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Abstract

Adding multi-modalities (called subexponentials) to linear logic enhances its power as a logical
framework, which has been extensively used in the specification of e.g. proof systems and programming
languages. Initially, subexponentials allowed for classical, linear, affine or relevant behaviors. Recently,
this framework was enhanced so to allow for commutativity as well. In a work just accepted to IJCAR
2022, we have closed the cycle by considering associativity. In this proposal, we will show two
undecidability results for fragments/variations of acLLΣ in [5], and present a preliminary focused
version for that system.

Introduction. Resource aware logics have been object of passionate study for quite some time now. The
motivations for this passion vary: resource consciousness are adequate for modeling steps of computation;
logics have interesting algebraic semantics; calculi have nice proof theoretic properties; multi-modalities
allow for the specification of several behaviors; there are many interesting applications in linguistics, etc.

With this variety of subjects, applications and views, it is not surprising that different groups developed
different systems based on different principles. For example, the Lambek calculus (L) [10] was introduced
for mathematical modeling of natural language syntax, and it extends a basic categorial grammar [2, 4] by
a concatenation operator. Linear logic (LL) [9], originally discovered by Girard from a semantical analysis
of the models of polymorphic λ-calculus, turned out to be a refinement of classical and intuitionistic
logic, having the dualities of the former and constructive properties of the latter. The key point is the
presence of the modalities !, ?, called exponentials in LL. In the intuitionistic version of LL, denoted by
ILL, only the ! exponential is present.

L and LL were compared in [1], when Abrusci showed that Lambek calculus coincides with a variant
of the non-commutative, multiplicative version of ILL [11]. This correspondence can be lifted for
considering also the additive connectives: Full (multiplicative-additive) Lambek calculus FL relates to
non-commutative multiplicative-additive version of ILL, here denoted by cLL.

In the paper just accepted to IJCAR [5], we have proposed the sequent based system acLLΣ, a
conservative extension of cLL, where associativity is allowed only for formulas marked with a special
kind of modality, determined by a subexponential signature Σ. The core fragment of acLLΣ (i.e., without
the subexponentials) corresponds to the non-associative version of full Lambek calculus, FNL [6]. This
extended abstract presents the two undecidability results of [5] and proposes a focused version for acLLΣ.
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Non-associative, non-commutative multi-modal linear logic. The language of acLLΣ consists of a
denumerable infinite set of propositional variables {p, q, r, . . .}, the unities {1,>}, the binary connectives
for additive conjunction and disjunction {&,⊕}, the non-commutative multiplicative conjunction ⊗, the
non-commutative linear implications {→,←}, and the unary subexponentials !i, with i belonging to a
pre-ordered set of labels (I,�).

Roughly speaking, subexponentials [8] are substructural multi-modalities. In LL, ! A indicates that
the linear formula A behaves classically, that is, it can be contracted and weakened. Labeling ! with
indices allows moving one step further: The set I can be partitioned so that, in !iA, A can be contracted
and/or weakened. In this work, we consider not only weakening and contraction, but also commutativity
and associativity, all such substructural properties determined by the axioms:

C : !iF → !iF ⊗ !iF W : !iF → 1 E : (!iF) ⊗G ≡ G ⊗ (!iF)
A1 : !iF ⊗ (G ⊗ H)→ (!iF ⊗G) ⊗ H A2 : (G ⊗ H) ⊗ !iF → G ⊗ (H ⊗ !iF)

The signature Σ of acLLΣ contains (I,�) together with a function stating which of those axioms
are assumed for each label. Pre-ordering the labels (together with an upward closeness requirement)
guarantees cut-elimination [5]. Sequents have a nested structure, corresponding to trees of formulas, here
called structures. And rules are applied deeply in such structures. Formally:

Definition 1 (Structured sequents). Structures are formulas or pairs containing structures: Γ,∆ := F |
(Γ,Γ), where the constructors may be empty but never a singleton. The notation ! jΓ will represent a
structure where every formula F ∈ Γ is such that F = ! jF′.

An n-ary context Γ
{

1
}
· · ·
{n } is a context that contains n pairwise distinct numbered holes { } wherever

a formula may otherwise occur. Given n contexts Γ1, . . . , Γn, we write Γ{Γ1} · · · {Γn} for the context where
the k-th hole in Γ

{
1
}
· · ·
{n } has been replaced by Γk (for 1 ≤ k ≤ n). If Γk = ∅ the hole is removed. A

structured sequent (or simply sequent) has the form Γ⇒ F where Γ is a structure and F is a formula.

Definition 2 (SDML). Let A be a set of axioms. A (non-associative/commutative) simply dependent
multimodal logical system (SDML) is given by a triple Σ = (I,4, f ), where I is a set of indices, (I,4) is a
pre-order, and f is a mapping from I to 2A.
If Σ is a SDML, then the logic described by Σ has the modality !i for every i ∈ I, with the rules of FNL
depicted in Fig. 1, together with rules for the axioms f (i) and the interaction axioms ! jA→ !iA for every
i, j ∈ I with i 4 j. Finally, every SDML is assumed to be upwardly closed w.r.t. �, that is, if i � j then
f (i) ⊆ f ( j) for all i, j ∈ I.

Fig. 2 presents the structured system acLLΣ, for the logic described by the SDML determined by Σ,
withA = {C,W,A1,A2,E} where, in the subexponential rule for S ∈ A, the respective s ∈ I is such that
S ∈ f (s) (e.g. the subexponential symbol e indicates that E ∈ f (e)). As usual, Γ�i represents the context
with the tree structure inherited by Γ, with all the subexponentials greater or equal to i.
(Un)decidability results. Non-associativity makes a significant difference in decidability and com-
plexity matters. For our system acLLΣ, its decidability or undecidability depends on its signature Σ. If
for every i ∈ I, C < f (s), then acLLΣ is clearly decidable, since the cut-free proof search space is finite.
Therefore, for undecidability it is necessary to have at least one subexponential which allows contraction.

For FNL with only one fully-powered exponential modality s, undecidability was proven in a
preprint by Tanaka [12]. In [5], we have refined Tanaka’s result by showing that acLLΣ containing the
multiplicatives ⊗,→, the additive ⊕ and one classical subexponential is undecidable.

Theorem 1. If there exists such s ∈ I that f (s) ⊇ {C,W}, then the derivability problem in acLLΣ is
undecidable. Moreover, this holds for the fragment with only ⊗,→, ⊕, !s.

In the second undecidability result, we keep two subexponentials, but with a minimalist configuration:
the implicational fragment of the logic plus two subexponentials: the “main” one allowing for contraction,
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Γ{(F,G)} ⇒ H
Γ{F ⊗G} ⇒ H ⊗L

Γ1 ⇒ F Γ2 ⇒ G
(Γ1,Γ2)⇒ F ⊗G ⊗R

Γ{F} ⇒ H Γ{G} ⇒ H
Γ{F ⊕G} ⇒ H ⊕L

Γ⇒ Fi

Γ⇒ F1 ⊕ F2
⊕Ri

Γ{Fi} ⇒ G
Γ{F1 & F2} ⇒ G

&Li
Γ⇒ F Γ⇒ G

Γ⇒ F & G &R

∆⇒ F Γ{G} ⇒ H
Γ{(∆, F → G)} ⇒ H → L

(F,Γ)⇒ G
Γ⇒ F → G → R

∆⇒ F Γ{G} ⇒ H
Γ{(G ← F,∆)} ⇒ H ← L

(Γ, F)⇒ G
Γ⇒ G ← F ← R

Γ{ } ⇒ F
Γ{1} ⇒ F 1L

⇒ 1 1R
Γ⇒ >

>R

F ⇒ F init
∆⇒ F Γ

{
1F
}
. . .
{

nF
}
⇒ G

Γ
{

1
∆
}
. . .
{

n
∆
}
⇒ G

mcut

Figure 1: Structured system FNL for non-associative, full Lambek calculus.

Γ�i ⇒ F
Γ⇒ !iF

!iR
Γ{F} ⇒ G

Γ
{
!iF
}
⇒ G

der

Γ{((!a∆1,∆2),∆3)} ⇒ G
Γ{(!a∆1, (∆2,∆3))} ⇒ G A1

Γ{(∆1, (∆2, !a∆3))} ⇒ G
Γ{((∆1,∆2), !a∆3)} ⇒ G A2

Γ{(∆2, !e∆1)} ⇒ G
Γ{(!e∆1,∆2)} ⇒ G E1

Γ{(!e∆2,∆1)} ⇒ G
Γ{(∆1, !e∆2)} ⇒ G E2

Γ{ } ⇒ G
Γ{!w∆} ⇒ G W

Γ
{

1!c∆
}
. . .
{

n!c∆
}
⇒ G

Γ
{

1
}
. . .
{

k!c∆
}
. . .
{

n
}
⇒ G

C

Figure 2: Structured system acLLΣ for the logic described by Σ.

exchange, and associativity (weakening is optional), and an “auxiliary” one allowing only associativity.
This is a variation of Chaudhuri’s result [7] (in the non-associative, non-commutative case), making use
of fewer connectives (tensor is not needed) and less powerful subexponentials.

Theorem 2. If there are a, c ∈ I such that f (a) = {A1,A2} and f (c) ⊇ {C,E,A1,A2}, then the derivability
problem in acLLΣ is undecidable. Moreover, this holds for the fragment with only→, !a, !c.

Focusing. The focusing discipline [3] is determined by the alternation of focused and unfocused
phases in the proof construction. In the unfocused phase, inference rules can be applied eagerly and no
backtracking is necessary; in the focused phase, on the other hand, either context restrictions apply, or
choices within inference rules can lead to failures for which one may need to backtrack. These phases
are totally determined by the polarities of formulas: provability is preserved when applying right/left
rules for negative/positive formulas respectively, but not necessarily in other cases.

The importance of focusing is due to the fact that it gives a notion of normal forms for proofs. In the
case of acLLΣ, the following polarization is proposed.

Definition 3 (Polarized Syntax). Let P be the set propositional variables and P+ ∩ P− a partition of P,
with A+ ∈ P+ and A− ∈ P−. The polarized formulas are given by the following grammar

P,Q := A+ | 1 | F ⊗ F | F ⊕ F | F → F | F ← F | !iF N,M := A− | > | F & F
L := A+ | N R := A− | P
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A negative structure, denoted by Λ, is given by Λ := L | (Λ,Λ). A polarized structured sequent has one of
the forms: Γ⇒ F Λ{〈F〉} ⇒ R Λ⇒ 〈F〉 where the first is an unfocused sequent and the last two are
focused, with 〈F〉 indicating that the formula F is under focus.

The proposed focused system facLLΣ is depicted in Figure 3, where the structural rules are restricted
to neutral formulas only. Our ongoing work is to show that facLLΣ is sound and complete w.r.t. acLLΣ.
We plan to apply the result in the analysis of natural language syntax.

Λ1 ⇒ 〈F〉 Λ2 ⇒ 〈G〉
(Λ1,Λ2)⇒ 〈F ⊗G〉 ⊗R

Λ⇒ 〈Fi〉

Λ⇒ 〈F1 ⊕ F2〉
⊕Ri

Λ{〈Fi〉} ⇒ R
Λ{〈F1 & F2〉} ⇒ R

&Li

Λ′ ⇒ 〈F〉 Λ{〈G〉} ⇒ R
Λ{〈(Λ′, F → G)〉} ⇒ R → L

Λ′ ⇒ 〈F〉 Λ{〈G〉} ⇒ R
Λ{〈(G ← F,Λ′)〉} ⇒ R ← L

Λ�i ⇒ F
Λ⇒

〈
!iF
〉 !iR

⇒ 〈1〉 1R P⇒ 〈P〉 init+
〈N〉 ⇒ N init−

Γ{(F,G)} ⇒ H
Γ{F ⊗G} ⇒ H ⊗L

Γ{F} ⇒ H Γ{G} ⇒ H
Γ{F ⊕G} ⇒ H ⊕L Γ⇒ F Γ⇒ G

Γ⇒ F & G &R

(F,Γ)⇒ G
Γ⇒ F → G → R

(Γ, F)⇒ G
Γ⇒ G ← F ← R

Γ{ } ⇒ F
Γ{1} ⇒ F 1L

Γ⇒ >
>R

Λ{〈N〉} ⇒ R
Λ{N} ⇒ R DL

Λ⇒ 〈P〉
Λ⇒ P DR

Λ{〈F〉} ⇒ R

Λ
{
!iF
}
⇒ R

der Λ{P} ⇒ R
Λ{〈P〉} ⇒ R RL Λ⇒ N

Λ⇒ 〈N〉 RR

Figure 3: Structured system facLLΣ for focused acLLΣ.
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