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A Kleene algebra [6] is an idempotent semiring (K, ·,+, 1, 0), and hence a semilattice with
partial order x ≤ y ⇐⇒ x+ y = y, which is expanded with an operation ∗ : K → K such that

1 + xx∗ ≤ x∗ y + xz ≤ z =⇒ x∗y ≤ z

1 + x∗x ≤ x∗ y + zx ≤ z =⇒ yx∗ ≤ z.

A standard example of a Kleene algebra is a relational Kleene algebra where K is a set of binary
relations over some set S, · is relational composition, + is set union, ∗ is reflexive transitive
closure, 1 is identity on S and 0 is the empty set; another standard example is the Kleene
algebra of regular languages over some finite alphabet.

A Kleene algebra with tests K = (K,B, ·,+,∗ , 1, 0,̄ ), a.k.a. a KAT, is a two-sorted structure
where (K, ·,+,∗ , 1, 0) is a Kleene algebra, and B ⊆ K with (B, ·,+,̄ , 1, 0) a Boolean algebra [7].
The inference rules of Propositional Hoare logic (PHL) can be derived in (the equational theory
of) KAT [8], i.e., it is a simple algebraic framework for verifying properties of propositional while
programs. KAT is PSPACE-complete [2], has computationally attractive fragments [12], and
its extensions have been applied beyond while programs, for instance in network programming
languages [1].

Every Kleene algebra is a KAT; take B = {0, 1} and define 0̄ = 1 and 1̄ = 0. A standard
example of a KAT is a relational Kleene algebra (rKAT ) expanded with a Boolean subalgebra
of the negative cone, i.e. the elements x ≤ 1, which in the relational case are subsets of the
identity relation. The equational theories of KAT and rKAT coincide [9].

For various reasons, a one-sorted alternative to KAT may be desirable. For instance, “one-
sorted domain semirings are easier to formalise in interactive proof assistants and apply in
program verification and correctness” [4, p. 576]. A one-sorted alternative called Kleene algebra
with antidomain was introduced in [3].

A domain operation [3] on a semiring A is any d : K → K such that

d(x) ≤ 1 x ≤ d(x)x

d(0) = 0 d(x + y) = d(x) + d(y)

d(xy) = d(xd(y)). (1)

On a relational Kleene algebra one can define the relational domain operation d as follows

d(R) := {(s, s) | ∃u.(s, u) ∈ R}.

Then d satisfies the domain axioms above, and in fact the equational theory of domain semirings
coincide with the equational theory of relation algebras in the signature (·,+, 0, 1, d) [10], but
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not the quasi-equation theory, and not necessarily in the signature which includes the Kleene-∗.
Informally, d(R) represents the set of states in which the program associated with R has a
terminating computation.

If K is a Kleene algebra with domain operation d, then d(K) := {y | ∃x.y = d(x)} is a
bounded distributive lattice contained in the negative cone in which · is the meet operation
[3]. (It is an open problem to determine under which conditions d(K) is a Heyting algebra.)
In order to obtain a Boolean algebra from the distributive lattice d(K), one has to make sure
that each test d(x) is complemented in d(K), that is, for each d(x) there is y ∈ d(K) such that
d(x)y = 0 and d(x) + y = 1. An elegant solution to this problem presented in [3] consists in
expanding Kleene algebras with a single unary operation a (antidomain) that allows to define
a domain operation d and has properties entailing that a(x) is a complement of d(x).

A Kleene algebra with antidomain, KAA, is a Kleene algebra expanded with an operation
a : K → K such that

a(x)x = 0

a(xy) ≤ a(x a(a(y))

a(x) + a(a(x)) = 1

If one defines d(x) := a(a(x)), then d is a domain operation, and a(x) is a complement of
d(x), so that d(K) = (d(K), ·,+, 1, 0) is a Boolean algebra [3]. On a relational Kleene algebra
a(R) = {(w,w) | ¬∃v. (w, v) ∈ R)} is an antidomain operation and a(a(R)) = d(R).

It is known that KAA is decidable in EXPTIME [11], and KAA can be used to create modal
operators that invert the sequential composition rule of PHL. Such inversions are derivable from
KAA but not KAT [13]. However, KAA has certain features that may be undesirable depending
on the application. First, if K is a KAA, d(K) is necessarily the maximal Boolean subalgebra of
the negative cone of K; see Thm. 8.5 in [3]. In a sense, then, every “proposition” is considered
a test, contrary to some of the intuitions expressed in [7]. These intuitions also collide with the
approach of taking KAT as KA with a Boolean negative cone [4, 5]. Second, not every Kleene
algebra expands to a KAA, not even every finite one; see Prop. 5.3 in [3]. This is in contrast
to the fact that every Kleene algebra expands to a KAT. This feature is caused by (1) (called
locality) and the authors of [3] express interest in variants of d not satisfying (1).

In this talk we generalize KAA to a framework we’ll call one-sorted Kleene algebra with
tests. A KAt is a Kleene algebra expanded by two unary operations t and t′ such that

t(0) = 0 t(1) = 1

t(t(x) + t(y)) = t(x) + t(y) t(t(x)t(y)) = t(x) t(y)

t(x)t(x) = t(x) t(x) ≤ 1

1 ≤ t′(t(x)) + t(x) t′(t(x)) t(x) ≤ 0

t′(t(x)) = t(t′(t(x))).

Already KAt has most of the desired features of KAA: every KAt contains a Boolean subalgebra
of tests (obtained as the image of t, where t′ is complementation on test elements), and the
equational theory of KAT embeds into the equational theory of KAt. In addition, every Kleene
algebra expands into a KAt (ensuring that it is a conservative expansion), and the subalgebra of
tests in KAt is not necessarily the maximal Boolean subalgebra of the negative cone. We then
consider various extensions of KAt with axioms known from KAA to show which properties
of the domain operator are still consistent with the desired features of KAt. For example, the
equational theory of KAT embeds into a class K of KAt’s provided one of the following sufficient



conditions hold: (1) every KAT ‘expands’ to a member of K, or (the more restrictive) (2) every
rKAT ‘expands’ to a member of K. We say that a KAT K = (K,B, ·,+,∗ , 1, 0, )̄ expands into
a KAt A = (K, ·,+, ∗, 1, 0, t, t′) iff B = t(K). The variety of KAt’s satisfy (1) while the variety
of KAA’s only satisfies (2). In addition, we consider a variant of the KAt framework where test
complementation is defined using a residual of Kleene algebra multiplication.
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