
Structural completeness and lattice of extensions in

many-valued logics with rational constants
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1 Introduction

The logics RŁ, RP, and RG are obtained by expanding Łukasiewicz logic Ł, product logic P,
and Gödel logic G with rational constants {cq : q ∈ [0, 1] ∩ Q} and adding the bookkeeping
axioms: For every p, q ∈ [0, 1] ∩ Q,

cp · cq ↔ cp∗q (cp → cq) ↔ cp⇒q c0 ↔ ⊥ c1

where ∗ is the Łukasiewicz, Product, and Gödel (minimum) t-norm and ⇒ is the Łukasiewicz,
Product, and Gödel standard residuated implication in each case.
The history of these logics goes back to the pioneering works of Goguen [13] and Pavelka
[20, 21, 22]. Expanding the language with constants can be viewed as taking advantage of
the rich algebraic setting to gain more expressivity; see, e.g., [2, 4, 9, 10, 15, 23, 24]. In this
talk, we study the lattices of extensions and structural completeness of these three expansions,
obtaining results that stand in contrast to the known situation in Ł, P, and G.
A rule is an expression of the form Γ � φ, where Γ ∪ {φ} ⊆ Fm is a finite set. A rule Γ � φ is
said to be derivable in a logic ⊢ when Γ ⊢ φ. It is admissible in ⊢ when for every substitution σ
on Fm,

if ∅ ⊢ σ(γ) for all γ ∈ Γ, then ∅ ⊢ σ(φ).

In other words, a rule is admissible in ⊢ when its addition to ⊢ does not produce any new
theorem. Clearly, every rule that is derivable in ⊢ is also admissible in ⊢. If the converse holds,
⊢ is said to be structurally complete (SC). Logics whose extensions are all structurally complete
have been called hereditarily structurally complete (HSC).
During the last two decades, research in structural completeness has turned also to the family
of fuzzy logics. While G and P are hereditarily structurally complete [8, 5], Ł is structurally
incomplete [7] and a base for its admissible rules was exhibited by Jeřábek [17], see also [16, 18].
Admissibility in extensions of Ł was investigated in [11, 12].
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Łukasiewicz logic Ł, product logic P, and Gödel logic G can be obtained as axiomatic exten-
sions of Hájek’s basic logic BL [14], even if they were defined independently prior to the defi-
nition of BL. All logics in the BL family are algebraizable in the sense of Blok and Pigozzi [3]:
the equivalent algebraic semantics of the three logics are the varieties of MV-algebras, product
algebras and Gödel algebras, respectively. In fact, from algebraizablity we obtain a dual lattice
isomorphism from the lattice of finitary extensions of each logic LE(⊢) into the lattice of qua-
sivarieties of each equivalent variety semantics LQ(V). Moreover, if we restrict this isomor-
phism to the lattice of axiomatic extensions LAE(⊢) we get an isomorphism LAE(⊢) ∼= LV(V),
where LV(V) denotes the lattice of all subvarieties of V.
Komori in [19] characterizes LAE(Ł) which forms an infinite non totally ordered denumerable
pseudo Boolean algebra. The lattice of all extensions LE(Ł) is as complicated as it can be, since
the class of all MV-algebras MV is Q-universal [1]. That is, for every quasivariety K of finite
type LQ(K) is a homomorphic image of a sublattice of LQ(MV).
The lattice of all axiomatic extensions of P is just the three element chain where the only con-
sistent proper axiomatic extension of P is classical logic. Since P is hereditary structurally
complete LE(P) = LAE(P) [6].
Finally, every axiomatic consistent extension of G is a finite valued Gödel logic and LAE(G) ∼=
ω + 1. Since G is hereditary structurally complete LE(G) ∼= ω + 1 (see [8]).
Structural completeness and the structure of the lattice of axiomatic extensions and the lat-
tice of extensions need not to be preserved when expanding with rational constants, while
algebraizability is preserved:

(i) RŁ is an algebraizabe conservative expansion of Ł and the variety of all rational MV-
algebras RMV is its equivalent variety semantics.

(ii) RP is an algebraizable conservative expansion of P and the variety of all rational product
algebras RP is its equivalent variety semantics.

(iii) RG is an algebraizable conservative expansion of G and the variety of all rational Gödel
algebras RG is its equivalent variety semantics.

We recall that a rational MV-algebra , rational product algebra and rational Gödel algebra is an al-
gebra A in the language L = {∧,∨, ·,→,⊥,⊤} ∪ {cq : q ∈ [0, 1] ∩ Q} such that the {∧,∨, ·,→
,⊥,⊤}-reduct is an MV-algebra, Product algebra and Gödel algebra respectively and it satis-
fies the following bookkeeping equations: For every p, q ∈ [0, 1] ∩ Q,

cp · cq ≈ cp∗q (cp → cq) ≈ cp⇒q c0 ≈ ⊥ c0 ≈ ⊤

2 Main results

2.1 Rational Łukasiewicz logic

For the case of Łukasiewicz adding rational constants trivializes the lattice of extensions:

Theorem 2.1. RŁ has no proper consistent extensions, hence RŁ is hereditary structurally complete.

LE(RŁ) = LAE(RŁ) ∼= 2



2.2 Rational Product logic

In the case of product logic adding rational constants does not have a significant change in the
lattice of axiomatic extensions

Theorem 2.2. RP has two proper consistent axiomatic extensions: namely PL and CL.

• PL is axiomatized by cq for each (some) q ∈ (0, 1] ∩ Q

• CL is axiomatized by cq for each (some) q ∈ (0, 1] ∩ Q plus φ ∨ (φ → ⊥)

Corollary 2.3. LAE(RP) is a four element chain.

Notice that PL is equivalent to the original P and CL is equivalent to classical logic, hence
when studying admissible rules we will only need to study admissble rules for RP.

Theorem 2.4. Every proper extension of RP is structurally complete, but RP is not structurally com-
plete. A base for the admissible rules of RP is given by the set of rules of the form

cq ∨ z � z (cp ↔ xn) ∨ z � z,

for each (equiv. some) q ∈ (0, 1) ∩ Q and each p ∈ [0, 1] ∩ Q, n ∈ ω such that n
√

p is irrational.

Finally, the biggest contrast expanding with rational constants is in the lattice of extensions.
We can not obtain a nice description of the lattice LE(RP) because of the following result:

Theorem 2.5. The variety RP is Q-universal.

2.3 Rational Gödel Logic

Expanding Gödel logic with rational constants have a significant efect in the lattice of ax-
iomatic extensions. In fact next result shows that we go from a numerable chain to an un-
countable chain.

Theorem 2.6. Every consistent axiomatic extension of RG is of the form
RGr := RG + {cq : q ∈ [r, 1] ∩ Q} for some r ∈ (0, 1],
RGω

p := RG + {cq : q ∈ (p, 1] ∩ Q} for some rational p ∈ [0, 1) or
RGn

p := RGω
p +

∨
0⩽i<j⩽n+2(cp ∨ xi) ↔ (cp ∨ xj) for some rational p ∈ [0, 1) and n ∈ ω.

Moreover, LAE(RG) is an uncountable chain dually isomorphic to the poset obtained adding a new
bottom element to the Dedekind–MacNeille completion of the lexicographic order of ([0, 1) ∩ Q) ×
(ω + 1).

Observe that RG1 = RG and that RGω
0 is equivalent to G and RGn

0 is equivalent to the (n+ 2)-
valued Gödel logic. Next result shows that none of the other extensions of RG is structurally
complete.

Theorem 2.7. The only consistent axiomatic extensions of RG structurally complete are RGω
0 and

RGn
0 for each n ∈ ω. Moreover, for all r ∈ (0, 1], p ∈ [0, 1) ∩ Q, and γ ∈ ω + 1:

• A base for the admissible rules of RGr is given by the rules of the form cq ∨ z � z, for all q ∈
[0, r) ∩ Q;

• A base for the admissible rules of RGγ
p is given by the rule cp ∨ z � z.

If we denote by RGr the structural completion of RGr, then {RGr : r ∈ (0, 1]} is an uncount-
able antichain in LE(RG). Conseqüently, LE(RG) seems not easy to describe since it contains
an uncountable antichain and, by Theorem 2.6, it contains an uncountable chain. The question
whether RG is Q-universal remains open.
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[16] E. Jeřábek. Admissible rules of Łukasiewicz logic. Journal of Logic and Computation, 20(2):425–447,
2010.

[17] E. Jeřábek. Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation,
20(6):1149–1163, 2010.
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