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Providing good proof systems for probabilistic logics is a long standing problem in proof
theory and logics for uncertainty. This work is a part of larger research project aimed at provid-
ing good proof systems for probabilistic logics and other logics of uncertainty in a uniform and
modular way. In this project, we use a generalization of display calculi introduced by Belnap.
This choice is motivated by the following two reasons. Firstly, display calculi are by design
modular, insofar they implement a neat division of labour between logical rules (introducing
the connectives and relying on their minimal order-theoretic properties) and so-called structural
rules (capturing the specific features of the logic under consideration). Secondly, they provide
a framework in which cut-elimination, a crucial property of proof systems, can be proved in a
principled way as an application of a general meta-theorem.

Logics for reasoning about probability have been extensively studied. In 1990, [4] introduces
a logic to reason about probabilities and its Hilbert style calculus that contains three types of
axioms and rules: the ones that govern the arithmetical part, i.e., the reasoning about inequal-
ities; the ones that axiomatise probabilities; and the rules and axioms of classical propositional
logic. In [13] and later in [12], probabilities are axiomatized via fuzzy logics, in a language with
two sorts: a sort for expressing Boolean statements and a sort for statements about probabili-
ties. This two-layer approach for probabilistic logics is further developed in [6, 5, 7]. Finally, in
2020, [1] utilises a two-layered modal logic to formalise reasoning about probabilities. The pro-
posed calculus consists of three parts: the rules and axioms of the logic of events (i.e. classical
logic) or ‘inner logic’; the ‘outer logic’ that formalises reasoning with probabilities; and finally,
the modalities that transform events into probabilistic statements.

The main difficulties in applying the theory of display calculi to the probability logics lies in
the handling of the operators + and − (i.e. the truncated sum and difference, respectively) and
their interaction with the probability operator P in well-known axiomatization of probability.
Here we rely on an ongoing work, where we introduce a generalization of standard display
calculi to capture  Lukasewicz logic and, in particular, to deal with the axiom

((A → B) → B) → (A ∨B) (1)

which can be equivalently written as

((A−B) + B) → (A ∨B)

and which is closely connected to the probability axiom

((P (A) − P (A ∧B)) + P (B)) → P (A ∨B).

 Lukasiewicz logic is one of the most well-know and thoroughly studied mathematical fuzzy
logics (see [14] for an overview of proof theoretic literature on mathematical fuzzy logics).



Nonetheless, the distinctive axiom of  Lukasiewicz logic 1 is not analytic-inductive [11] (not
even canonical) and it represents the main obstacle to a uniform and modular proof-theoretic
treatment. Pivoting on an algebraic analysis of  Lukasiewicz logic, we introduce a refinement of
the general theory of display sequent calculi and algorithmic rule generation (as developed for
instance in [8] and [11], respectively) aiming at overcoming this problem. In particular, we rely
on the fact that  Lukasiewicz operators are not only normal operators, but also regular operators
in the following sense (in [10] and [9] such operators are called ‘double quasioperators’):

normal binary diamond normal binary box

A⊙ 0 = 0 = 0⊙A A⊕ 1 = 1 = 1⊕A
(A ∨B) ⊙ C = (A⊙ C) ∨ (B ⊙ C) (A ∧B) ⊕ C = (A⊕ C) ∧ (B ⊕ C)
C ⊙ (A ∨B) = (C ⊙A) ∨ (C ⊙B) C ⊕ (A ∧B) = (C ⊕A) ∧ (C ⊕B)

A⊖ 1 = 0 = 0⊖A A → 1 = 1 = 0 → A
(A ∨B) ⊖ C = (A⊖ C) ∨ (B ⊖ C) (A ∨B) → C = (A → C) ∧ (B → C)
C ⊖ (A ∧B) = (C ⊖A) ∨ (C ⊖B) C → (A ∧B) = (C → A) ∧ (C → B)

regular binary diamond regular binary box

(A ∨B) ⊕ C = (A⊕ C) ∨ (B ⊕ C) (A ∧B) ⊙ C = (A⊙ C) ∧ (B ⊙ C)
C ⊕ (A ∨B) = (C ⊕A) ∨ (C ⊕B) C ⊙ (A ∧B) = (C ⊙A) ∧ (C ⊙B)

(A ∧B) → C = (A → C) ∨ (B → C) (A ∧B) ⊖ C = (A⊖ C) ∧ (B ⊖ C)
C → (A ∨B) = (C → A) ∨ (C → B) C ⊖ (A ∨B) = (C ⊖A) ∧ (C ⊖B)

Exploiting the previous observation, we introduce a language expansion where the different
“personalities” (normal versus regular) of the operators are fully-fledged and, in turn, it becomes
possible to introduce a sequent calculus with the so-called relativized display property
(namely, every structure occurring in a derivable sequent is displayable). Moreover, all the
logical introduction rules are standard and reflect the minimal order-theoretic properties of the
operators, while the specific features of the logic are captured by so-called structural rules, so
maintaining a neat division of labour that guarantees a modular treatment. At last, all the
structural rules are automatically generated via (a specialisation of) the algorithm ALBA (to
regular operators). Showing that the calculus enjoys (canonical) cut elimination is future work.

Below we expand on the treatment of the probability operator. The key idea is that the
non-normal operators (like the conditional binary operator of conditional logics or the monotone
unary modalities in non-normal modal logics) can be decomposed into the composition of normal
modal operators [3]. In this work, we use a similar approach to deal with the probability operator
P .

Let B be any set and P(B) be its power-set. Let P : P(B) → [0, 1] be a probability function
on it. Let R∈, R̸∈ ⊆ P(B) × B be defined as follows. For any a ∈ B, A ∈ P(B),

AR∈a iff a ∈ A and AR ̸∈a iff a ̸∈ A.
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Figure 1: Decomposition of the probability operator P using normal operators

Let R≤, R̸≤ ⊆ [0, 1] × P(B) be defined as follows. For any α ∈ [0, 1], A ∈ P(B),

αR≤A iff α ≤ P (A) and αR̸≤A iff α ̸≤ P (A).

Let A ⊆ B, and U ⊆ P(B) be any subsets of B and P(B) respectively. Let [∈](A) = [R∈](A),
⟨̸∈⟩(A) = ⟨R ̸∈⟩(A), ⟨≤⟩(U) = ⟨R≤⟩(U), and [̸≤](U) = [R̸≤](U). Then, we have

Lemma 1. For any A ⊆ B, and U ⊆ P(B),

1. [∈](A) = A↓.

2. ⟨̸∈⟩(A) = (A↑)c.

3. ⟨≤⟩(U) = [0,max{P (A) | A ∈ U}].

4. [ ̸≤](U) = [0,min{P (A) | A ∈ U c}].

The following corollary follows immediately from the Lemma.

Corollary 2. For any A ⊆ B, P (A) = max(⟨≤⟩[∈](A)) = max([̸≤]⟨̸∈⟩(A)).

Thus, under the identification of an interval with its largest element above, the corollary
shows that the probability operator P can be decomposed into the combination of normal oper-
ators ⟨≤⟩, [∈], [ ̸≤], and ⟨̸∈⟩ in two ways. This decomposition allows us to write the probability
axioms in the language of  Lukasewicz logic expanded with the above modal operators. There-
fore, the axioms of probability logic can be expressed in the above multi-type normal modal
logic.

Finally, the difficult (non-analytic) axiom in the probability theory is the inclusion-exclusion
axiom. This axiom is very similar to the peculiar axiom of  Lukasewicz logic discussed earlier
(with the addition of the operator P). In this talk we will expand on the work in progress aiming
at introducing a properly displayable multi-type calculus for probability logic. Showing that
the calculus enjoys (canonical) cut elimination is future work.

We believe that these techniques would allow us to deal with other (non-classical) logics
of uncertainty such as the logics for probabilities and belief functions over Belnap-Dunn logic
introduced in [2].
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