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Topological dynamics is a branch of dynamical systems theory which studies the asymptotic
behaviour of continuous functions on topological spaces. A (topological) dynamic system is a
topological space X = (X, τ) equipped with a continuous function S : X −→ X. Based on
Tarski’s observations that modal logic can be evaluated in topological spaces [10], Artemov et
al. introduced in 1997 a temporal logic which extends modal logic by the next operator ⃝
to reason about topological dynamic systems [1]. From a temporal point of view the continu-
ous function S can be regarded as a time-function which maps points of the topological space
from one time moment to the next. The next operator is therefore used to reason about the
behaviour of S. The work of Artemov et al. was later continued by Kremer and Mints [6] by
extending their system with the temporal operators 3 called eventually and 2 called hence-
forth. The resulting system is called Dynamic Topological Logic (DTL). The addition of 3 and
2 substantially increases the expressive power of DTL and allows one to formulate interesting
properties of dynamical systems. The project to build a logic to reason about topological dy-
namics however suffered a setback when Konev et al. proved that DTL is not decidable [5]. As
a consequence of this result the focus of the project has shifted from DTL to an intuitionistic
variant of DTL called Intuitionistic Temporal Logic (ITL). This focus shift is motivated by
the observation that intuitionistic logic has better computational properties than classical logic
and so it is hoped that ITL is decidable. Indeed, first results about ITL are promising: In
2018, Fernández-Duque established decidability of a fragment of ITL called ITL3 which only
contains the next and the eventually operator [4]. Importantly, henceforth and eventually are
not interdefinable in ITL (in contrast to DTL) as the base logic of ITL is intuitionistic. The
proof of decidability relies on model theoretic techniques, in particular on the construction of
so-called quasi models. Later, Boudou et al. proved completeness of this fragment with respect
to the class of topological dynamic systems [2] by using similar techniques.

While the semantical aspects of ITL have been studied quite extensively in recent years, there
is little known about the proof theory of ITL. Our long term goal is to fill this gap and provide
a satisfying proof theory for intuitionistic temporal logic. For a start, we aim to investigate the
proof theory of ITL3. Our project roughly consists of three main steps:

1. Define a sound and complete cyclic proof system for ITL3.

2. Establish cut-elimination either syntactically or by an indirect argument.

3. Use the cut-free system to obtain a syntactic decidability proof and invesitigate the com-
plexity of the validity problem.
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At the point of writing this abstract we have completed step 1 and we are currently investigat-
ing the second step. In the following we describe in more detail each step.

For step 1 we define a cyclic proof system called ITLc3 which is based on a standard multi-
conclusion sequent calculus for intuitionistic logic presented in [7]. This calculus is extended
by rules for the next operator and the eventually operator. In particular, the rules for 3 are
standard unfolding rules, which replace the formula 3A by its equivalent unfolding A ∨⃝3A.
The rules for 3 together with the cycle mechanism characterize the formula 3A as the least
fixed point of the function X 7→ A ∨ ⃝X. Importantly, as the logic ITL3 is not only sound
and complete with respect to topological dynamic models but also with respect to the class
of dynamic Kripke frames [2], the topological semantics does not play a role in the presented
calculus. As henceforth is not definable in our language, there does not exist any form of fixed
point alternation in ITL3. This implies that characterizing successful repetitions in a cyclic
proof is a much easier task than for other fixed point logics such as the modal mu-calculus. In
particular, we do not require a focus mechanism for our system. Soundness of ITLc3 is estab-
lished by a minimal counter model approach which is common in the literature (see for example
[9]). For completeness we consider a Hilbert style proof system for ITL3 which is proven to
be complete with respect to the class of topological dynamic systems in [2] and show how to
embed it into the cyclic calculus ITLc3. As a consequence of this technique we do not obtain
cut-free completeness, as the cut-rule is needed to derive the modus ponens rule. An important
goal of our work is therefore to also establish cut free completeness, which brings us to step 2.

For step 2 we plan to establish a cut-elimination result by providing a syntactic cut-elimination
procedure inspired by the continuous cut-elimination procedure of Savateev and Shamkanov
in [8]. To that end we define a non-wellfounded proof system called ITLn3 for ITL3. We first
show how to unfold a cyclic proof into a non-wellfounded proof and vice versa, how to prune a
non-wellfounded proof into a cyclic one. By doing so we establish soundness and completeness
of the non-wellfounded system. Then a procedure is described which, given a non-wellfounded
proof in which the cut-rule is applied, pushes the occurrence of the cut-rule upwards. By ap-
plying the procedure infinitely many times, we create an infinite sequence of non-wellfounded
proofs which has the property that in each proof the first appearence of cut occurs above the
first appearence of cut in the previous proof. By taking the limit of this construction, we ob-
tain a cut-free non-wellfounded proof which can be pruned back into a cyclic proof. The main
difficulty in this approach lies in showing that the limit of this sequence is a tree which satisfies
the global trace conditions required for soundness of the system. In case such a cut-elimination
procedure does not work for ITLc3 we would consider establishing cut-elimination indirectly by
giving a completeness proof without cut via a standard proof search argument.

Finally, for step 3, we plan to establish decidabilty of ITL3 by translating the non-wellfounded
calculus ITLn3 minus cut into a parity game called proof search game. This proof search game
is played by two players called Prover and Refuter. It is Prover’s goal to show that a given
sequent is derivable in ITLn3 and Refuter’s goal to show the opposite, i.e. the sequent is not
derivable. The positions of the game include all sequents that can be built from formulas in the
Fischer-Ladner closure of the given sequent as well as every possible rule application including
only such sequents. Whenever a match is in a position which is a sequent, it is Prover’s turn
and she can choose which rule to apply to that sequent. Next, it is Refuter’s turn who can
choose at which premise of the rule instance chosen by Prover the game continues. Therefore,
a match in the proof search game corresponds to a finite or infinite path of a ITLn3-pre-proof.



Consequently, the strategy tree of Prover corresponds to some ITLn3-pre-proof. Observe that
this corresponding pre-proof is analytic, as the game only consists of sequents that occur in the
Fischer-Ladner closure of the endsequent. We establish the result that a sequent is provable in
ITLn3 if and only if Prover has a positional winning strategy in the corresponding game. We then
use a result proven by Calude et al. in [3] to establish the existence of an algorithm deciding
for each sequent whether Prover has a positional winning strategy in the corresponding game
and so whether the sequent is provable in ITLn3. The aforementioned result also establishes a
first complexity bound for the validity problem of ITL3. However, it is unclear whether such
an approach would give us an optimal complexity bound. We plan to investigate this question
and to give alternative decision procedures.

Our work is a continuation of the project to develop logics for reasoning about topological
dynamics with good computational properties. We hope to provide a first insight into the proof
theory of intuitionistic temporal logics and lay a foundation to investigate more complicated
logics, in particular the logic ITL based on the full language with next, eventually and hence-
forth. The work on cut elimination is especially interesting, as surprisingly little can be found
about this topic for cyclic proofs in general and we are interested in filling this gap. Further-
more, we hope to provide a new proof of decidability of ITL3 which, in contrast to [4], relies
entirely on syntactic arguments.
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