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The interconnection between logic, algebra, and probability has played a central role in the
study of reasoning since the dawn of modern logic, particularly in the groundbreaking work of
Boole [3]. More recent times have seen a flourishing of formal methods and logical approaches to
deal with logics capable of reasoning with probabilities. Among them, it is worth recalling the
model theoretical approach mainly developed by Keisler [9] and Hoover [8], the more artificial
intelligence oriented perspective initiated by Fagin, Halpern, and Megiddo in [4], and the one
put forward by Hájek, Esteva, and Godo in [7]. In the latter, which we shall follow, probability
is modeled by a modal operator P added to the language of !Lukasiewicz logic; formulas of the
form P (ϕ) – for ϕ any classical formula – read as “ϕ is probable”. Interestingly, the logic of
[4] and a slight variant of Hájek, Esteva, and Godo’s logic have been shown to be syntactically
interdefinable, and hence equivalent, in the recent [1].

In joint work with Flaminio, we are concerned with an extension of Hájek, Esteva, and
Godo’s logic first axiomatized in [6], denoted by FP(!L, !L), that has been recently proved ([5])
to be the logic of state theory: a generalization of probability theory for uncertain quantification
on !Lukasiewicz sentences, introduced by Mundici in [11]. In FP(!L, !L), !Lukasiewicz logic plays
a twofold role: it is the inner logic that represents the formulas that fall under the scope of
the modality P (i.e., events) and it is also the outer logic that reasons on complex probabilistic
modal formulas.

We show that, roughly speaking, the modal expansion leading to the logic FP(!L, !L) is not
needed to formalize probabilistic reasoning within !Lukasiewicz calculus. In order to do so, we
use the equivalent algebraic semantics of !Lukasiewicz in the sense of [2], MV-algebras. Phrased
in this setting, we show that the quasi-equational theory of MV-algebras is expressive enough
to encode probabilistic reasoning.

In particular, the categorical duality between rational polyhedra and finitely presented MV-
algebras put forward in [10] allows us to encode within !Lukasiewicz logic itself the local, finitary,
probabilistic information described by the convex rational polyhedra being the geometric inter-
pretation of de Finetti’s coherence criterion.

Moreover, leveraging the categorical duality between rational polyhedra and finitely pre-
sented MV-algebras, we are able to identify a class of MV-algebras that forms a semantics
for FP(!L, !L). These algebras, that will be called coherent, form a proper subclass of finitely
presented and projective MV-algebras.

Finally, exploiting the interplay between the algebraic and geometric approaches, we are
able to study purely logical properties of the logic FP(!L, !L), exploring the connection between
logic and probability in the many-valued setting.
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