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Abstract

A logic is said to admit an equational completeness theorem when it can be interpreted
into the equational consequence relative to a class of algebras. We characterize logics
admitting an equational completeness theorem that have at least one tautology. As a
consequence, a protoalgebraic logic admits an equational completeness theorem precisely
when it has a matrix semantics validating a nontrivial equation. While the problem of
determining whether a logic admits an equational completeness theorem is shown to be
decidable both for logics presented by a finite set of finite matrices and for locally tabular
logics presented by a finite Hilbert calculus, it becomes undecidable for arbitrary logics
presented by finite Hilbert calculi.

1 Introduction

By a logic [11] we understand a consequence relation ` on the set of formulas Fm (built up
with a denumerable set of variables) of some algebraic language that, moreover, is substitution
invariant in the sense that for every Γ ∪ {ϕ} ⊆ Fm and every substitution σ,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ).

A logic ` admits an equational (soundness and) completeness theorem if there are a set of
equations τ (x) and a class of similar algebras K such that for every set of formulas Γ ∪ {ϕ},

Γ ` ϕ⇐⇒ for every A ∈ K and ~a ∈ A,
if A � τ (γA(~a)) for every γ ∈ Γ, then A � τ (ϕA(~a)).

In this case, K is said to be an algebraic semantics for ` (or a τ -algebraic semantics for
`). Accordingly, a logic admits an equational completeness theorem precisely when it has an
algebras semantics.

For instance, the well-known equational completeness theorem for the classical propositional
calculus CPC states that for every set of formulas Γ ∪ {ϕ},

Γ `CPC ϕ⇐⇒ for every Boolean algebra A and ~a ∈ A,
if A � γA(~a) ≈ 1 for every γ ∈ Γ, then A � ϕA(~a) ≈ 1.

Thus, the variety of Boolean algebras is an algebraic semantic for CPC.

The notion of an algebraic semantics was introduced by Blok and Pigozzi in the study of
algebraizable logics [5], i.e., logics that are equivalent to equational consequences in the sense
of [1, 2]. From this point of view, a logic has a τ -algebraic semantics K when it satisfies one
half of this equivalence, namely it can be interpreted into the equational consequence relative
to K by translating formulas into equations by means of the set of equations τ (x).
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Intrinsic characterizations of logics with an algebraic semantics have proved elusive, partly
because equational completeness theorems can take unexpected forms. For instance, in view of
Glivenko’s theorem [12], for every set of formulas Γ ∪ {ϕ} of CPC,

Γ `CPC ϕ⇐⇒ {¬¬γ : γ ∈ Γ} `IPC ¬¬ϕ,

where IPC stands for the intuitionistic propositional calculus. Since Heyting algebras form an
{x ≈ 1}-algebraic semantics for IPC, one obtains

Γ `CPC ϕ⇐⇒ for every Heyting algebra A and ~a ∈ A,
if A � ¬¬γA(~a) ≈ 1 for every γ ∈ Γ, then A � ¬¬ϕA(~a) ≈ 1.

Consequently, the variety of Heyting algebras is also an algebraic semantics for CPC, although
certainly not the intended one [7, Prop. 2.6].

The fragility of the property of having an algebraic semantics was confirmed by Blok and
Rebagliato, who showed that every logic possessing an idempotent connective admits an alge-
braic semantics [7, Thms. 3.1]. On the other hand, the existence of logics that do not possess
any algebraic semantics is known since [3]. It is therefore sensible to wonder whether an intelli-
gible characterization of logics with an algebraic semantics could possibly be obtained [16]. In
this talk we provide a positive answer to this question for a wide family of logics.

2 Main results

We shall describe large families of logics with an algebraic semantics. To this end, it is convenient
to isolate some limits cases: a logic is said to be graph-based when its language comprises only
constant symbols and, possibly, a single unary connective. Needless to say, most interesting
logics in the literature are not graph-based.

To tackle the case of logics that are not graph-based, we first introduce a general method
for constructing algebraic semantics based on a universal algebraic trick known as Maltsev’s
Lemma, which provides a description of congruence generation in arbitrary algebras. More
precisely, we establish the following, where V ar(ϕ) denotes the set of variables occurring in the
formula ϕ.

Theorem 1. Let ` be a logic that is not graph-based. If ` has a matrix semantics validating a
nontrivial equation ϕ ≈ ψ such that V ar(ϕ)∪V ar(ψ) = {x}, then ` has an algebraic semantics.

A logic ` is said to be locally tabular if it has a matrix semantics whose algebraic reducts
generate a locally finite variety.

Corollary 2. If a logic is locally tabular and not graph-based, then it has an algebraic semantics.

Another application of Theorem 1 consists in a description of logics with theorems possessing
an algebraic semantics. Recall that a formula ϕ is said to be a theorem of a logic ` when ∅ ` ϕ.
Furthermore, a logic ` is called assertional [15] when it has a matrix semantics M for which
there is a unary formula γ(x) such that for every 〈A, F 〉 ∈ M, the term-function γA : A→ A is
a constant function and its unique value a is such that F = {a}. Intermediate logics, as well as
global consequences [13] of normal modal logics, are known to be assertional.

Theorem 3. Let ` be a nontrivial logic with a theorem ϕ such that V ar(ϕ) 6= ∅. Then
` has an algebraic semantics if and only if either ` is assertional and graph-based or it is
not graph-based and has a matrix semantics validating a nontrivial equation ε ≈ δ such that
V ar(ε) ∪ V ar(δ) = {x}.
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A logic ` is said to be protoalgebraic [4, 8, 9, 10] if there exists a set of formulas ∆(x, y)
such that ∅ ` ∆(x, x) and x,∆(x, y) ` y. Nontrivial protoalgebraic logics are not graph-based
and possess at least a theorem ϕ such that V ar(ϕ) 6= ∅. This makes them amenable to the
above theorem which, moreover, can be improved as follows:

Corollary 4. A nontrivial protoalgebraic logic has an algebraic semantics if and only if it has
a matrix semantics validating a nontrivial equation.

In view of the above result, almost all reasonable protoalgebraic logics have an algebraic
semantics. It is therefore natural to wonder whether they have also a natural algebraic seman-
tics. There is, however, evidence against this conjecture, since, while the local consequence [13]
of the normal modal logic K (resp. K4 and S4) has an ad hoc algebraic semantics in view
of the above corollary, it does not possess one based on the variety of modal algebras (resp.
K4-algebras and interior algebras).

We conclude our journey among equational completeness theorems with some computational
observations:

Theorem 5. The following holds:

(i) The problem of determining whether logics presented by a finite set of finite matrices in a
finite language have an algebraic semantics is decidable;

(ii) The problem of determining whether locally tabular logics presented by a finite set of finite
rules in a finite language have an algebraic semantics is decidable;

(iii) The problem of determining whether logics presented by a finite set of finite rules in a
finite language have an algebraic semantics is undecidable.

The last item of the above result is established by means of a reduction to the classical halting
problem for Turing machines [17]. This talk is based on the paper [14].
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