract logical frameworks and models for dealing with propositions about multiple
agents and quantum particles are proposed.



2. A deduction system for new models that holds soundness and completeness is constructed.

3. We show that important conditions on models can be expressed with a little development
of the language, and prove that these formulas are valid if a model satisfies specific
conditions.
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