One-Variable Lattice-Valued Logics

Petr Cintula¹, George Metcalfe², and Naomi Tokuda²

¹ Institute of Computer Science of the Czech Academy of Sciences, cintula@cs.cas.cz

² Mathematical Institute, University of Bern, Switzerland {george.metcalfe,naomi.tokuda}@unibe.ch

The one-variable fragment of any first-order logic yields an "S5-like" modal logic, obtained by replacing each occurrence of an atom P(x) with a propositional variable p, and $(\forall x)$ and $(\exists x)$ with \Box and \diamond , respectively. The first-order semantics typically induces a relational semantics for this modal logic, but finding an axiomatization for its algebraic semantics is hindered by the fact that an axiomatization of the one-variable fragment cannot be directly extracted from an axiomatization of the full logic. Nevertheless, axiomatizations have been obtained in certain well-known cases. Monadic Boolean algebras [12] and monadic Heyting algebras [3,14] correspond to the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. More generally, varieties of monadic Heyting algebras corresponding to one-variable fragments of first-order intermediate logics have been investigated in [1,2,4–6,15,17,18]. Onevariable fragments of some first-order many-valued logics have also been studied in some depth; notably, monadic MV-algebras [7,10,16] and monadic Abelian ℓ -groups [13] correspond to the one-variable fragments of first-order Lukasiewicz logic and Abelian logic, respectively.

In [9], we initiate a general approach to addressing this axiomatization problem. Let \mathcal{L} be an algebraic signature containing binary operations \wedge and \vee , and consider the sets $\operatorname{Fm}^{1}_{\forall}(\mathcal{L})$ of *(first-order) one-variable* \mathcal{L} -formulas (with quantifiers \forall and \exists) and $\operatorname{Fm}_{\Box}(\mathcal{L})$ of propositional modal formulas (with modalities \Box and \diamond), denoting by $(-)^{*}$ the standard translation function from $\operatorname{Fm}^{1}_{\forall}(\mathcal{L})$ to $\operatorname{Fm}_{\Box}(\mathcal{L})$. Members of both $\operatorname{Fm}^{1}_{\forall}(\mathcal{L})$ and $\operatorname{Fm}_{\Box}(\mathcal{L})$ are interpreted using semantics based on algebraic structures for the signature \mathcal{L} with a lattice reduct, called \mathcal{L} -lattices. For $\operatorname{Fm}^{1}_{\forall}(\mathcal{L})$, we define structures over complete \mathcal{L} -lattices and interpret the quantifiers \forall and \exists as infima and suprema. For $\operatorname{Fm}_{\Box}(\mathcal{L})$, we call an algebraic structure $\langle \mathbf{A}, \Box, \diamond \rangle$ an *m*- \mathcal{L} -lattice if \mathbf{A} is an \mathcal{L} -lattice and \Box , \diamond are unary operations satisfying

and for each *n*-ary operation symbol \star of \mathcal{L} ,

$$(\star_{\Box}) \quad \Box(\star(\Box x_1,\ldots,\Box x_n)) \approx \star(\Box x_1,\ldots,\Box x_n).$$

For any class \mathcal{K} of complete \mathcal{L} -lattices, semantical sentential consequence $\vDash_{\mathcal{K}}^{\forall}$ is defined over $\operatorname{Fm}^{1}_{\forall}(\mathcal{L})$ -equations, i.e., formal expressions of the form $\varphi \approx \psi$ where $\varphi, \psi \in \operatorname{Fm}^{1}_{\forall}(\mathcal{L})$. Similarly, for any class \mathcal{M} of m- \mathcal{L} -lattices, semantical consequence $\vDash_{\mathcal{M}}$ is defined over $\operatorname{Fm}_{\Box}(\mathcal{L})$ -equations.

Observe now that any complete \mathcal{L} -lattice \mathbf{A} and set W yields an m- \mathcal{L} -lattice $\langle \mathbf{A}^W, \Box, \diamond \rangle$, that we call *full functional*, where the operations of \mathbf{A}^W are defined pointwise and for each $f \in A^W$ and $u \in W$,

$$\Box f(u) = \bigwedge_{v \in W} f(v) \quad \text{and} \quad \diamondsuit f(u) = \bigvee_{v \in W} f(v).$$

We also call an m- \mathcal{L} -lattice functional if it embeds into a full functional m- \mathcal{L} -lattice.

Given any class \mathcal{K} of complete \mathcal{L} -lattices, let \mathcal{K}_f denote the class of all full functional m- \mathcal{L} -lattices $\langle \mathbf{A}^W, \Box, \diamond \rangle$ with $\mathbf{A} \in \mathcal{K}$. It follows easily that for any set of $\operatorname{Fm}^1_{\forall}(\mathcal{L})$ -equations $T \cup \{\varphi \approx \psi\}$ (lifting the translation * to sets of $\operatorname{Fm}^1_{\forall}(\mathcal{L})$ -equations in the obvious way),

$$T \vDash_{\mathcal{K}}^{\forall} \varphi \approx \psi \quad \Longleftrightarrow \quad T^* \vDash_{\mathcal{K}_f} \varphi^* \approx \psi^*.$$

The general problem addressed here is to provide an (elegant) axiomatization of the generalized quasivariety of m- \mathcal{L} -lattices generated by \mathcal{K}_f : that is, the class of all m- \mathcal{L} -lattices **M** satisfying $T^* \vDash_{\mathbf{M}} \varphi^* \approx \psi^*$ whenever $T \vDash_{\mathcal{K}}^{\forall} \varphi \approx \psi$ for a set of $\operatorname{Fm}^1_{\forall}(\mathcal{L})$ -equations $T \cup \{\varphi \approx \psi\}$. In this work, we solve this problem for the case where \mathcal{K} is the class of complete members of a variety that satisfies two natural algebraic properties.

Given any class \mathcal{K} of \mathcal{L} -lattices, let $\overline{\mathcal{K}}$ denote the class of complete members of \mathcal{K} and let $m\mathcal{K}$ denote the class of m- \mathcal{L} -lattices $\langle \mathbf{A}, \Box, \diamond \rangle$ with $\mathbf{A} \in \mathcal{K}$. Following closely the proof of the same result for monadic Heyting algebras given in [2], we obtain a general *functional representation theorem* that gives sufficient conditions on \mathcal{K} for all algebras in $m\mathcal{K}$ to be functional. Recall that a class \mathcal{K} of \mathcal{L} -lattices

- (i) admits *regular completions* if for any $\mathbf{A} \in \mathcal{K}$, there exist a $\mathbf{B} \in \overline{\mathcal{K}}$ and an embedding $f: \mathbf{A} \to \mathbf{B}$ that preserves all existing meets and joins of \mathbf{A} ;
- (ii) has the superamalgamation property if for any $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ and embeddings $f_1: \mathbf{A} \to \mathbf{B}_1, f_2: \mathbf{A} \to \mathbf{B}_2$, there exist a $\mathbf{C} \in \mathcal{K}$ and embeddings $g_1: \mathbf{B}_1 \to \mathbf{C}, g_2: \mathbf{B}_2 \to \mathbf{C}$ such that $g_1 \circ f_1 = g_2 \circ f_2$ and for any $b_1 \in B_1, b_2 \in B_2$ and distinct $i, j \in \{1, 2\}$ such that $g_i(b_i) \leq g_j(b_j)$, there exists an $a \in A$ satisfying $g_i(b_i) \leq g_i \circ f_i(a) = g_j \circ f_j(a) \leq g_j(b_j)$.

Theorem 1. Let \mathcal{K} be a class of \mathcal{L} -lattices that is closed under subalgebras and direct limits, admits regular completions, and has the superamalgamation property. Then every member of $m\mathcal{K}$ is functional.

Combing this functional representation theorem with our previous observation regarding the relationship between consequence in a class of complete \mathcal{L} -lattices and the corresponding class of full functional m- \mathcal{L} -lattices, we obtain the following result:

Corollary 1. Let \mathcal{V} be a variety of \mathcal{L} -lattices that admits regular completions and has the superamalgamation property. Then for any set $T \cup \{\varphi \approx \psi\}$ of $\operatorname{Fm}^1_{\forall}(\mathcal{L})$ -equations,

$$T \vDash_{\mathcal{V}}^{\forall} \varphi \approx \psi \quad \Longleftrightarrow \quad T^* \vDash_{m\mathcal{V}} \varphi^* \approx \psi^*.$$

In particular, when \mathcal{V} is the variety of Boolean algebras or Heyting algebras, both of which admit regular completions and have the superamalgamation property, $m\mathcal{V}$ is the variety of monadic Boolean algebras [12] or monadic Heyting algebras [14], respectively, and Corollary 1 yields well-known completeness results for the one-variable fragments of first-order classical logic and intuitionistic logic.

Further examples can be taken from the class of substructural logics (see, e.g., [11]). In particular, letting \mathcal{L}_s be a signature with binary connectives \lor , \land , \cdot , and \rightarrow , and constant symbols f and e, an FL_e-algebra is an \mathcal{L}_s -lattice $\mathbf{A} = \langle A, \lor, \land, \cdot, \rightarrow, \mathbf{f}, \mathbf{e} \rangle$ such that $\langle A, \cdot, \mathbf{e} \rangle$ is a commutative monoid and \rightarrow is the residuum of \cdot , i.e., $a \cdot b \leq c \iff a \leq b \rightarrow c$ for all $a, b, c \in A$. Let us denote by \mathcal{FL}_e the variety of FL_e-algebras and by \mathcal{FL}_{ew} and \mathcal{FL}_{ec} the subvarieties of FL_e-algebras satisfying $\mathbf{f} \leq x \leq \mathbf{e}$ and $x \leq x \cdot x$, respectively, noting that $\mathcal{FL}_{ew} \cap \mathcal{FL}_{ec}$ is term-equivalent to the variety of Heyting algebras. Since these varieties are closed under MacNeille completions and have the superamalgamation property (see, e.g., [11]), Theorem 1 and Corollary 1 yield the following result: **Theorem 2.** Let $\mathcal{V} \in \{\mathcal{FL}_e, \mathcal{FL}_{ew}, \mathcal{FL}_{ec}\}$. Then any member of $m\mathcal{V}$ is functional and for any set $T \cup \{\varphi, \psi\}$ of $\operatorname{Fm}^1_{\forall}(\mathcal{L}_s)$ -equations,

$$T \vDash_{\mathcal{V}}^{\forall} \varphi \approx \psi \quad \Longleftrightarrow \quad T \vDash_{m\mathcal{V}} \varphi^* \approx \psi^*.$$

Note also that it was proved in [8] that a variety of FL_e -algebras axiomatized relative to \mathcal{FL}_e by " \mathcal{N}_2 -equations" (i.e., equations of a certain simple syntactic form) is closed under MacNeille completions if and only if it has an analytic sequent calculus of a certain form. It is also known that a variety of FL_e -algebras has the superamalgamation property if and only if it has the Craig interpolation property (see, e.g., [11]); however, a precise characterization of which varieties of FL_e -algebras (even those with an analytic sequent calculus) have these properties is not known.

References

- G. Bezhanishvili. Varieties of monadic Heyting algebras part I. Studia Logica, 61(3):367–402, 1998.
- [2] G. Bezhanishvili and J. Harding. Functional monadic Heyting algebras. Algebra Universalis, 48:1–10, 2002.
- [3] R. Bull. MIPC as formalisation of an intuitionist concept of modality. J. Symb. Log., 31:609-616, 1966.
- [4] X. Caicedo, G. Metcalfe, R. Rodríguez, and J. Rogger. Decidability in order-based modal logics. J. Comput. System Sci., 88:53–74, 2017.
- [5] X. Caicedo, G. Metcalfe, R. Rodríguez, and O. Tuyt. One-variable fragments of intermediate logics over linear frames. *Inform. and Comput.*, 287, 2022.
- [6] X. Caicedo and R. Rodríguez. Bi-modal Gödel logic over [0,1]-valued Kripke frames. J. Logic Comput., 25(1):37–55, 2015.
- [7] D. Castaño, C. Cimadamore, J. Varela, and L. Rueda. Completeness for monadic fuzzy logics via functional algebras. *Fuzzy Sets and Systems*, 407:161–174, 2021.
- [8] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substructural logics: Cutelimination and completions. Ann. Pure Appl. Logic, 163(3):266–290, 2012.
- [9] P. Cintula, G. Metcalfe, and N. Tokuda. Algebraic semantics for one-variable lattice-valued logics. Proc. AiML 2022, to appear.
- [10] A. di Nola and R. Grigolia. On monadic MV-algebras. Ann. Pure Appl. Logic, 128(1-3):125–139, 2004.
- [11] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, 2007.
- [12] P. Halmos. Algebraic logic, I. Monadic Boolean algebras. Compos. Math., 12:217–249, 1955.
- [13] G. Metcalfe and O. Tuyt. A monadic logic of ordered abelian groups. In Proc. AiML 2020, volume 13 of Advances in Modal Logic, pages 441–457. College Publications, 2020.
- [14] A. Monteiro and O. Varsavsky. Algebras de Heyting monádicas. Actas de las X Jornadas de la Unión Matemática Argentina, Bahía Blanca, pages 52–62, 1957.
- [15] H. Ono and N.-Y. Suzuki. Relations between intuitionistic modal logics and intermediate predicate logics. *Rep. Math. Logic*, 22:65–87, 1988.
- [16] J. Rutledge. A preliminary investigation of the infinitely many-valued predicate calculus. PhD thesis, Cornell University, Ithaca, 1959.
- [17] N.-Y. Suzuki. An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics, *Studia Logica*, pages 141–155, 1989.
- [18] N.-Y. Suzuki. Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics. *Studia Logica*, 49(3):289–306, 1990.