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Abstract

We initiate the study of finite characterizations and exact learnability of modal lan-
guages. A finite characterization of a modal formula w.r.t. a set of formulas is a finite
set of finite models (labelled either positive or negative) which distinguishes this formula
from every other formula from that set. A modal language L is finitely characterizable if
every L-formula has a finite characterization w.r.t. L. This definition can be applied not
only to the basic modal logic K, but to arbitrary normal modal logics. We show that a
normal modal logic is finitely characterizable (for the full modal language) iff it is locally
tabular. This shows that finite characterizations with respect to the full modal language
are rare, and hence motivates the study of finite characterizations for fragments of the
full modal language. Our main result is that the positive modal language without the
truth-constants ⊤ and ⊥ is finitely characterizable. Moreover, we show that this result is
essentially optimal: finite characterizations no longer exist when the language is extended
with the truth constant ⊥ or with all but very limited forms of negation.

1 Introduction

We study the existence of finite characterizations of modal formulas. A finite characterization
of a formula φ w.r.t. a set of formulas L is a finite set of finite models that distinguishes φ from
every other formula in L. Such finite characterizations are a precondition for the existence
of exact learning algorithms for ‘reverse-engineering’ a hidden goal formula from examples in
Angluin’s model of exact learning with membership queries [1]. Our interest in exact learnability
is motivated by applications in description logic. But besides learnability, the generation of
examples consistent with a given formula can be used for e.g. query visualization and debugging
(see e.g. [7] for a more detailed discussion of such applications). The exhaustive nature of the
examples is of additional value, as they essentially display all ‘ways’ in which the query can be
satisfied or falsified.

In this extended abstract, we only provide a high level description of our results and proof
techniques. Detailed proofs can be found here: https://bit.ly/3LCtmQt.

2 Preliminaries

Given a set of propositional variables Prop and a set of connectives C ⊆ {∧,∨,3,2,⊤,⊥}, let
LC [Prop] (or simply LC when Prop is clear from context) denote the collection of all modal
formulas generated from literals (i.e. positive or negated propositional variables) from Prop,
using the connectives in C. Note that all such formulas are in negation normal form, i.e.
negations may only occur in front of propositional variables. Thus, L2,3,∧,∨,⊤,⊥[Prop] is the
set of all modal formulas with variables in Prop in negation normal form. Further, for any modal
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fragment L as defined above, L+ and L− denote the set of positive, respectively negative L
formulas, where a formula φ is positive if no p ∈ var(φ) occurs negated, and negative if all
p ∈ var(φ) occur only negated. We will use modal language to refer to any such fragment. By
the full modal language we will mean L2,3,∧,∨,⊤,⊥[Prop].

For a modal formula φ, let var(φ) denote the set of variables occurring in φ and d(φ) its
modal depth, i.e. the nesting depth of 3’s and 2’s in φ.

A normal modal logic is a collection of modal formulas containing all instances of the K-
axiom 2(φ → ψ) → (2φ → 2ψ) and closed under uniform substitution, modus ponens and
generalisation.

A (Kripke) model is a triple M = (dom(M), R, v) where dom(M) is the a set of ‘possible
worlds’, R ⊆ dom(M) × dom(M) a binary ‘accessibility’ relation and a valuation V : Prop →
P(W ). A pointed model is a pair M, s of a Kripke model M together with a state s ∈ dom(M).
A (Kripke) frame is a model without its valuation.

3 Finite Characterizations

First, we define what a finite characterization means in the context of modal logic.

Definition 1. (Finite characterizations) A finite characterization of a formula φ ∈ L[Prop]
w.r.t. L[Prop] is a pair of finite sets of finite pointed models E = (E+, E−) such that (i) φ
fits (E+, E−), i.e. E, e |= φ for all (E, e) ∈ E+ and E, e ̸|= φ for all (E, e) ∈ E− and (ii) φ is
the only formula in L[Prop] which fits (E+, E−), i.e. if ψ ∈ L[Prop] satisfies condition (i) then
φ ≡ ψ. A modal language L is finitely characterizable if for every finite set of propositional
variables Prop, every φ ∈ L[Prop] has a finite characterization w.r.t. L[Prop].

Thus if (E+, E−) is a finite characterization of a formula φ ∈ L[Prop] w.r.t. L[Prop], then
for every ψ ∈ L[Prop] with φ ̸≡ ψ, E+ contains a finite model of φ∧¬ψ or E− contains a finite
model of ¬φ ∧ ψ.

For example, the formula p ∧ q has a finite characterization w.r.t. L+
∧ [Prop] with Prop =

{p, q, r}, namely ({·p,q}, {·p, ·q}), where “·P ” is the single point model where all p ∈ P are true.
Our motivation for studying finite characterizations, comes from computational learning

theory. Specifically, finite characterizability is a necessary precondition for exact learnability
with membership queries in Dana Angluin’s interactive model of exact learning [1]. In our
context, exact learnability with membership corresponds to a setting in which the learner has
to identify a formula by asking question to an oracle, where each question is of the form “is
the formula true or false in pointed model (M,w)?” This can also be viewed as a ‘reverse
engineering’ task, where a formula has to be identified based on its behaviour on only a finite
set of models. Exact learnability has recently gained a renewed interest in the description logic
literature. We comment more on the connection with description logic in Section 4.

Our starting observation is:

Theorem 1. The full modal language is not finitely characterizable.

Proof. It suffices to give one counterexample, so suppose that e.g. φ = 2⊥ had a finite
characterization (E+, E−) w.r.t. the full modal language. Observe that for each n, M, s |=
2n+1⊥ ∧ 3n⊤ iff height(M, s) = n, where the height of a pointed model M, s is the length
of the longest path in M starting at s, or ∞ if there is no finite upper bound. Every finite
characterization can only contain pointed models up to some bounded height < n (by choice of
n) or must contain some model of infinite (∞) height. In either case, it follows that no negative



example (E, e) ∈ E− satisfies 2n+1⊥ ∧ 3n⊤. Hence for large enough n, φ ∨ (2n+1⊥ ∧ 3n⊤)
also fits (E+, E−), yet is clearly not equivalent to φ.

In fact, by a variation of the same argument, we can show that no modal formula has a
finite characterization w.r.t. the full modal language. Theorem 1 raises two questions, namely:
do finite characterizations exist in other modal logics than K, and which fragments of modal
logic admit finite characterizations. We address each of these two questions next.

We first generalize Definition 1 as follows (whereby Theorem 1 becomes a result about the
special case of the basic normal modal logic K): a finite characterization of a modal formula
φ with var(φ) ⊆ Prop w.r.t. a normal modal logic L is a finite set (E+, E−) of finite pointed
models based on L frames such that (i) φ fits (E+, E−) and (ii) if ψ with var(ψ) ⊆ Prop fits
(E+, E−) then φ ≡L ψ, where φ ≡L ψ iff φ ↔ ψ ∈ L. We say that a normal modal logic L
is finitely characterizable if for every finite set Prop, every modal φ with var(φ) ⊆ Prop has a
finite characterization w.r.t. L. We can give a complete characterization over which modally
definable frame classes the full modal language is finitely characterizable.

It turns out that only very few normal modal logics are uniquely characterizable. A normal
modal logic L is locally tabular if for every finite set Prop of propositional variables, there are
only finitely many formulas φ with var(φ) ⊆ Prop up to L-equivalence.

Theorem 2. A normal modal logic L is finitely characterizable iff it is locally tabular.

In other words the full modal language is only finitely characterizable in the degenerate
case where there are only finitely many formulas to distinguish from (up to equivalence). This
result motivates the investigation of finite characterizability for modal fragments. Specifically,
inspired by previous work on finite characterizability of the positive existential fragment of first
order logic [2], we consider positive fragments of the full modal language.

Note that, in the remainder of this section, we only consider again the modal logic K.
The proof of Theorem 1 can easily be modified to show the following:1

Theorem 3. L+
2,3,∧,∨,⊥ is not finitely characterizable.

On the other hand, based on results in [2], we can show that:

Theorem 4 (From [2]). L+
3,∧ is finitely characterizable. Indeed, given a formula in L+

3,∧, we
can construct a finite characterization in polynomial time.

More precisely, it was shown in [2] that finite characterizations can be constructed in poly-
nomial time for “c-acyclic conjunctive queries”, a fragment of first-order logic that includes the
standard translations of L+

3,∧-formulas.

Our main result here extends Theorem 4 by showing that L+
2,3,∧,∨ is finitely characterizable.

Theorem 5. L+
2,3,∧,∨ is finitely characterizable.

Theorem 3 above shows that this is essentially optimal; we leave open the question whether
the fragment without ⊥ but with ⊤ is finitely characterizable.

In the rest of this section, we outline the ideas behind the proof of Theorem 5. A key ingre-
dient is the novel notion of weak simulation, which we obtain by weakening the back and forth
clauses of the simulations studied in [3]. Simulations are themselves a weakening of bisimula-
tions. It was shown in [3] that L+

2,3,∧,∨,⊤,⊥ is characterized by preservation under simulations.

1It suffices to replace ⊤ by a fresh propositional variable q in the proof of Theorem 1.



A weak simulation between two pointed models (M, s), (M ′, s′) is a relation Z ⊆ M ×M ′

such that for all (t, t′) ∈ Z:

(atom) M, s |= p implies M ′, s′ |= p

(forth′) If RM tu, eitherM,u↔ ⟳∅ or there is a u′ with RM ′
t′u′ and (u, u′) ∈ Z

(back′) If RM ′
t′u′, eitherM ′, u′ ↔ ⟳Prop or there is a u with RM tu and (u, u′) ∈ Z

where ⟳∅ denotes the single reflexive point with empty valuation, ⟳Prop denotes the single
reflexive point with full valuation and ↔ denotes bisimulation. If such Z exists, we say that
M ′, s′ weakly simulates M, s. The crucial weakening is witnessed by the fact that the deadlock
model, i.e. the single point with no successors, weakly simulates ⟳∅, but does not simulate it.

Because weak simulations are closed under relational composition, which is associative, the
collection of pointed models and weak simulations forms a category with ⟳∅ and ⟳Prop as weak
initial and final objects, respectively.

Theorem 6. L+
2,3,∧,∨ is preserved under weak simulations.

In high level terms, the proof of Theorem 5 proceeds as follows: given a formula φ ∈ L+
2,3,∧,∨,

we show how to construct positive and negative examples (E+
φ , E

−
φ ) that φ fits and which form

a duality (a generalisation of the notion of splittings in lattice theory [6]) in the category of
pointed models and weak simulations. By this, we mean that every pointed model either weakly
simulates some positive example in E+ or is weakly simulated by some negative example in
E−. More specifically, we show that every model of φ weakly simulates some positive example
in E+ and that every non-model of φ is weakly simulated by some negative example in E−.
It follows by Theorem 6 that any L+

2,3,∧,∨-formula that fits E+ is implied by φ, while every
formula that fits E− implies φ. Combined, this shows that (E+

φ , E
−
φ ) is a finite characterization

of φ w.r.t. L+
2,3,∧,∨.

This proof technique was inspired by results in [7], which established a similar connection be-
tween finite characterizations for GAV schema mappings (or, equivalently, unions of conjunctive
queries) and dualities in the category of finite structures and homomorphisms.

See https://bit.ly/3LCtmQt for more details and further results.

4 Discussion

Our construction, although effective, is non-elementary. For this reason, we cannot obtain from
it an efficient exact learning algorithm. On the other hand, it follows from the results in [2]
that L+

3,∧-formulas are polynomial-time exactly learnable with membership queries. We leave
it as future work to prove matching lower bounds for our construction, and to understand
more precisely which modal fragments admit polynomial-sized finite characterizations and/or
are polynomial-time exactly learnable with membership queries.

Variants of Theorem 5 can be obtained for L−
2,3,∧,∨ and, more generally, for uniform modal

formulas, where certain propositional variables only occur positive and others only negatively.
As we mentioned, our immediate motivation for this work came from a renewed interest in

exact learnability in description logic. In particular, in [2], exact learnability with membership
queries is studied for the description logic ELI. These results are extended to results on
learning ELI concepts under DL-Lite ontologies (i.e. background theory) [4] and temporal
instance queries formulated in fragments of linear time logic LTL [5]. We expect that our proof
of Theorem 5 can be lifted to the poly-modal case without major changes, with implications
for some description logics under the closed-world assumption.
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