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In this talk we investigate a recent semantics for modal and intermediate logics using poly-
hedra. The starting point is that the collection of open subpolyhedra of a compact polyhedron
(of any dimension) forms a Heyting algebra [1, 5, 7]. Precursors of this work are [2], [4] and [3].

Let P be an n-dimensional compact polyhedron. By an open subpolyhedron of P we mean a
subset of P whose complementary subset in P is a compact polyhedron. Under inclusion order,
the poset Sub(P) of all open subpolyhedra of P is a Heyting algebra [5]. For a propositional
formula ¢, we say that P |= ¢ if Sub(P) = ¢ (i.e., ¢ is valid in the Heyting algebra Sub(P)).
For a class P of polyhedra we write P |= ¢ if P |= ¢ for each P € P.

In this abstract, we think of posets as both Kripke frames and topological spaces given by the
Alexandrov topology of upwards-closed subsets. An important connector between polyhedra
and posets is the notion of a polyhedral map. Let P be a polyhedron and F be a poset.
A function f: P — F is a polyhedral map if the preimage of any open set in F' is an open
subpolyhedron of P.

Lemma 1. If f: P — F is polyhedral and open, then the logic of P is contained in the logic of
F.

The purpose of this talk is to give a characterisation of the logic of conver polyhedra. We
focus on the intermediate logic side in this abstract; analogous results hold for modal logic. Our
logic PL is axiomatised by Jankov-Fine formulas. To every finite rooted poset (), we associate
a formula x(Q), the Jankov-Fine formula of Q (also called its Jankov-De Jongh formula). This
has the property that F' | x(Q) if and only if there is no surjective p-morphism f from an
open subset U C F onto @ [6, §9]. Our logic PL is then axiomatised by adding to intuitionistic
propositional calculus the Jankov-Fine formulas of two simple posets:

PL = IPC+ x(2°) + x(&p)
Theorem 2. PL is the logic of all convex polyhedra.

Moreover, we obtain the more fine-grained characterisation of the logic of convex polyhedra
of dimension at most n by extending the logic of bounded depth n [6, §9]. Let:

PL, = BD,, + x(%%°) + x(&p)



Figure 1: An example sawed tree
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Figure 2: An example of convex geometric realisation

Theorem 3. PL,, is the logic of all convex polyhedra of dimension at most n.

We prove Theorem 3 first. This splits into the soundness and completeness direction. For
the soundness direction, we show using a geometric argument that the logic that every convex
n-dimensional polyhedron is the same, and that PL,, is valid on the simplest example of these:
the n-simplex.

The completeness direction splits into two steps. In the first step, we show that any poset
F validating PL,, is the p-morphic image of a frame which has a special form, called a sawed
tree. This consists of a planar tree of uniform height with a ‘saw structure’ on top. See Figure 1
for an example. In the second step, we show how to realise any sawed tree of height n as a
convex polyhedra. This convex polyhedron comes equipped with an open polyhedral map onto
the original sawed tree. By Lemma 1, this means that the logic of the convex polyhedron is
contained in the logic of F. See Figure 2 for an example of this process of geometric realisation.

Finally, with Theorem 3 established, we make use of a result of Zakharyaschev, which entails
that PL is the logic of its finite frames (i.e. it has the finite model property) [8, Corollary 0.11].
This then completes the proof of Theorem 2.
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