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Given a proof system, how can we specify the “hardness” of its theorems? One way to tackle
this problem is taking the lengths of proofs as the corresponding hardness measure. Following
this route, we call a theorem hard when even its shortest proof in the system is “long” in a
certain formal sense. Finding hard theorems in proof systems for classical logic has been an
open problem for a long time. However, in recent years as significant progress, many super-
intuitionistic and modal logics have been shown to have hard theorems. In this talk, we will
extend the aforementioned result to also cover a variety of weaker logics in the substructural
realm. We show that there are theorems in the usual calculi for substructural logics that are
even hard for the intuitionistic systems.

In technical terms, for any proof system P at least as strong as Full Lambek calculus, FL,
and polynomially simulated by the extended Frege system for some infinite branching super-
intuitionistic logic, we present an exponential lower bound on the proof lengths. More precisely,
we will provide a sequence of P-provable formulas tAnu

8
n“1 such that the length of the shortest

P-proof for An is exponential in the length of An. The lower bound also extends to the number
of proof-lines (proof-lengths) in any Frege system (extended Frege system) for a logic between
FL and any infinite branching super-intuitionistic logic. Finally, in the classical substructural
setting, we will establish an exponential lower bound on the number of proof-lines in any proof
system polynomially simulated by the cut-free version of CFLew.

To be able to present the results formally, we need some ingredients. Let us start with
defining substructural logics. For simplicity, we provide hard formulas for FLe. However, there
are also hard theorem for the weaker logic FL [2]. The language we use is t0, 1,^,_, ˚,Ñu.
Uppercase Greek letters denote multisets of formulas, and lower case Greek letters represent
formulas. Consider the following sequent calculus:

φñ φ ñ 1 0ñ

Γñ ∆
p1wq

Γ, 1ñ ∆
Γñ ∆

p0wq
Γñ 0,∆

Γ, φñ ∆

Γ, φ^ ψ ñ ∆

Γ, ψ ñ ∆

Γ, φ^ ψ ñ ∆

Γñ φ,∆ Γñ ψ,∆

Γñ φ^ ψ,∆

Γ, φñ ∆ Γ, ψ ñ ∆

Γ, φ_ ψ ñ ∆

Γñ φ,∆

Γñ φ_ ψ,∆

Γñ ψ,∆

Γñ φ_ ψ,∆

Γ, φ, ψ ñ ∆

Γ, φ ˚ ψ ñ ∆

Γñ φ,∆ Σñ ψ,Λ

Γ,Σñ φ ˚ ψ,∆,Λ

Γñ φ,∆ Σ, ψ ñ Λ

Γ,Σ, φÑ ψ ñ ∆,Λ

Γ, φñ ψ,∆

Γñ φÑ ψ,∆

Γñ φ,∆ Σ, φñ Λ
pcutq

Γ,Σñ ∆,Λ
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FL

FLcFLeFLoFLi

FLw FLei FLeo FLco FLec

FLew FLci “ FLeci FLeco

FLcw “ FLecw “ LJ

The sequent calculus FLe is the single-conclusion version of the sequent calculus presented
above and CFLe is the multi-conclusion version. The structural rules are as usual:

Weakening rules:

Γñ ∆
piq

Γ, φñ ∆
Γñ ∆

poq
Γñ φ,∆

Contraction rules:

Γ, φ, φñ ∆
pLcq

Γ, φñ ∆

Γñ φ,φ,∆
pRcq

Γñ φ,∆

Adding these rules to the sequent calculi defined, result in various substructural calculi. It is
worth mentioning that if we consider uppercase Greek letters to be sequences of formulas instead
of multisets, i.e., the exchange rule is not present, then, we can introduce two implication-like
connectives z and {, and include their respective rules. This system is called FL. The figure
on top of this page shows the web of the sequent calculi between the full Lambek calculus FL
and LJ, the usual sequent calculus for the intuitionistic logic IPC. Some other sequent calculi
for which our result holds for are listed in Table 1.

Second, let us define Frege systems. They are the most natural calculi for propositional logic.

A (Frege) rule is an expression of the form
φ1, . . . , φk

φ where φ1, . . . , φk, φ are propositional

formulas. Let P be a finite set of rules. A P-proof of φ from a set of assumptions X, denoted
by X $P φ, is φ1, . . . , φm “ φ such that each φi P X, or is inferred from some φj , j ă i, by a
substitution instance of rule in P. The formulas φi are called lines of the proof.

A finite set of rules, P, is called a Frege system for a logic L when

p1q P is strongly sound: if φ1, . . . , φn $P φ, then φ1, . . . , φn $L φ,

p2q P is strongly complete: if φ1, . . . , φn $L φ, then φ1, . . . , φn $P φ.

Third, and finally, we give a characterization of superintuitoinistic logics of infinite branch-
ing. Consider the following superintuitionistic (si) logics:

KC “ IPC`␣p_␣␣p , BDn “ IPC`BDn

2



Weak Systems Have Intractable Theorems Jalali

Table 1: Some sequent calculi with their definitions.

Sequent calculus Definition
RL FL` p0ô 1q

CyFL FL` pφz0ô 0{φq
DFL FL` pφ^ pψ _ θq ô pφ^ ψq _ pφ^ θqq
PnFL FL` pφn ô φn`1q

psBL FLw ` tpφ^ ψ ô φ ˚ pφzψqq, pφ^ ψ ô pψ{φq ˚ φqu
HA FLw ` pφô φ2q

DRL RL` pφ^ pψ _ θq ô pφ^ ψq _ pφ^ θqq
IRL RL` pφñ 1q
CRL RL` pφ ˚ ψ ô ψ ˚ φq
GBH RL` tpφ^ ψ ô φ ˚ pφzψqq, pφ^ ψ ô pψ{φq ˚ φqu
Br RL` pφ^ ψ ô φ ˚ ψq

where IPC is the intuitionistic logic and BD0 :“ K and BDn`1 :“ pn _ ppn Ñ BDnq. Jeřábek
in [3] proved the following interesting theorem that a superintuitionistic logic L has infinite
branching iff L Ď BD2 or L Ď KC` BD3.

Now, let us give a sketch of how to prove the lower bound. In order to do so, we have
to provide a sequence of formulas provable in FLe, such that every proof of them are long.
This task requires two steps. The first step, which is the main task, is providing a sequence
of FLe-tautologies. To achieve this goal we change the existing hard intuitionistic tautologies
in a suitable way that they become provable in FLe, but remain hard. The next step, which
is the easier part, is proving that these tautologies are hard. To do so, we use the canonical
translation of the language of FLe to the language of IPC, i.e., sending t0, 1, ˚u to tK,J,^u,
respectively and the other connectives to themselves. It is easy to see that this transformation
takes polynomial time.

Let us mention the form of the hard intuitionistic tautologies. The following formulas, Θn,k,
are hard for IPC and they are negation-free and K-free. Small Roman letters denote atomic
formulas and the formulas αk

n and βk`1
n are monotone, i.e., only consist of atoms, ^, _.

Θn,k :“
ľ

i,j

ppi,j _ qi,jq Ñ

rp
ľ

i,l

psi,l _ s
1
i,lq Ñ αk

npp̄, s̄, s̄
1qq _ p

ľ

i,l

pri,l _ r
1
i,lq Ñ βk`1

n pq̄, r̄, r̄1qqs

The result by Hrubeš [1] and Jeřábek [3] is the following theorem:

Theorem. The formulas Θn,k are IPC-tautologies and require IPC-Frege proofs with 2n
Ωp1q

lines, for k “ t
?
nu.

In the following we see the form of the hard FLe tautologies:

Θ˚
n,k :“ r˚

i,j
pppi,j ^ 1q _ pqi,j ^ 1qqs Ñ

“

p˚
i,l
ppsi,l ^ 1q _ ps1

i,l ^ 1qq Ñ αk
nq _ p˚

i,l
ppri,l ^ 1q _ pr1

i,l ^ 1qq Ñ βk`1
n q

‰

Now, we have all the ingredients to formally state our result:
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Theorem. [2] The formulas Θ˚
n,k are FLe-tautologies. Moreover, for any substructural logic

L and any superintuitionistic logic of infinite branching M such that FLe Ď L Ď M, the formulas

Θ˚
n,k require L-Frege proofs with 2n

Ωp1q

lines, for k “ t
?
nu.

The concrete application of the theorem follows:
Corollary. Let S Ď te, c, i, ou, and L be FLS, or any of the logics of the sequent calculi

in Table 1. Then the length of every proof of Θ˚
n in any (extended) Frege system for L is

exponential in n.
Let us end with the following question: what happens in the case of the classical versions of

the above substructural logics? They are not included in IPC and hence our method does not
work. However, for their cut-free versions we have the following theorem.

Theorem. The length of every proof of Θ˚
n in the sequent calculi CFL´

e ,CFL´
ei,CFL´

eo,
and CFL´

ew is exponential in n, where the “´ ” means without the cut rule.
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