Kites and pseudo MV-algebras

MICHAL BOTUR^{1,*} AND TOMASZ KOWALSKI²

¹ Faculty of Sciences, Palacký University Olomouc michal.botur@upol.cz

² Department of Logic, Jagiellonian University tomasz.s.kowalski@uj.edu.pl

Abstract

We investigate the structure of perfect residuated lattices, focussing especially on perfect pseudo MV-algebras. We show that perfect pseudo MV-algebras can be represented as a generalised version of kites from [8]. We characterise varieties generated by kites and describe the lattice of these varieties as a complete sublattice of the lattice of perfectly generated varieties of perfect pseudo MV-algebras.

1 Introduction

We work in the framework of *residuated lattices*, that is, algebras $\mathbf{A} = (A; \land, \lor, \cdot, \backslash, /, 1)$ such that $(A; \land, \lor)$ is a lattice, $(A; \cdot, 1)$ is a monoid, and the equivalences

$$y \le x \setminus z \quad \Leftrightarrow \quad xy \le z \quad \Leftrightarrow \quad x \le z / y$$

hold for all $x, y, z \in A$, where the ordering relation \leq is the natural lattice order on A, and multiplication is written as juxtaposition. A residuated lattice expanded by an additional constant 0 is an *FL*-algebra (for Full Lambek calculus), and an FL-algebra satisfying $0 \leq x \leq 1$ is an FL_w-algebra.

Our general terminology and notation is that of universal algebra, with a minimum of category theory. For the theory of residuated lattices and all concepts not defined below, we refer the reader to [9], from where we also adopt the convention of using calligraphic letters as variables for arbitrary classes of algebras, and sans-serif for the acronyms of named classes. The acronyms themselves also come from [9], with the exception of the variety of pseudo MV-algebras which we call Ψ MV, and not psMV as in [9].

The present work grew out of an attempt at answering Question 8.4 from [8], concerning a construction of certain algebras called *kites*, most naturally associated with a noncommutative generalisation of BL-algebras known as *pseudo BL-algebras* (see also [6]). The construction has also been used in a broader context of residuated lattices (e.g., [2]) and algebras related to quantum computation (e.g., [7], [1] and [5]). Here we narrow the focus to *pseudo MV-algebras*, and for the most part indeed to *perfect pseudo MV-algebras*. This narrowing of view bears fruit: we obtain several structural results that we believe would be much more difficult to discover (or do not hold at all) in a broader context. We begin however in broad strokes, by establishing a few facts about *perfect residuated lattices*.

Definition 1. An FL_w -algebra \mathbf{A} is perfect if there is a homomorphism $h_{\mathbf{A}} \colon \mathbf{A} \to \mathbf{2}$ such that for any $x \in h_{\mathbf{A}}^{-1}(0)$ and any $y \in h_{\mathbf{A}}^{-1}(1)$ the inequality $x \leq y$ holds.

^{*}Speaker.

We say that a variety \mathcal{V} of FL_w-algebras is *perfectly generated* if it is generated by its perfect members. Let **A** be an FL-algebra, and $a, b \in A$. The *left conjugate* of $a \in A$ by $b \in A$ is the element $\lambda_b(a) := (b \setminus ab) \wedge 1$ and the *right conjugate* is $\rho_b(a) := (ba / b) \wedge 1$. A conjugation polynomial $\boldsymbol{\alpha}$ over **A** is any unary polynomial $(\gamma_{a_1} \circ \gamma_{a_2} \circ \cdots \circ \gamma_{a_n})(x)$ where $\gamma \in \{\lambda, \rho\}$ and $a_i \in A$ for $1 \leq i \leq n$. We write cPol(**A**) for the set of all conjugation polynomials over **A**. For an element $u \in A$, an *iterated conjugate* of u is $\boldsymbol{\alpha}(u)$ for some $\boldsymbol{\alpha} \in \text{cPol}(\mathbf{A})$.

Theorem 1. A subvariety \mathcal{V} of FL_w is perfectly generated if and only if \mathcal{V} is nontrivial and satisfies the following identities:

$$\boldsymbol{\alpha}(x/x^{-}) \lor \boldsymbol{\beta}(x^{-}/x) = 1, \tag{1}$$

$$\boldsymbol{\alpha}((x \vee x^{-}) \cdot (y \vee y^{-}))^{-} \leq \boldsymbol{\alpha}((x \vee x^{-}) \cdot (y \vee y^{-})),$$
(2)

$$x \wedge x^{-} \le y \vee y^{-} \tag{3}$$

for every $\mathbf{A} \in \mathcal{V}$ and all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \operatorname{cPol}(\mathbf{A})$.

2 Kites and perfect pseudo MV-algebras

As we already mentioned, ΨMV will stand for the variety of *pseudo MV-algebras*. We will write $pf\Psi MV$ for the class of perfect members of ΨMV , and $P\Psi MV$ for the variety generated by $pf\Psi MV$. Now we define a generalised version of a kite.

Definition 2. Let **L** be an ℓ -group and $\lambda: \mathbf{L} \to \mathbf{L}$ be an automorphism. We define the algebra

$$\mathcal{K}(\mathbf{L},\lambda) := (L^- \uplus L^+; \land, \lor, \odot, \backslash, /, 0, 1)$$

where $L^- \uplus L^+$ is a disjoint union, $0 := e \in L^+$, $1 := e \in L^-$, and the other operations are given by

Remark 1. The negations $x^- := 0 / x$ and $x^- := x \setminus 0$ in $\mathcal{K}(\mathbf{L}, \lambda)$ are given by

$$x^{-} = \begin{cases} x^{-1} & \text{if } x \in L^{-}, \\ \lambda^{-1}(x)^{-1} & \text{if } x \in L^{+}. \end{cases} \qquad x^{\sim} = \begin{cases} \lambda(x)^{-1} \in L^{+} & \text{if } x \in L^{-}, \\ x^{-1} \in L^{-} & \text{if } x \in L^{+}. \end{cases}$$

In any perfect pseudo MV-algebra \mathbf{A} the normal filter $F_{\mathbf{A}}$ is the universe of a cancellative IGMV-algebra $\mathbf{F}_{\mathbf{A}}$. It is well known that $\mathbf{F}_{\mathbf{A}}$ uniquely determines an ℓ -group $\ell(\mathbf{F}_{\mathbf{A}})$; indeed ℓ is a functor from the category CanIGMV of cancellative IGMV-algebras to the category LG of ℓ -groups. Since pseudo MV-algebras satisfy the identities

$$(x \star y)^{\sim \sim} = x^{\sim \sim} \star y^{\sim \sim} \qquad x^{- \sim \sim} = x^{\sim \sim -}$$

where $\star \in \{\wedge, \lor, \cdot\}$, the map $-^{\sim}$ is an automorphism of $\mathbf{F}_{\mathbf{A}}$. Applying the functor ℓ we lift $-^{\sim}$ to an automorphism

$$\ell^{\approx} \colon \ell(\mathbf{F}_{\mathbf{A}}) \to \ell(\mathbf{F}_{\mathbf{A}})$$

defined as $\ell^{\approx}(-) := \ell(-^{\sim})$.

Theorem 2. Let **A** be a perfect pseudo MV-algebra. Then $\mathbf{A} \cong \mathcal{K}(\ell(\mathbf{F}_{\mathbf{A}}), \ell^{\approx})$.

It was shown in [4] that perfect MV-algebras are categorically equivalent to Abelian ℓ -groups, and in [3] the result was generalised to a categorical equivalence between *symmetric* perfect pseudo MV-algebras and ℓ -groups. We generalise both results below.

Theorem 3. The categories of perfect pseudo MV-algebras, and of ℓ -groups with a distinguished automorphism, are equivalent. If the distinguished automorphism is the identity, the equivalent category is that of symmetric perfect pseudo MV-algebras.

3 Varieties generated by kites

For any ℓ -group **L**, and any bijection $\beta: B \to B$, a very natural automorphism $\lambda: \mathbf{L}^B \to \mathbf{L}^B$ is induced by taking $\lambda(x(i)) := x(\beta(i))$ for each $i \in B$. Then $\mathcal{K}(\mathbf{L}^B, \lambda)$ is a perfect pseudo MV-algebra.

Definition 3. A monounary algebra $\mathbf{B} = (B; \beta)$ where β is a bijection on B will be called a B-cycle. Homomorphisms of B-cycles are maps $f: \mathbf{B} \to \mathbf{C}$ satisfying $f \circ \lambda^{\mathbf{B}} = \lambda^{\mathbf{C}} \circ f$. Objects of the category BC are B-cycles and arrows are homomorphisms.

The definition below is equivalent to the original definition of a kite from [8].

Definition 4. Let $\mathbf{B} = (B; \beta)$ be a B-cycle and L and ℓ -group. A kite over B and L is the algebra

 $\mathcal{K}_{\mathbf{B}}(\mathbf{L}) := \mathcal{K}(\mathbf{L}, \lambda)$

where $\lambda \colon \mathbf{L}^B \to \mathbf{L}^B$ is the automorphism given by $\lambda(x(i)) = x(\beta(i))$ for any $i \in B$.

We write $\Lambda(\mathcal{V})$ for the lattice of subvarieties of a variety \mathcal{V} , and $\Lambda^+(\mathcal{V})$ for the poset of nontrivial subvarieties of \mathcal{V} . Since the variety BA of Boolean algebras is the unique atom of $\Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$, we have that $\Lambda^+(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$ is a (complete algebraic) sublattice of $\Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$.

For any pseudo MV-algebra \mathbf{A} , the operation $-\approx$ is a bijection on A, so for any \mathbf{A} we define the dimension of \mathbf{A} to be $dim(-\approx)$. From now on, \mathbb{D} will stand for the lattice $(\mathbb{N}; |)$ of natural numbers under the divisibility ordering.

Definition 5. Let $\mathbf{A} \in \mathsf{PMV}$ and $\mathcal{V} \in \Psi\mathsf{MV}$. Then

- 1. $dim(\mathbf{A}) := dim(-^{\approx}),$
- 2. $dim(\mathcal{V}) := \min^{\mathbb{D}} \{ dim(\mathbf{A}) \mid n : \text{ for all } \mathbf{A} \in \mathcal{V} \},\$

3. $\mathsf{P}\Psi\mathsf{M}\mathsf{V}_n := \mathsf{P}\Psi\mathsf{M}\mathsf{V} \cap \mathrm{Mod}\{\lambda^n(x) = x\}, \text{ for any } n \in \mathbb{D}.$

It is immediate that $\mathsf{P}\Psi\mathsf{M}\mathsf{V}_n$ defined in (3) is the largest subvariety of $\mathsf{P}\Psi\mathsf{M}\mathsf{V}$ of dimension n. Moreover, for all $n, m \in \mathbb{N}$ we have

 $\mathsf{P}\Psi\mathsf{M}\mathsf{V}_n\subseteq\mathsf{P}\Psi\mathsf{M}\mathsf{V}_m\text{ if and only if }n\mid m$

so in particular $P\Psi MV_0 = P\Psi MV$.

Definition 6. We define two pairs of maps

 $\psi \colon \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V}) \to \Lambda(\mathsf{CanIGMV}), \text{ where } \psi(\mathcal{V}) = V\{\mathbf{F}_{\mathbf{A}} : \mathbf{A} \in \mathcal{V}_{pf}\},\\ \Psi \colon \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V}) \to \Lambda(\mathsf{CanIGMV}) \times \mathbb{D}, \text{ where } \Psi(\mathcal{V}) = (\psi(\mathcal{V}), \dim(\mathcal{V})),$

for any $\mathcal{V} \in \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$ and

$$\begin{split} &\delta\colon\Lambda(\mathsf{CanIGMV})\to\Lambda(\mathsf{P}\Psi\mathsf{MV}), \ where \ \delta(\mathcal{V})=V\{\mathbf{A}\in\mathsf{p}\mathsf{f}\Psi\mathsf{MV}:\mathbf{F}_{\mathbf{A}}\in\mathcal{V}\},\\ &\Delta\colon\Lambda(\mathsf{CanIGMV})\times\mathbb{D}\to\Lambda(\mathsf{P}\Psi\mathsf{MV}), \ where \ \Delta(\mathcal{V},n)=\delta(\mathcal{V})\cap\mathsf{P}\Psi\mathsf{MV}_n, \end{split}$$

for any $\mathcal{V} \in \Lambda(\mathsf{CanIGMV})$ and $n \in \mathbb{D}$.

Theorem 4. Let $\mathcal{V} \in \Lambda(\mathsf{P}\Psi\mathsf{M}\mathsf{V})$. The following are equivalent.

- 1. \mathcal{V} is generated by kites.
- 2. $\mathcal{V} = \Delta \Psi(\mathcal{V}).$
- 3. $\mathcal{V} = \Delta(\mathcal{W}, n)$ for some $\mathcal{W} \in \Lambda(\mathsf{CanIGMV})$ and some $n \in \mathbb{D}$.

We end by a more detailed description of the lattice of varieties generated by kites. Incidentally, it answers Questions 8.1 and 8.2 from [8] insofar as they apply in this context.

Theorem 5. Let \mathbb{K} be the lattice of subvarieties of $\mathsf{P}\Psi\mathsf{M}\mathsf{V}$ generated by kites.

 $\mathbb{K} \cong \mathbf{1} \oplus \left(\Lambda^+(\mathsf{CanIGMV}) \times \mathbb{D} \right) \cong \mathbf{1} \oplus \left(\Lambda^+(\mathsf{LG}) \times \mathbb{D} \right)$

where $\mathbf{1}$ is the trivial lattice and \oplus is the operation of ordinal sum.

References

- Botur, M. and Dvurečenskij, A. Kite n-perfect pseudo effect algebras. Rep. Math. Phys., 76(3):291– 315, 2015.
- [2] Botur, M. and Dvurečenskij, A. Kites and residuated lattices. Algebra Universalis, 79(4):Paper No. 83, 26, 2018.
- [3] Di Nola, A., Dvurečenskij, A., and Tsinakis, C. Perfect GMV-algebras. Comm. Algebra, 36(4):1221– 1249, 2008.
- [4] Di Nola, A. and Lettieri, A. Perfect MV-algebras are categorically equivalent to abelian *l*-groups. Studia Logica, 53(3):417–432, 1994.
- [5] Dvurečenskij, A. Kite pseudo effect algebras. Found. Phys., 43(11):1314–1338, 2013.
- [6] Dvurečenskij, A. On a new construction of pseudo bl-algebras. Fuzzy Sets and Systems, 271:156– 167, 2015.
- [7] Dvurečenskij, A. and Holland, W. C. Some remarks on kite pseudo effect algebras. Internat. J. Theoret. Phys., 53(5):1685–1696, 2014.
- [8] Dvurečenskij, A. and Kowalski, T. Kites and pseudo BL-algebras. Algebra Universalis, 71(3):235–260, 2014.
- [9] Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. Residuated Lattices. An Algebraic Glimpse at Substructural Logics. Stud. Logic Fund. Math. Elsevier, 2007.