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In the tradition of ‘parsing as deduction’, various logical calculi have been considered for appli-
cations in formal linguistics. A lively strand of research focuses on the analysis of logical systems
specifically designed to model a controlled linguistic resource management [20, 16, 21, 22, 11, 1, 28].
Research on the so-called structural control (in combination with various modal and substructural log-
ics) is also motivated by applications in other domains and has given rise to a rich literature in logic (see
[7, 10, 12, 5, 27]).

Lambek’s Syntactic Calculus [17, 18] is an early representative of substructural logic. The original
Lambek calculus lacks the required expressivity to serve as a tool for realistic grammar development.
The extended Lambek calculi introduced in the 1990ies enrich the type language with modalities for
structural control. These modalities have found two distinct uses [16]. On the one hand, modalities
can act as licenses, granting the applicability of so-called structural rules that by default would not be
permitted. On the other hand, modalities can be used to block structural rules that otherwise would be
available.

Examples of modalities as licensors relate to various aspects of grammatical resource management:
multiplicity, order and structure. As for multiplicity, under the control of modalities limited forms of
copying can be introduced in grammar logics that overall are resource-sensitive systems, see [26, 25, 13,
19] for some recent examples. As for order and structure, modalities may be used to license changes of
word order and/or constituent structure that leave the form-meaning correspondence intact, as illustrated
e.g. in [24, 3].

An example of the complementary use of modalities as blocking devices can be found in [14, 15].
The authors propose a modally-extended type language designed to simultaneously account for
function-argument structure and dependency structure. For function-argument structure the key op-
position is between a function type A/B (or B\A) that combines with its argument B to produce an A.
Dependency structures [4] on the other hand are based on the opposition between a head and its depen-
dents; these dependents can either be complements selected by the head, or adjuncts modifying the head.
In the phrase “Alice left unexpectedly”, for example, the verb “left” is the head selecting for “Alice” as
a complement with the subject role; “unexpectedly” is an adjunct modifying the head. To capture these
dependency relations, [14, 15] refine the Lambek types NP\S and S \S for “left” and “unexpectedly” to
(^suNP)\S and □adv(S \S ). In general, (^cA)\B is the type for a head selecting an A complement with
dependency role c, and □m(A\B) for an adjunct with dependency role m modifying a head A. The de-
pendency modalities do not come with structural rules, but they have the effect of sealing off a structure
consisting of a head together with its dependents as a domain of locality.

In this talk, we reconsider the licensing of structural rules in the light of the locality domains induced
by the dependency-enhanced type language. To put the discussion in perspective, we introduce the class
of multi-type logics for explicit structural control management together with their algebraic semantics,
and provide proper display calculi for the basic logics and their extensions via axioms of a specific
syntactic shape (the so-called analytic-inductive axioms [9]) in a modular fashion (e.g. preserving com-
pleteness, subformula property and cut elimination) according to the general methodology emerged in
the field of structural and algebraic proof theory [2, 6, 8, 9]; in particular, all the logics considered in
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[23, 14, 15] and related work, when recast as mSCLs, can profit from the pleasant proof-theoretic and
model theoretic benefits that the multi-type approach brings with it.

For each i ∈ I, a heterogeneous structural control algebra is a structure

H := (G, S i,^i,■i,□i,_i,F ,G,≤G,≤S i )

such that

• G := (G,≤G,F ,G) is a partially ordered algebra, F (resp. G) is a set of maps from Gn to G for
some natural number n, and for each map inF ∪G the corresponding adjoint/residual is also inF ∪
G (where the maps in F are left adjoints/residuals and the maps in G are right adjoints/residuals);

• (S i,≤S i ) is a partial order; we refer to ^i,■i,□i,_i as structural control modalities, they are
unary heterogeneous (given their source and target do not coincide) modalities, namely such that
■i : G ↠ S i, ^i : S i ↪→ G (where ^i ⊣ ■i), and _i : G ↠ S i, □i : S i ↪→ G (where _i ⊣ □i);

• the composition ■c^c : G → G (resp. _m□m : G → G) defines a closure operator, (resp. an
interior operator), and the compositions ■i^i : S i → S i and _i□i : S i → S i define identity on S i.
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G is the set of general elements. The sort (S i,≤S i ) is a set of special elements that witness the
(controlled) licence of structural rules (that by default would not be permitted). The structural control
modalities identify special elements in the general regime/type modulo the composition of adjoint pairs.
For instance, in the expanded signature of the Lambek calculus the postulate (x⊗y)⊗ âα ≤G x⊗(y⊗ âα)
represents a controlled form of left-to-right associativity. The x, y here are general elements, ⊗ is the
binary fusion operator of the Lambek calculus, and âα is the image of a special element α which then
licenses the restructuring.

In this talk the dependency modalities are homogeneous (as opposed to heterogeneous and given that
their source and target coincide) primitive modalities defined in the general type G (so, they are unary
maps in F ∪ G). We will focus on the use of dependency modalities as means to block structural rules.
Nonetheless, other design choices are also conceivable. We will also briefly expand on a few alternative
design options, and we will discuss their pros and cons from the perspective of their use in linguistics.

Each and every design option falls under the scope of a general methodology that allow us to in-
troduce multi-type proper display calculi enjoining canonical cut elimination. In particular, we observe
that all the logical introduction rules are standard and reflect the minimal order-theoretic properties of
the primitive operators, while the controlled linguistic resource management is explicitly captured by
structural rules, so maintaining a neat division of labour that guarantees a modular treatment. At last,
all the structural rules are automatically generated via the algorithm ALBA [9] (here generalized to a
multi-type environment).

2



Multi-type calculi for structural control Greco, Moortgat, Panettiere, and Tzimoulis

References

[1] G. Barry and G. Morrill, editors. Studies in Categorial Grammar, volume 5 of CCS. Edinburgh Working
Papers in Cognitive Science, Edinburgh, 1990.

[2] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substructural logics: cut-elimination and
completions. Annals of Pure and Applied Logic, 163(3):266–290, 2012.

[3] Adriana D. Correia, Henk T. C. Stoof, and Michael Moortgat. Putting a spin on language: A quantum in-
terpretation of unary connectives for linguistic applications. Electronic Proceedings in Theoretical Computer
Science, 340:114–140, Sep 2021.

[4] Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman. Universal Depen-
dencies. Computational Linguistics, 47(2):255–308, 2021.

[5] V. de Paiva and H. Eades. Dialectica categories for the Lambek calculus. In International Symposium on
Logical Foundations of Computer Science, pages 256–272. Springer, 2018.

[6] N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Transactions of the American
Mathematical Society, 365(3):1219–1249, 2013.

[7] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[8] G. Greco, P. Jipsen, F. Liang, A. Palmigiano, and A. Tzimoulis. Algebraic proof theory for LE-logics. Sub-

mitted, arXiv:1808.04642.
[9] G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, and Z. Zhao. Unified correspondence as a proof-theoretic

tool. Journal of Logic and Computation, page exw022, 2016.
[10] G. Greco and A. Palmigiano. Linear logic properly displayed. Transactions on Computational Logic: to

appear, ArXiv: 1611.04184.
[11] M. Hepple. Labelled deduction and discontinuous constituency. In M. Abrusci, C. Casadio, and M. Moort-

gat, editors, Linear Logic and Lambek Calculus, Proceedings 1993 Rome Workshop, pages 123–150. ILLC,
Amsterdam, 1993.

[12] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69(1):73–106, 1994.
[13] Max I. Kanovich, Stepan L. Kuznetsov, and Andre Scedrov. The multiplicative-additive Lambek Calculus

with subexponential and bracket modalities. J. Log. Lang. Inf., 30(1):31–88, 2021.
[14] Konstantinos Kogkalidis, Michael Moortgat, and Richard Moot. Æthel: Automatically extracted typelogical

derivations for Dutch. In Proceedings of The 12th Language Resources and Evaluation Conference, LREC
2020, Marseille, pages 5257–5266. European Language Resources Association, 2020.

[15] Konstantinos Kogkalidis, Michael Moortgat, and Richard Moot. Neural proof nets. In CoNLL2020, Pro-
ceedings of the 24th Conference on Computational Natural Language Learning, pages 26–40. Association
for Computational Linguistics, 2020.

[16] N. Kurtonina and M. Moortgat. Structural control. In P. Blackburn and M. de Rijke, editors, Specifying
Syntactic Structures, pages 75–113. CSLI, Stanford, 1997.

[17] Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154–170,
1958.

[18] Joachim Lambek. On the calculus of syntactic types. In Roman Jacobson, editor, Structure of Language
and its Mathematical Aspects, volume XII of Proceedings of the Symposia in Applied Mathematics, pages
166–178. American Mathematical Society, 1961.

[19] Lachlan McPheat, Hadi Wazni, and Mehrnoosh Sadrzadeh. Vector space semantics for Lambek Calculus with
soft subexponentials. CoRR, abs/2111.11331, 2021.

[20] M. Moortgat. Categorial type logics. In J. van Benthem, editor, Handbook of logic and language, chapter 2.
Elsevier, 1997.

[21] M. Moortgat and G. Morrill. Heads and phrases. Type calculus for dependency and constituent structures. Ms
OTS Utrecht, 1991.

[22] M. Moortgat and R.T. Oehrle. Adjacency, dependency and order. In P. Dekker and M. Stokhof, editors,
Proceedings Ninth Amsterdam Colloquium, pages 447–466. ILLC, 1994.

3



Multi-type calculi for structural control Greco, Moortgat, Panettiere, and Tzimoulis

[23] Michael Moortgat. Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3-4):349–
385, 1996.

[24] Michael Moortgat and Gijs Wijnholds. Lexical and derivational meaning in vector-based models of rela-
tivisation. In Alexandre Cremers, Thom van Gessel, and Floris Roelofsen, editors, Proceedings of the 21st
Amsterdam Colloquium, pages 55–64, Universiteit van Amsterdam, 2017.

[25] Glyn Morrill. Parsing/theorem-proving for logical grammar CatLog3. J. Log. Lang. Inf., 28(2):183–216,
2019.

[26] Glyn Morrill and Oriol Valentı́n. Computational coverage of TLG: nonlinearity. CoRR, abs/1706.03033,
2017.

[27] Y. Venema. Meeting strength in substructural logics. Studia Logica 54, 54:3–32, 1995.
[28] K. Versmissen. Categorial grammar, modalities and algebraic semantics. Proceedings EACL93, pages 377–

383, 1996.

4


