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Keeping track of relations between objects or events is essential in modeling processes and in veri-
fying their security and privacy properties. For this purpose, relations are encoded by means of formulas
in order to use proof theoretical results to design verification tools.

The “happens before” relation [12], providing a partial order between events to express when an
event precede another, is crucial when studying distributed systems. Its restriction to series-parallel
orders have received a special attention [16, 9, 5], giving rise to a family of non-commutative logics,
including pomset logic [14] and BV [10].
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Figure 1: Three partial orders represented by their Hessse diagrams.

However, relations admitting no series-parallel decomposition [7] cannot be directly treated by the
same proof theoretical methods since they require the use of encodings, which create a gap between
meaning (semantics) and formal representation (syntax). In fact, the natural correspondence between
graphs and formulas provided by the operations below [14, 10] fails as soon as simple topological
conditions are not met in the graph representing a relation.

Propositional atom a Disjunction of A and B A before B Conjunction of A and B
(single vertex graph) (disjoint union) (directed join) (join)
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[[a]] [[A]] ` [[B]] [[A]] ◁ [[B]] [[A]] ⊗ [[B]]

(1)

By means of example, consider four processes a, b, c and d where communication between some
processes is forbidden because of certain conflicts of interest [6]. Thus, the following pairs cannot
communicate: a and b, a and d, and c and d, as shown in the graph below in the center where the edges
represent the impossibility of communication between processes.
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(a ` c)⊗(b ` d) no formula (a⊗ b) ` (c⊗ d)

(2)



Another example is given by the causality patterns for n-queues, where n is the bound on the number
of elements that can be enqueued. These patterns can be represented by the graphs below, where nodes
labelled by ex and dx respectively represent the enqueuing and dequeuing of the element x (we only
represent the first three elements a, b, and c inserted into the queue), and edges represent the “happens
before” relation. Among these graphs, only Q1 and Q2 are series-parallel graphs and can be directly
encoded as formulas. In fact, the graph Q3, and more in general the causality patterns for n-queues with
n > 2, cannot.
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ea ◁ da ◁ eb ◁ db ◁ ec ◁ dc ea ◁ (da ` eb) ◁ (db ` ec) ◁ dc no formula

(3)

This contribution, based on joint works with Straßburger, Horne and Mauw [3, 2, 1], is an introduc-
tion on the proof theory of proof systems operating on graphs instead of formulas. This line of work
aims at defining proof theoretical tools able to directly handle non series-parallel relations as primitive
objects of a logic.

In order to design such systems, we use results on graph modular decomposition [13] allowing
us to associate abstract syntax trees to graphs, and therefore to generalize the notions of connective
and subformula which are fundamental to express desirable proof theoretical notions. After defining a
(linear) implication⊸, we define proof systems meeting certain basic desiderata such as the derivability
of the general identity (G ⊸ G is provable for any graph G), the transitivity of implication (if G ⊸ H
and H ⊸ K are provable, then G ⊸ K also is), and analyticity (if G is provable, then G admits a proof
containing only its “subformulas” of G) . To this end, we use the open deduction [11] proof formalism
(see Figure 2 for an example) based on deep inference [4] since, as observed for the non-commutative
logic BV [10, 15], it is not possible to define an analytic sequent calculus for these logics.
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Figure 2: A proof of the graph Q3 ⊸ Q2 in the system GVsl serving as proof that 3-queues can
simulate behaviours of 2-queues. The rule sl slices a directed graph into a “before” and an “after” part
by introducing additional directed edges. The rule mq merges the modules of two copies of the same
directed graph.

We present the system GS, handling undirected graphs as the ones in Equation 2, and the systems
GV and GVsl handling graphs with both directed and undirected edges. The system GS defines a conser-



vative extension of the multiplicative linear logic with mix [8], while the systems GV and GVsl defines
conservative extensions of both the graphical logic defined by GS and the non-commutative logic BV.
We present the technique developed to prove these results, including the challenges we encountered in
proving the analogous of cut-elimination for deep inference systems in the graphical setting. We con-
clude by recalling related results in proof theory and concurrency theory, their possible applications to
verification thanks to their more expressive power, and giving an overview on the the ongoing researches
on the topic.
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