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1 Introduction

Several recent works in epistemic logic focus on finding a way to model the notion of ignorance
(see, e.g., [10], [8], [1], [3]). One of the difficulties in achieving this task is that there is no
agreement on which notion of ignorance to model. Indeed, van der Hoek & Lomuscio [10]
take ignorance to be ‘not knowing whether’; Steinsvold [8] considers ignorance as ‘unknown
truth’; finally, Kubyshkina and Petrolo [3] introduce a primitive ignorance operator relying on
the factive nature of ignorance. We argue that these three different approaches should not
be considered as exclusive alternatives, but as representing different aspects of the polysemic
notion of ignorance. From this perspective, these three types of ignorance should coexist in the
same formal framework. On the basis of this pluralist view, our main objective is to provide
a unified framework expressing all the aforementioned types of ignorance, in order to analyse
their behaviour and interactions.

We introduce a class of Kripke models, ignorance models, which interpret the three types of
ignorance. We then define a labelled sequent calculus called labWUDI, and prove its soundness
and completeness with respect to ignorance models. Completeness is proved by constructing
a countermodel from a failed and finite proof search tree. In future work we plan to define a
Hilbert-style axiomatization for ignorance models, to prove admissibility of cut for labWUDI,
and to investigate alternative non-labelled calculi to treat ignorance. Furthermore, to study
the interactions between ignorance and knowledge modalities, we intend to strengthen our
models by imposing (combinations of) reflexivity, transitivity and symmetry on the accessibility
relation, and to define sequent calculi formalising these frameworks.

2 Ignorance models

Given a countable set of propositional variables Atm = {p, q, . . . }, formulas of our language are
constructed using the following grammar: φ ::= p | ⊥ | φ→φ | 2φ | Iwφ | Iuφ | Idφ. Negation
is set to be ¬φ := φ→⊥, and the other propositional connectives can be standardly defined.
Operator Iw , for ignorance whether, was introduced by van der Hoek & Lomuscio [10]; Iu , for
unknown truth, by Steinsvold [8, 9], and Id by Kubyshkina & Petrolo [3]. Differently from
[3], we intuitively interpret Id as representing a specific type of ignorance, namely, disbelieving
ignorance, which is characterized by Peels [7] as follows: “[a subject] S is disbelievingly ignorant
that p iff (i) it is true that p, and (ii) S disbelieves that p.”

For each ignorance operator there exists a complete Hilbert-style system. However, no
unified framework for all the three ignorance operators is present in the literature.



Definition 2.1. An ignorance model is a triple M = 〈W,R, v〉, where W is a set of possible
worlds, R ⊆W×W and v : Atm→ 2W is a valuation of propositional variables. We assume R to
satisfy the two-worlds property, that is: for all x ∈W, there is a y ∈W such that xRy and x 6=
y. The satisfiability relation of formulas in a world x of a model M is defined as:

M, x |= p iff x ∈ v(p) and M, x 6|= ⊥;
M, x |= φ→ ψ iff M, x 6|= φ or M, x |= ψ;
M, x |= 2φ iff for all y ∈W , if xRy then M, y |= φ;
M, x |= Iwφ iff there are y, z ∈W s.t. xRy, xRz, M, y 6|= φ and M, z |= φ;
M, x |= Iuφ iff M, x |= φ and there is y ∈W s.t. xRy and M, y 6|= φ;
M, x |= Idφ iff M, x |= φ and for all y ∈W , if xRy and y 6= x then M, y 6|= φ.

We say that φ is valid in M and write M |= φ if M, x |= φ for all x in W . If for all M we
have M |= φ, we say that φ is valid, and write |= φ.

Ignorance whether and unknown truth can be defined in terms of the 2 operator as follows:
Iwφ := ¬2φ∧¬2¬φ and Iuφ = ¬2φ∧ φ. Interestingly, disbelieving ignorance is not definable
in terms of 2 in none of the standard frames (K, T, S4, and S5), see [2]. Since we here focus
on ignorance operator, we take Iw and Iu as primitive in our language.

The two-worlds property ensures that all worlds in a model have access to some world other
than themselves. This allows one to avoid some counterintuitive consequences: for instance,
when evaluating formulas at a one-world model M, we get that M |= Id>, M |= ¬Iw>, and
M |= ¬Iu>. Indeed, it seems implausible that an agent is disbelievingly ignorant of a tautology,
but she is not ignorant of its truth (neither in the sense of Iw, nor of Iu). By assuming the
two-worlds property we obtain validity of formula ¬Id>.

3 Labelled sequent calculus

In this section, we shall introduce a labelled calculus labWUDI, following the methodology from
[4]. We enrich our language by an infinite set of variables, called labels: x, y, z, etc. Then,
relational atoms have the form xRy or x 6= y, and labelled formulas have the form x : φ. A
labelled sequent has the form Γ ⇒ ∆, where Γ is a multiset of relational atoms and labelled
formulas and ∆ is a multiset of labelled formulas.

The rules of labWUDI are illustrated in Figure 1. The calculus features only one structural
rule, 2w, expressing the two-worlds property. Propositional rules and the rules for 2 are stan-
dard. The rules for ignorance operators have been defined based on the truth condition of the
operators at ignorance models. The condition for Id on the left is captured by a pair of rules,
one of which only introducing formulas within the label of the principal formula, x1. Rules IuR
and IwR introduce 2-formulas in its premisses, needed to express the universal conditions in the
negated truth conditions for Iu and Iw respectively.

Labelled sequents do not have a direct formula interpretation, and thus we need to interpret
them over ignorance models to prove soundness of the calculus, which is straightforward.

Definition 3.1. Given a labelled sequent Γ ⇒ ∆ and an ignorance model M = 〈W,R, v〉,
let S = {x | x ∈ Γ ∪ ∆} and ρ : S → W . We define the following relation: M, ρ |= xRy iff
ρ(x)Rρ(y); M, ρ |= x 6= y iff ρ(x) 6= ρ(y); and M, ρ |= x : φ iff ρ(x) |= φ. A sequent Γ ⇒ ∆ is
satisfied at M under ρ if, if for all formulas φ ∈ Γ it holds that M, ρ |= φ, then there exists a

1In presence of 2w, rules IdL1 and IdL2 can be formulated as a single rule. Our choice is motivated by modularity:
the rules from Figure 1 without 2w are adequate w.r.t. ignorance models without the two-worlds property.
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∗ : y (and z, if present) is fresh, i.e., it does not occur in Γ ∪∆.

Figure 1: Sequent calculus labWUDI

formula ψ ∈ ∆ such that M, ρ |= ψ. Then, Γ⇒ ∆ is valid in M if the sequent is satisfied at
M for all ρ. Finally, Γ⇒ ∆ is valid if the sequent is valid in all models.

Theorem 3.2 (Soundness). If ⇒ x : φ is provable in labWUDI, then φ is valid.

To prove completeness of labWUDI with respect to ignorance models, we show how to
construct a finite countermodel from a failed and finite proof search tree, adapting to our
setting the proof-or-countermodel approach to completeness for labelled calculi introduced in
[5] (refer also to [6]). Thus, we first show termination of labWUDI, the main difficulty being
that rule 2w may lead to non-termination of root-first proof search. We shall introduce a proof
search strategy restricting the application of rule 2w. We first define a measure for formulas.

Definition 3.3. We define the weight of a labelled formula as follows: w(xRy) = w(x 6= y)
= 0 and, for a labelled formula x : φ, we set w(x : χ) = w(χ), where w(χ) is inductively
defined as follows: w(p) = w(⊥) = 1; w(φ→ ψ) = w(φ) + w(ψ) + 1; w(Kφ) = w(φ) + 2; and
w(Idφ) = w(Iuφ) = w(Iwφ) = w(φ) + 3.

Next, we define the notion of saturated sequent. Intuitively, a sequent is saturated if it
is not an initial sequent and if all the rules have been non-redundantly applied to it. More
formally, given a branch B = {Γi ⇒ ∆i}i>0 in a proof search tree and a sequent Γn ⇒ ∆n in
B, let ↓ Γn =

⋃n
i=1 Γi and ↓ ∆n =

⋃n
i=1 ∆i. Moreover, given two labels z and x occurring in a

sequent Γn ⇒ ∆n, we write For(z) = For(x) meaning that the set of formulas labelled by z and
occurring in ↓ Γn coincides with the set of formulas labelled with x and occurring in ↓ Γn, and
similarly for ↓ ∆n. We then associate to each rule a saturation condition. We explicitly show
the one for 2w and, by means of example, the one for IdR :

(IdR ) If x : Idφ ∈↓ ∆n, then either x : φ ∈↓ ∆n or for some y, xRy ∈ Γn, x 6= y ∈ Γn and
y : φ ∈↓ Γn.



(2w) For all x in ↓ Γn∪ ↓ ∆n, either xRy ∈ Γn and x 6= y ∈ Γn for some y, or zRx ∈ Γn and
z 6= x ∈ Γn, for some z such that For(z) = For(x).

A labelled sequent is saturated if it meets the saturation conditions for all the rules, and if
it not an instance of ⊥ or init. Next, we define our proof search strategy as follows: given a
sequent, we first apply to it rules that do not introduce bottom-up new labels, and rules that
do introduce new labels, except for 2w. Once all the other rules have been applied, we apply
2w, taking care of not applying the rule to a label x if one of the two conditions described in
the saturation condition is met. The saturation condition (2w) allows to prove the following:

Theorem 3.4 (Termination). Root-first proof search for a sequent ⇒ x : φ built in accordance
with the strategy comes to an end in a finite number of steps, and each leaf of the proof-search
tree contains either an initial sequent or a saturated sequent.

To conclude, we sketch the proof of completeness:

Theorem 3.5 (Completeness). If φ is valid, there is a derivation of ⇒ x : φ.

Proof sketch. We prove the counterpositive. Suppose that⇒ x : φ is not derivable in labWUDI.
By termination, if φ is not derivable then there is a proof search branch B whose upper node
is occupied by a saturated sequent, Γn ⇒ ∆n. We construct a model MB = 〈WB,RB,VB〉
that satisfies all formulas in ↓ Γn and falsifies all formulas in ↓ ∆n as follows: WB = {x | x ∈↓
Γn∪ ↓ ∆n}, RB = {(x, y) | xRy ∈ Γn} and VB(p) = {x ∈ WB | x : p ∈ Γn}. Note that distinct
variables in ↓ Γn∪ ↓ ∆n get mapped to distinct elements in WB. As it is, MB does not satisfy
the two-worlds condition. We modify the model as follows. Whenever we have a world x that
has no access to worlds other than itself, by the saturation condition (2w) there needs to be
a world z such that zRx and z 6= x occur in Γn. We add (x, z) ∈ RB, and conclude that x
satisfies the two-worlds condition. To conclude the proof, one needs to show that MB satisfies
formulas in ↓ Γn and falsifies all formulas in ↓ ∆n. This is proved by induction on the weight
of formulas, and by taking ρ(x) = x, for all x ∈↓ Γn∪ ↓ ∆n. The crucial case is proving that if
x : Idφ occurs in ↓ Γn, then MB, ρ |= x : Idφ.
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