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The one-variable fragment of any first-order logic yields an “S5-like” modal logic, obtained
by replacing each occurrence of an atom P (x) with a propositional variable p, and (∀x) and
(∃x) with 2 and 3, respectively. The first-order semantics typically induces a relational seman-
tics for this modal logic, but finding an axiomatization for its algebraic semantics is hindered
by the fact that an axiomatization of the one-variable fragment cannot be directly extracted
from an axiomatization of the full logic. Nevertheless, axiomatizations have been obtained in
certain well-known cases. Monadic Boolean algebras [12] and monadic Heyting algebras [3, 14]
correspond to the one-variable fragments of first-order classical logic and intuitionistic logic, re-
spectively. More generally, varieties of monadic Heyting algebras corresponding to one-variable
fragments of first-order intermediate logics have been investigated in [1, 2, 4–6,15,17,18]. One-
variable fragments of some first-order many-valued logics have also been studied in some depth;
notably, monadic MV-algebras [7, 10, 16] and monadic Abelian `-groups [13] correspond to the
one-variable fragments of first-order  Lukasiewicz logic and Abelian logic, respectively.

In [9], we initiate a general approach to addressing this axiomatization problem. Let L be an
algebraic signature containing binary operations ∧ and ∨, and consider the sets Fm1

∀(L) of (first-
order) one-variable L-formulas (with quantifiers ∀ and ∃) and Fm2(L) of propositional modal
formulas (with modalities 2 and 3), denoting by (−)∗ the standard translation function from
Fm1
∀(L) to Fm2(L). Members of both Fm1

∀(L) and Fm2(L) are interpreted using semantics
based on algebraic structures for the signature L with a lattice reduct, called L-lattices. For
Fm1
∀(L), we define structures over complete L-lattices and interpret the quantifiers ∀ and ∃ as

infima and suprema. For Fm2(L), we call an algebraic structure 〈A,2,3〉 an m-L-lattice if A
is an L-lattice and 2,3 are unary operations satisfying

(L12) 2x ∧ x ≈ 2x (L13) 3x ∨ x ≈ 3x
(L22) 2(x ∧ y) ≈ 2x ∧2y (L23) 3(x ∨ y) ≈ 3x ∨3y
(L32) 23x ≈ 3x (L33) 32x ≈ 2x,

and for each n-ary operation symbol ? of L,

(?2) 2(?(2x1, . . . ,2xn)) ≈ ?(2x1, . . . ,2xn).

For any class K of complete L-lattices, semantical sentential consequence �∀K is defined over
Fm1
∀(L)-equations, i.e., formal expressions of the form ϕ ≈ ψ where ϕ,ψ ∈ Fm1

∀(L). Similarly,
for any classM of m-L-lattices, semantical consequence �M is defined over Fm2(L)-equations.

Observe now that any complete L-lattice A and set W yields an m-L-lattice 〈AW ,2,3〉,
that we call full functional, where the operations of AW are defined pointwise and for each
f ∈ AW and u ∈W ,

2f(u) =
∧

v∈W
f(v) and 3f(u) =

∨
v∈W

f(v).

We also call an m-L-lattice functional if it embeds into a full functional m-L-lattice.



Given any class K of complete L-lattices, let Kf denote the class of all full functional m-
L-lattices 〈AW ,2,3〉 with A ∈ K. It follows easily that for any set of Fm1

∀(L)-equations
T ∪ {ϕ ≈ ψ} (lifting the translation ∗ to sets of Fm1

∀(L)-equations in the obvious way),

T �∀K ϕ ≈ ψ ⇐⇒ T ∗ �Kf
ϕ∗ ≈ ψ∗.

The general problem addressed here is to provide an (elegant) axiomatization of the generalized
quasivariety of m-L-lattices generated by Kf : that is, the class of all m-L-lattices M satisfying
T ∗ �M ϕ∗ ≈ ψ∗ whenever T �∀K ϕ ≈ ψ for a set of Fm1

∀(L)-equations T ∪ {ϕ ≈ ψ}. In this
work, we solve this problem for the case where K is the class of complete members of a variety
that satisfies two natural algebraic properties.

Given any class K of L-lattices, let K denote the class of complete members of K and let mK
denote the class of m-L-lattices 〈A,2,3〉 with A ∈ K. Following closely the proof of the same
result for monadic Heyting algebras given in [2], we obtain a general functional representation
theorem that gives sufficient conditions on K for all algebras in mK to be functional. Recall
that a class K of L-lattices

(i) admits regular completions if for any A ∈ K, there exist a B ∈ K and an embedding
f : A→ B that preserves all existing meets and joins of A;

(ii) has the superamalgamation property if for any A,B1,B2 ∈ K and embeddings f1 : A →
B1, f2 : A → B2, there exist a C ∈ K and embeddings g1 : B1 → C, g2 : B2 → C such
that g1 ◦ f1 = g2 ◦ f2 and for any b1 ∈ B1, b2 ∈ B2 and distinct i, j ∈ {1, 2} such that
gi(bi) ≤ gj(bj), there exists an a ∈ A satisfying gi(bi) ≤ gi ◦ fi(a) = gj ◦ fj(a) ≤ gj(bj).

Theorem 1. Let K be a class of L-lattices that is closed under subalgebras and direct limits,
admits regular completions, and has the superamalgamation property. Then every member of
mK is functional.

Combing this functional representation theorem with our previous observation regarding
the relationship between consequence in a class of complete L-lattices and the corresponding
class of full functional m-L-lattices, we obtain the following result:

Corollary 1. Let V be a variety of L-lattices that admits regular completions and has the
superamalgamation property. Then for any set T ∪ {ϕ ≈ ψ} of Fm1

∀(L)-equations,

T �∀V ϕ ≈ ψ ⇐⇒ T ∗ �mV ϕ
∗ ≈ ψ∗.

In particular, when V is the variety of Boolean algebras or Heyting algebras, both of which
admit regular completions and have the superamalgamation property, mV is the variety of
monadic Boolean algebras [12] or monadic Heyting algebras [14], respectively, and Corollary 1
yields well-known completeness results for the one-variable fragments of first-order classical
logic and intuitionistic logic.

Further examples can be taken from the class of substructural logics (see, e.g., [11]). In
particular, letting Ls be a signature with binary connectives ∨, ∧, ·, and →, and constant
symbols f and e, an FLe-algebra is an Ls-lattice A = 〈A,∨,∧, ·,→, f, e〉 such that 〈A, ·, e〉 is
a commutative monoid and → is the residuum of ·, i.e., a · b ≤ c ⇐⇒ a ≤ b → c for
all a, b, c ∈ A. Let us denote by FLe the variety of FLe-algebras and by FLew and FLec

the subvarieties of FLe-algebras satisfying f ≤ x ≤ e and x ≤ x · x, respectively, noting that
FLew ∩ FLec is term-equivalent to the variety of Heyting algebras. Since these varieties are
closed under MacNeille completions and have the superamalgamation property (see, e.g., [11]),
Theorem 1 and Corollary 1 yield the following result:



Theorem 2. Let V ∈ {FLe,FLew,FLec}. Then any member of mV is functional and for any
set T ∪ {ϕ,ψ} of Fm1

∀(Ls)-equations,

T �∀V ϕ ≈ ψ ⇐⇒ T �mV ϕ
∗ ≈ ψ∗.

Note also that it was proved in [8] that a variety of FLe-algebras axiomatized relative to FLe

by “N2-equations” (i.e., equations of a certain simple syntactic form) is closed under MacNeille
completions if and only if it has an analytic sequent calculus of a certain form. It is also
known that a variety of FLe-algebras has the superamalgamation property if and only if it has
the Craig interpolation property (see, e.g., [11]); however, a precise characterization of which
varieties of FLe-algebras (even those with an analytic sequent calculus) have these properties
is not known.
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