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Abstract

Linear logic (LL) have been used as a logical framework for establishing sufficient condi-
tions for cut-admissibility of object logics (OL). However, some logical systems cannot be
adequately encoded in LL, the most symptomatic cases being sequent systems for modal
logics. In this extended abstract1, we present a focus linear-nested sequent (LNS) for MMLL
(a variant of linear logic with subexponentials), and show that it is possible to establish a
cut-admissibility criterion for LNS systems for substructural multi-modal logics.

Introduction. Analytic calculi consist solely of rules that compose the formulas to be proved in
a stepwise manner. The best known formalism for proposing analytic proof systems is Gentzen’s
sequent calculus.Unfortunately, sequent systems are not expressive enough for constructing an-
alytic calculi for many modal logics. As a result, many formalisms extending sequent systems
have been proposed over the last 30 years, including hypersequent calculi ([Avr96]), nested
calculi ([Brü09]) and labeled calculi ([Sim94]).

We study cut-admissibility under the linear nested system formalism – LNS ([Lel15]), where
a single sequent is replaced with a list of sequents, and the inference rules govern the transfer of
formulas between the different sequents. We lift to LNS the method developed by [MP13]. More
precisely, we proposed a cut-free focused system for a logic (MMLL) that extends linear logic
(LL) [Gir87] with subexponentials featuring different modal behaviors. We also encode different
object-level logical systems as theories in MMLL. The proposed encodings are adequate at the
highest level and, more interesting, we show that cuts at the object-level can be eliminated by
cuts at the MMLL level. Hence, by proving an easy to verify criterion called cut-coherence, we
obtain for free cut-admissibility results for many modal and substructural logics.
Linear nested systems. A linear nested sequents (LNS) is a finite list of sequents that matches
the history of a backward proof search in an ordinary sequent calculus [Lel15]. For instance,
the modal rules for the axiom K are defined as follows:

G//Γ ` ∆// · ` F

G//Γ ` ∆,2F
2R

G//Γ ` ∆//Γ′, F ` ∆′

G//Γ,2F ` ∆//Γ′ ` ∆′ 2L

Reading bottom up, while in 2R a new nesting/component is created and F is moved
there, in 2L exactly one boxed formula is moved into an existing nesting, losing its modality.
Components in a LNS have a tight connection to worlds in Kripke-like semantics, so that LNS is
an adequate framework for describing alethic modalities. Moreover, information is fragmented

∗Speaker.
1A full version of this paper, that extends [OPX20], is already under evaluation in Mathematical Structures
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Axioms: K 2(F ⊃ G) ⊃ (2F ⊃ 2G) D ¬(2F ∧2¬F ) T 2F ⊃ F 4 2F ⊃ 22F

Γ ` ∆//Σ, F ` Π

Γ,2F ` ∆//Σ ` Π
2L

Γ ` ∆// · ` F

G//Γ ` ∆,2F
2R

Γ ` ∆// · ` ·
G//Γ ` ∆

d
G//Γ, F ` ∆

G//Γ,2F ` ∆
t

Γ ` ∆//Σ,2F ` Π

Γ,2F ` ∆//Σ ` Π
4

Figure 1: Some modal axioms and their linear nested sequent rules.

into components and rules act locally on formulas and are usually context independent. Hence,
the movement of formulas on derivations can be better predicted and controlled.

In this work, besides intuitionistic and classical logics, we are interested in reasoning about
linear nested systems for some notable extensions of the normal modal logic K. Fig. 1 presents
some modal axioms and the respective linear nested rules. Let A = {T, 4,D}. Extensions of
the logic K are represented by KR, where R ⊆ A. For instance, S4 = KT4.

Modalities can be combined, giving rise to multi-modal logics. Simply dependent multi-
modal logics are characterized by a triple (N,4, F ), where N is a denumerable set, (N,4) is
a partial order, and F is a mapping from N to the set L of extensions of modal logic K with
axioms from the set A. The logic described by (N,4, F ) has modalities 2i for every i ∈ N ,
with axioms for the modality i given by the logic F (i) and interaction axioms 2jA ⊃ 2iA for
every i, j ∈ N with i 4 j.
Linear logic with multi-modalities. Classical linear logic (LL, [Gir87]) is a resource con-
scious logic, in the sense that formulas are consumed when used during proofs, unless marked
with the exponential ? (whose dual is !). Formulas marked with ? behave classically, i.e., they
can be contracted and weakened during proofs. LL connectives include the additive conjunction
& and disjunction ⊕ and their multiplicative versions ⊗ and O, together with their units.

LNSLL ([LOP17]) is an end-active, linear nested system for linear logic. In this system, the
promotion rule is split into the following local rules:
` Γ//` F

E//` Γ, !F
!

` Γ//` ∆, ?F

` Γ, ?F//` ∆
?

Observe that no checking must be done in the context in order to apply the ? rule: The only
checking is in the ! rule, where E should be the empty sequent or an empty list of components.
Note the similarities between the LNS rules ! and 2R; and ? and 4 in Fig. 1. Indeed, in ([LOP17])
such similarities were exploited in order to propose extensions of LNSLL with multi-modalities,
called subexponentials, allowing for different modal behaviors.

Similar to modal connectives, exponentials in LL are not canonical ([DJS93]), in the sense
that if i 6= j then !iF 6≡ !jF and ?iF 6≡ ?jF . Intuitively, this means that we can mark the
exponentials with labels taken from a set S organized in a pre-order �, obtaining (possibly
infinitely-many) exponentials (!i, ?i for i ∈ S). Also as in multi-modal systems, the pre-order
determines the provability relation: !bF implies !aF iff a � b.

In ([LOP17]) we extended the concept of simply dependent multimodal logics to the substruc-
tural case, where subexponentials consider not only the structural axioms for contraction (C :
!i(F )−◦ !iF ⊗ !iF ) and weakening (W : !iF −◦1) but also the subexponential version of axioms
{K, 4,D,T}: K : !i(F −◦G)−◦ !iF −◦ !iG D : !iF −◦?iF T : !iF −◦F 4 ; !iF −◦ !i!iF

This means that ?i can behave classically or not, but also with exponential behaviors dif-
ferent from those in LL. Hence, by assigning different modal axioms one obtains, in a modular
way, a class of different substructural modal logics. For instance, subexponentials assuming T
allow for dereliction and those assuming 4 are persistent (while those assuming only K are not).
In fact, substructural KD can be seen as a fragment of elementary linear logic ELL.

Our main goal is to show how this new class of subexponentials can be applied to the
problem of characterizing cut-admissibility of object-level logical systems. The first step is to
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Structural rules: posi : bAc⊥ ⊗ (?ibAc) negi : dAe⊥ ⊗ (?idAe)
Intuitionistic implication: ⊃L: bA ⊃ Bc⊥ ⊗ (dAe ⊗ bBc) ⊃R: dA ⊃ Be⊥ ⊗ !t4(bAcOdBe)
Modal rules: 2Li : b2Ac⊥ ⊗ ?ibAc 2Ri : d2Ae⊥ ⊗ !idAe

Figure 2: Encoding of structural, intuitionistic implication and modal rules.

propose a focused [And92] system for the logic. Below the modal rules of the system:
` Θ; · ⇑ ·//i` ·; · ⇑ F

` Θ; · ⇓ !iF
!i

` Υ; · ⇑ L

` Θu; · ⇑ ·//i` Υ; · ⇑ L
Rr

` Θ; · ⇑ ·//i` ·; · ⇑ ·
` Θ; · ⇑ · Dd

` Θu; · ⇑ F

` Θu; · ⇓ !cF
!c

` Θ; Γ ⇑ · //i` Υ, j+ : F ; · ⇑ L

` Θ, j : F ; Γ ⇑ · //i` Υ; · ⇑ L
?i4

` Θ; · ⇑ · //i` Υ; · ⇑ L,F

` Θ, j : F ; · ⇑ · //i` Υ; · ⇑ L
?ikl

` Θ; · ⇑ · //i` Υ, c : F ; · ⇑ L

` Θ, j : F ; · ⇑ · //i` Υ; · ⇑ L
?iku

These rules have some interesting characteristics that ease the use of the system and its
formalization in Coq (https://github.com/meta-logic/MMLL). Consider a subexponential
j. When j features the axiom 4, the rules ?ikl (linear K) and ?iku (unbounded K) cannot be
applied. Dually, if the subexponential does not feature 4, the rule ?i4 is not enabled and the use
of ?ikl (resp. ?iku) is only possible if j is linear (resp. unbounded). The rules have also a better
control of contraction, thus avoiding the need of guessing the number of times a formula must
be copied to the next component. Note that the rule ?i4 moves the formula F stored in the
context j to the context j+ (a unbounded version of j featuring T). This has two immediate
effects: The formula F can be copied to yet another component (once it is created) reflecting
the behavior of the modal rule 4 (persistence); moreover, since the axiom T is present in j, the
formula F can be also used in the last component by applying the decision rule. In other words,
the rule ?i4 embeds both the behavior of K (moving formulas between components) and also 4
(by keeping the modality of the formula). On the other hand, the behavior of K, without 4, is
specified by the rules ?ikl and ?iku. In the first case, j is linear and then F is not contracted.
In the second case, F is placed in the context c, an unbounded subexponential not related to
any other subexponential. Hence, F cannot be moved to other components.

We have proved cut-elimination for this system by using five different cut-rules that are
mutually eliminated. Such procedure have been mechanized in Coq.

Object logics. We have shown that different LNS systems can be specified as MMLL theories.
The encoding of the OL’s inference rules is modular and it allows for the specification of multi-
modal logics in a uniform way. We have proved that the resulting specifications are adequate:
an OL sequent S is provable iff the encoding of S is also provable in MMLL.

Roughly, OL formulas are specified using the meta-level (MMLL) predicates b·c and d·e,
that identify the occurrence of such formulas on the left and on the right side of the sequent
respectively. Hence, OL sequents of the form B1, . . . , Bn ` C1, . . . , Cm, n,m ≥ 0, are specified
as the multiset of atomic MMLL formulas bB1c, . . . , bBnc, dC1e, . . . , dCme.

Inference rules of the OL are specified as rewriting clauses that replace the principal formula
in the conclusion of the rule by the active formulas in the premises. The LL connectives indicate
how these OL formulas are connected: contexts are copied (&) or split (⊗), in different inference
rules (⊕) or in the same sequent (O). Here some examples for the classical logic connectives:

∧L : bA ∧Bc⊥ ⊗ (bAc ⊕ bBc) ∧R : dA ∧Be⊥ ⊗ (dAe& dBe) fL : bfc⊥ ⊗>
→L: bA→ Bc⊥ ⊗ (dAe ⊗ bBc) →R: dA→ Be⊥ ⊗ (bAcOdBe) init : bAc⊥ ⊗ dAe⊥

In the intuitionistic system LNSI [LOP17], the rule ⊃R creates a new component while
lift moves formulas across components. Such behavior can be specified with the unbounded
subexponential t4 featuring K, T and 4 as in Fig. 2. This figure also shows the (parameterized)
clauses specifying the rules for box. As expected, the modalities of the subexponential i are
determined by the modal behavior of the encoded modality 2i.
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It is worth noticing the modularity of the encodings: all the modal systems have exactly
the same encoding, only differing on the meta-level modality. This is a direct consequence of
locality, granted by LNS. This also opens the possibility of being able to adequately encode a
larger class of modal systems. For instance, if we are considering a (modal) substructural logic
where formulas not necessarily behave classically, it suffices to remove the clauses pos and/or
neg accordingly.
Cut-elimination for object logics. We showed that an easy-to-check criterium, called cut-
coherence implies that cuts at the object-level can be eliminated by cuts at the meta-level.

Consider the (multiplicative) OL cut rule specified as the clause cut = ∃F.(bF c⊗dF e). Cut-
coherence is the property that allows us to show the duality, at the meta-level, of the predicates
bF c and dF e. More precisely, let C be the set of connectives of the OL L. The encoding of
L as an MMLL theory is a pair of functions Bb| · |c and Bd| · |e from C to MMLL of the form
Eb| ? |c = ∃F1, ..., Fn.(b?(F1, ..., Fn)c⊥ ⊗ Bb| ? |c) Ed| ? |e = ∃F1, ..., Fn.(d?(F1, ..., Fn)e⊥ ⊗ Bd| ? |e).
We say that the resulting MMLL theory is cut-coherent if, for each connective ? ∈ C, and
F = ?(F1, ..., Fn), the following sequent is provable ` ω : cut;⇑ ∀F1, ..., Fn.((Bb| ? |c)⊥O(Bd| ? |e)⊥).

All the encodings we have proposed for substructural modal logics based on multiplicative-
additive linear logic with different modalities extending K are cut-coherent. Then, for all these
encodings, the following result can be applied.
Theorem: Cut-coherence. Let TL be the theory of a given OL L, and let Ψ be a multiset
and Θ a subexponential context containing only atoms of the form d·e and b·c. The sequent
` ω : {TL, cut},Θ; Ψ ⇑ · is provable iff ` ω : TL,Θ; Ψ ⇑ · is provable.

As future work, it would be interesting to analyze the case of non-normal modal log-
ics ([LP19]), as well as to explore the failure cases.
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