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Motivation and goal. Probabilities have been developed, mostly in the context of classical
logic, to model reasoning based on probabilistic information. Belief functions are a generalisation
of probabilities for situations where one is not able to give the exact probability of an event,
but an approximation in the terms of an upper/lower bound. They were developed based on
classical reasoning to handle situations with incomplete information, but they often produce
counter-intuitive results when formalising situations involving contradictory information.

In [8] the authors propose a generalisation of probabilities for reasoning based on Belnap
Dunn logic BD. In this paper, we extend their work and propose a generalisation of classical
belief functions which is based on BD, and provide two-layered modal logics extending BD for
reasoning about probabilities and belief functions. We focus on finite structures, therefore we
consider logics over a finite set of atomic propositions and finite algebras.

Representation of uncertainty

Probabilistic reasoning based on incomplete and inconsistent information. The main
idea behind Belnap-Dunn logic is to treat positive and negative information independently. A
BD model is a tuple M = ⟨S, v+, v−⟩ where S is a finite set of states, v+, v− : S × Prop →
{0, 1} are valuations encoding respectively the positive and negative information respectively.
A probabilistic model M = ⟨S, µ, v+, v−⟩ extends a BD model with a probability measure µ on
the powerset algebra PS.

Let us call |φ|+M = {s ∈ Σ : v+(φ) = 1} and |φ|−M = {s ∈ Σ : v−(φ) = 1} the positive
and negative extensions of φ respectively. They are mutually definable via negation: |φ|−M =
|¬φ|+M. The non-standard probability function based on M is defined as p+

µ (φ) := µ(|φ|+M) and
represents the positive probabilistic evidence for φ. (Positive) non-standard probabilities satisfy
the following three axioms:

0 ≤ p+(φ) ≤ 1 {p+(φ) ≤ p+(ψ) | φ ⊢BD ψ} p+(φ ∧ ψ) + p+(φ ∨ ψ) = p+(φ) + p+(ψ).

We can define negative non-standard probability in a similar manner as p−µ (φ) = µ(|φ|−M), but
from a formal point of view it is sufficient to work with the positive one as p−(φ) = p+(¬φ).
Notice that unlike in the classical case, one can no longer prove that p+(φ) + p+(¬φ) = 1.
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Evidential reasoning via belief functions and Dempster-Shafer combination rule.
Here, we generalise the framework introduced in [8] to belief functions. We interpret belief
functions on De Morgan algebras and propose a logic to reason with belief function based on
BD. Belief functions [9] allow us to reason with the lower approximation of the probability of
an event rather than with its exact probability. A belief function bel : L → [0, 1] on a bounded
lattice is a map such that: for every a, a1, . . . ak, . . . an ∈ L, we have: (1) bel(⊥) = 0 and
bel(⊤) = 1 ; (2) for every a ∈ L, 0 ≤ bel(a) ≤ 1 ; (3) for every k ≥ 1, and every a1, . . . , ak ∈ L,

bel

 ∨
1≤i≤k

ai

 ≥
∑

J ⊆ {1, . . . , k}
J ̸= ∅

(−1)|J|+1 · bel

∧
j∈J

aj

 . (1)

Recall that a mass function m : L → [0, 1] on a bounded lattice L is a map such that: m(⊥) = 0
and

∑
a∈Lm(a) = 1. Every mass function m : L → [0, 1] defines a belief function belm as

follows: for every a ∈ L, belm(a) =
∑

b≤a m(b). Equivalently, for every belief function bel, one
can compute its associated mass function mbel such that the previous equation holds.

Conceptually, mass of a encodes the amount of information provided exactly about a, while
the belief of a represents the amount of all the evidence supporting a. Dempster-Shafer combi-
nation rule [9] provides a method to aggregate belief functions based on their associated mass
functions. Let m1,m2 : L → [0, 1] be two mass functions, their aggregation m1⊕2 is: ∀a ∈ L,

m1⊕2(a) =
1

1 −K

∑
b∧c=a ̸=⊥

m1(b)m2(c), (2)

where K =
∑

b∧c=⊥m1(b)m2(c). K is a normalisation term that encodes the fact that any fully
contradictory information between m1 and m2 is ignored. For this reason the combination rule
can give very counter intuitive results as demonstrated in the following example.

Example: Two disagreeing doctors. A patient has disease a, b or c and one assumes that
he has only one of these diseases. A first expert thinks that the patient has disease a (resp. b
and c) with probability 0.9 (resp. 0.1 and 0). This opinion is encoded via the mass function
m1 : P({a, b, c}) → [0, 1] such that m1(a) = 0.9, m1(b) = 0.1 and m1(c) = 0. A second expert
thinks that he has disease a (resp. b and c) with probability 0 (resp. 0.1 and 0.9). This opinion is
encoded via the mass function m2 : P({a, b, c}) → [0, 1] such that m2(a) = 0.9, m2(b) = 0.1 and
m2(c) = 0. Using (2), one gets the following aggregated mass function m1⊕2 : P({a, b, c}) →
[0, 1]: for every x ∈ P({a, b, c}), we have m1⊕2(x) = 1 if x = b, 0 otherwise. This means that
bel1⊕2(b) = 1 and bel1⊕2(a) = bel1⊕2(c) = 0. Therefore while both experts agreed that b was
unlikely and that it is highly likely that the patient has an other disease (a or c), one concludes
that the patient must have disease b. This results follows from the fact that a, b and c are
considered mutually incompatible. Notice that the term K that measure ’contradiction’ is equal
to 0.99 which means that most of the information given by the experts was ignored.

The same computation over the De Morgan algebra D generated by {a, b, c} leads to a very
different conclusion. If one considers the mass functions m1 : D → [0, 1] such that m1(a ∧ ¬b ∧
¬c) = 0.9, m1(¬a ∧ b ∧ ¬c) = 0.1 and m1(¬a ∧ ¬b ∧ c) = 0 and m2 : D → [0, 1] such that
m1(a ∧ ¬b ∧ ¬c) = 0, m1(¬a ∧ b ∧ ¬c) = 0.1 and m1(¬a ∧ ¬b ∧ c) = 0.9, one gets the following
aggregated mass function m1⊕2 (we represent only the elements in D with non-zero mass):

¬a ∧ b ∧ ¬c a ∧ ¬a ∧ b ∧ ¬b ∧ ¬c a ∧ ¬a ∧ ¬b ∧ c ∧ ¬c ¬a ∧ b ∧ ¬b ∧ c ∧ ¬c
m1⊕2 0.01 0.09 0.81 0.09
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Therefore, one reaches the conclusion that one has strong contradictory information regarding
a and c and that b is most probably not the case, since m1⊕2(a∧¬a∧¬b∧ c∧¬c) = 0.81. This
tells us to search for additional information to figure out whether the patient has disease a or c.
This observation leads us to think that in presence of highly conflicting information, it is more
relevant to interpret belief functions over De Morgan algebras and therefore to reason with BD
rather than with classical logic.

Two-layered Belnapian Logics for probabilities and belief
functions

Two-layer logics for reasoning under uncertainty were introduced in [6, 7], and developed further
within an abstract algebraic framework by [5] and [2]. Two-layer logics separate two layers of
reasoning: the inner layer consists of a logic chosen to reason about events (often classical propo-
sitional logic interpreted over sets of possible worlds), the connecting modalities are interpreted
by a chosen uncertainty measure on propositions of the inner layer (typically a probability or a
belief function), and the outer layer consists of a logical framework to reason about probabilities
or beliefs. The modalities apply to inner layer formulas only, to produce outer layer atomic
formulas, and they never nest. Logics introduced in [6] use classical propositional logic on the
lower layer, and reasoning with linear inequalities on the upper layer. [7] on the other hand uses
 Lukasiewicz logic on the outer layer, to capture the quantitative, many-valued reasoning about
probabilities within a propositional logical language. Building on that idea, and having in mind
the two-dimensionality of uncertain information (e.g. positive and negative probabilities), we
have introduced a two layer modal logic to reason with non-standard probabilities in [4]. There
a two-dimensional extension of  Lukasiewicz logic containing an additional De Morgan negation
has been proposed. Another two-dimensional extension of  Lukasiewicz logic, where De Morgan
negation of implication behaves differently, has been introduced in [3], and both logics (which we
denote  L2(→) and  L2(_)) were shown to be coNP complete using constraint tableaux calculi.
We provide Hilbert-style axiomatizations for both the logics, which are finitely standard strong
complete w.r.t. the twist product of the standard MV algebra [0, 1]⋊⋉ L .

In this talk, we consider two-layered logics which use BD as the inner layer, a single unary
probability modality P (or a belief modality B) applied to BD formulas, and  L2(→) or  L2(_)
on the outer layer. The inner formulas are interpreted over a BD model M = ⟨S, v+, v−⟩, the
atomic modal formulas are interpreted in [0, 1]⋊⋉ L via a given probability (or belief) function on
PS as

vM(Pφ) = (p(|φ|+M), p(|φ|−M)) vM(Bφ) = (bel(|φ|+M), bel(|φ|−M)),

and outer formulas are interpreted in the algebra [0, 1]⋊⋉ L following the semantics of the chosen
variant of  L2.

We present the resulting two-layer logics via Hilbert-style two-layer axiomatizations of the
form ⟨BD,Mp,  L

2⟩, and ⟨BD,Mb,  L
2⟩, and prove their completeness. Here, BD is an axiomati-

zation of the logic BD, and Mp,Mb are sets of modal axioms and rules capturing the behaviour
of the P or B modality respectively. Axioms Mp of probability for example look as follows:

⊢ L2 P¬φ↔ ¬Pφ {⊢ L2 Pφ→ Pψ | φ ⊢BD ψ} ⊢ L2 P (φ ∨ ψ) ↔ (Pφ⊖ P (φ ∧ ψ)) ⊕ Pψ,

where ⊕,⊖ are connectives definable in  L2 as in Lukasiewicz logic, corresponding (point-wise)
to truncated addition/subtraction on [0, 1] respectively.

In the case we deal with belief functions, the first two axiom schemes for B modality stay in
place. While expressing the probability axioms in  Lukasiewicz logic as above is rather straight-
forward (see [7, 4]), formulating the belief k-monotonicity axioms is less so. We define a sequence
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of outer formulas γn in propositional letters of the inner language p1, . . . , pn inductively as fol-
lows:

γ1 := Bp1 γn+1 := γn ⊕ (Bpn+1 ⊖ γn[Bψ : B(ψ ∧ pn+1) | Bψ atoms of γn]),

where γn[Bψ : B(ψ ∧ pn+1) | Bψ modal atoms of γn]) is the result of replacing each modal
atom Bψ in γn with the modal atom B(ψ ∧ pn+1) (semantically, it is a relativisation of the
corresponding belief function to the sets |pn+1|+−). The n-th belief function axiom (i.e., the n-
monotonicity) is expressed by substitution instances (substituting inner formulas for the atomic
letters p1, . . . , pn) of

αn := γn → B(

n∨
i=1

pn).

Additionally to  L2-based logics, we present a two-layer logic for belief functions based on BD
on the lower level, and two-dimensional reasoning about linear inequalities on the upper level.
We will relate the two formalism by way of translation, following [1], and we will compare the
resulting logic to the one introduced in [10].
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