Interpolation Meets Cyclic Proofs

Bahareh Afshari

ILLC, University of Amsterdam FLoV, University of Gothenburg

Logic, Algebra, & Truth Degrees, LATD 2002, PAESTUM

• Syntactic approach via sequent calculus: (complete) sequent calculus that admits elimination of cuts.

- Syntactic approach via sequent calculus: (complete) sequent calculus that admits elimination of cuts.
- Craig interpolation is often (but not always) provable via induction over the cut-free derivations.

- Syntactic approach via sequent calculus: (complete) sequent calculus that admits elimination of cuts.
- Craig interpolation is often (but not always) provable via induction over the cut-free derivations.
- There is an intimate connection between interpolation and the existence of sequent calculi. (Iemhoff; Kuznets; ...)

- Syntactic approach via sequent calculus: (complete) sequent calculus that admits elimination of cuts.
- Craig interpolation is often (but not always) provable via induction over the cut-free derivations.
- There is an intimate connection between interpolation and the existence of sequent calculi. (Iemhoff; Kuznets; ...)
- In this talk, I demonstrate

uniform interpolation \Rightarrow complete proof systems

connection is deeper, extending to most expressive logics of all, i.e. fixed point logic.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Definition

Craig interpolation: for every valid implication $A \rightarrow C$ there is a formula *B* (the interpolant) in the common vocabulary of *A* and *C* s.t.

 $A \rightarrow B$ is valid & $B \rightarrow C$ is valid

Uniform interpolation: *B* depends only on *A* and the 'common vocabulary'.

Definition

Craig interpolation: for every valid implication $A \rightarrow C$ there is a formula *B* (the interpolant) in the common vocabulary of *A* and *C* s.t.

 $A \rightarrow B$ is valid & $B \rightarrow C$ is valid

Uniform interpolation: *B* depends only on *A* and the 'common vocabulary'.

Modal logics are known to widely enjoy interpolation:

K, T, GL, S4, S5, ...

Also true for modal μ -calculus (D'Agostino and Hollenberg 2000) (A., Leigh and Menedez TABLEAUX 2021).

(日)

Systems for fixed point logic

Gentzen sequents: $\Gamma \Rightarrow \Delta$

Axioms:

 $p \Rightarrow p$ $p, \neg p \Rightarrow \emptyset$ $\emptyset \Rightarrow p, \neg p$ $\bot \Rightarrow \emptyset$ $\emptyset \Rightarrow \top$

Logical rules: $\lor^l, \lor^r, \land^l, \land^r$ Modality rules:

$$\frac{\Gamma, A \Rightarrow \Delta}{\Pi, \Box \Gamma, \Diamond A \Rightarrow \Diamond \Delta, \Pi'} \operatorname{mod}^{l} \qquad \frac{\Gamma \Rightarrow \Delta, A}{\Pi, \Box \Gamma \Rightarrow \Diamond \Delta, \Box A, \Pi'} \operatorname{mod}^{r}$$

Regeneration rules:

$$\frac{\Gamma \Rightarrow \Delta, A(\mu \mathbf{x} A)}{\Gamma \Rightarrow \Delta, \mu \mathbf{x} A} \mu^{r} \qquad \frac{\Gamma, A(\nu \mathbf{x} A) \Rightarrow \Delta}{\Gamma, \nu \mathbf{x} A \Rightarrow \Delta} \nu^{l}$$

Analogously, μ^l and ν^r .

□▶★□▶★□▶

Interpolating cycles

A cyclic proof is a finite tree built from these rules s.t. every leaf is either an axiom, or a successful repeat:

 $\begin{array}{c} \Gamma \Longrightarrow \Delta \\ \vdots \\ \Gamma \Longrightarrow \Delta \\ \vdots \end{array}$

Interpolating cycles

A cyclic proof is a finite tree built from these rules s.t. every leaf is either an axiom, or a successful repeat:

 $\begin{array}{c} \Gamma \Longrightarrow \Delta \\ \vdots \\ \Gamma \Longrightarrow \Delta \\ \vdots \end{array}$

A successful repeat on the left/right are interpolated by μ/ν formula:

Interpolating cycles

 $\begin{array}{c} \Gamma \xrightarrow{\mathbf{y}} \Delta \\ \vdots \\ \Gamma \xrightarrow{I(\mathbf{y})} \Delta \\ \vdots \end{array}$

A cyclic proof is a finite tree built from these rules s.t. every leaf is either an axiom, or a successful repeat:

 $\begin{array}{c} \Gamma \Longrightarrow \Delta \\ \vdots \\ \Gamma \Longrightarrow \Delta \\ \vdots \end{array}$

A successful repeat on the left/right are interpolated by μ/ν formula:

$\textcircled{0} \text{ Leaves } \Gamma \Rightarrow y \text{ and } y \Rightarrow$	Δ with y fresh.
Inductively we build <i>I</i> (y) and proofs:	
$\Gamma \Rightarrow y$	$y \Rightarrow \Delta$
:	:
$\Gamma \Rightarrow I(\mathbf{y})$	$I(y) \Rightarrow \Delta$

The interpolant is either μyI or vyI.

A repeated sequent may have been used for multiple non-axiomatic leaves:

A repeated sequent may have been used for multiple non-axiomatic leaves:

The proof induces a priority ('subsumption') ordering $y \sqsubset y' \sqsubset \dots$ which determines the quantifier order: $\mu y v y' I$ or $v y' \mu y I$

・ロト ・聞 ト ・ ヨト ・ ヨトー

A repeated sequent may have been used for multiple non-axiomatic leaves:

The proof induces a priority ('subsumption') ordering $y \sqsubset y' \sqsubset \dots$ which determines the quantifier order: $\mu y v y' I$ or $v y' \mu y I$

The order is important to ensure that, after interpolating, every infinite path has an infinitely progressing thread.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Constructing the uniform interpolant

The calculus can be used for proof search with adding further structural rules and prioritising inferences.

Constructing the uniform interpolant

The calculus can be used for proof search with adding further structural rules and prioritising inferences.

- Run proof search on $A \Rightarrow ?$
- We rely on the schematic property of sequent calculus

Constructing the uniform interpolant

The calculus can be used for proof search with adding further structural rules and prioritising inferences.

- Run proof search on $A \Rightarrow ?$
- We rely on the schematic property of sequent calculus
- Three general cases to check
 - non-axiomatic leaves (previous slide)
 - disjunctions on the left, conjunctions on the right
 - modalities

$$\frac{\Gamma, A \stackrel{I_0}{\Rightarrow} \Delta}{\Gamma, A \lor B \stackrel{I_1}{\Rightarrow} \Delta} \lor_l \qquad \qquad \frac{\Gamma \stackrel{I}{\Rightarrow} \Delta, A \qquad \Gamma \stackrel{I}{\Rightarrow} \Delta, B}{\Gamma \stackrel{I}{\Rightarrow} \Delta, A \land B} \land_r$$

Cyclic proof theory for interpolation

• When does a (cyclic) sequent calculus permit (uniform) interpolation?

- When does a (cyclic) sequent calculus permit (uniform) interpolation?
- Can the same arguments be applied to other modal and temporal logics, e.g. converse modality, PDL, GL, etc.?

- When does a (cyclic) sequent calculus permit (uniform) interpolation?
- Can the same arguments be applied to other modal and temporal logics, e.g. converse modality, PDL, GL, etc.?
- What is the form of the interpolant?

- When does a (cyclic) sequent calculus permit (uniform) interpolation?
- Can the same arguments be applied to other modal and temporal logics, e.g. converse modality, PDL, GL, etc.?
- What is the form of the interpolant?

In the case of modal μ -calculus the interpolant can be chosen to be conjunctive formulas. This together with 'nice' properties of cyclic proofs allows one to derive completeness for Kozen's proof system!

The operator $(a)\Gamma$ is the dual operator to the 'disjunctive' modality used frequently in μ -calculus. It is representable by the standard modalities:

$$(a)\{C_1,\ldots,C_n\}=[a]C_1\vee\cdots\vee[a]C_n\vee\langle a\rangle(C_1\wedge\cdots\wedge C_n).$$

The operator $(a)\Gamma$ is the dual operator to the 'disjunctive' modality used frequently in μ -calculus. It is representable by the standard modalities:

$$(a)\{C_1,\ldots,C_n\}=[a]C_1\vee\cdots\vee[a]C_n\vee\langle a\rangle(C_1\wedge\cdots\wedge C_n).$$

Every μ -formula has an equivalent in the language with (*a*) as the only modality: $[a]C \equiv (a)\{C, \bot\}$ and $\langle a \rangle C \equiv (a)\{C\} \land (a)\emptyset$.

The operator $(a)\Gamma$ is the dual operator to the 'disjunctive' modality used frequently in μ -calculus. It is representable by the standard modalities:

$$(a)\{C_1,\ldots,C_n\}=[a]C_1\vee\cdots\vee[a]C_n\vee\langle a\rangle(C_1\wedge\cdots\wedge C_n).$$

Every μ -formula has an equivalent in the language with (*a*) as the only modality: $[a]C \equiv (a)\{C, \bot\}$ and $\langle a \rangle C \equiv (a)\{C\} \land (a)\emptyset$.

Definition (Conjunctive formula)

The conjunctive formulas are formed freely from variables, atoms \top and \bot , the two quantifiers, arbitrary conjunctions, and disjunctions of specific form

$$(a_0)\Gamma_0 \vee \cdots \vee (a_k)\Gamma_k$$

where a_0, \ldots, a_k are pairwise distinct action labels.

The operator $(a)\Gamma$ is the dual operator to the 'disjunctive' modality used frequently in μ -calculus. It is representable by the standard modalities:

$$(a)\{C_1,\ldots,C_n\}=[a]C_1\vee\cdots\vee[a]C_n\vee\langle a\rangle(C_1\wedge\cdots\wedge C_n).$$

Every μ -formula has an equivalent in the language with (*a*) as the only modality: $[a]C \equiv (a)\{C, \bot\}$ and $\langle a \rangle C \equiv (a)\{C\} \land (a)\emptyset$.

Definition (Conjunctive formula)

The conjunctive formulas are formed freely from variables, atoms \top and \bot , the two quantifiers, arbitrary conjunctions, and disjunctions of specific form

$$(a_0)\Gamma_0 \vee \cdots \vee (a_k)\Gamma_k$$

where a_0, \ldots, a_k are pairwise distinct action labels.

 $(a_0)\Gamma_0 \lor \cdots \lor (a_k)\Gamma_k$ is valid iff there is a valid formula in $\Gamma_0 \cup \cdots \cup \Gamma_k$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 Δ is a strong *L*-consequence of Γ , written $\Gamma \leq_L \Delta$, if for every *L*-sequent Π and proof $\pi \vdash \Pi, \Gamma$ there exists a proof $\pi' \vdash \Pi, \Delta$ such that every path of Π -ancestors through π' is witnessed as a path of Π -ancestors of π .

 Δ is a strong *L*-consequence of Γ , written $\Gamma \leq_L \Delta$, if for every *L*-sequent Π and proof $\pi \vdash \Pi, \Gamma$ there exists a proof $\pi' \vdash \Pi, \Delta$ such that every path of Π -ancestors through π' is witnessed as a path of Π -ancestors of π .

Properties of strong consequence:

- If $A \leq B$ then $\Gamma, A \leq \Gamma, B$.
- $A \wedge B \leq A$ and $A \wedge B \leq B$.
- If $\Gamma \subseteq \Gamma'$ then $\Gamma \leq \Gamma'$.
- $A \leq B$ implies $\vdash A \rightarrow B$.
- $\sigma \mathbf{x} A \le A(\sigma \mathbf{x} A) \le \sigma \mathbf{x} A.$
- If $A \leq B$ then for all $C(\mathbf{x}), C(A) \leq C(B)$.
- If $A \leq B(A)$ then $A \leq \nu \mathbf{x}B(\mathbf{x})$.
- If $A(\mathbf{x}) \leq B(\mathbf{x})$ then $\sigma \mathbf{x}A \leq \sigma \mathbf{x}B$.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

● For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

- For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.
- ◎ If *B* is a valid conjunctive formula $Koz \vdash B$.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

- For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.
- ◎ If *B* is a valid conjunctive formula $Koz \vdash B$.
- Suppose $A \leq B$ and B is conjunctive. Then $Koz \vdash A \rightarrow B$.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

- For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.
- ◎ If *B* is a valid conjunctive formula $Koz \vdash B$.
- ③ Suppose $A \leq B$ and B is conjunctive. Then $Koz \vdash A \rightarrow B$.
- Also $Koz \vdash A^* \rightarrow A$, by induction on *A*.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

- For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.
- ② If *B* is a valid conjunctive formula Koz ⊢ B.
- ③ Suppose $A \leq B$ and B is conjunctive. Then $Koz \vdash A \rightarrow B$.
- Also $Koz \vdash A^* \rightarrow A$, by induction on *A*.

Theorem (Kozen 1983-Walukiewicz 2000)

The proof system Koz is complete.

Given A and V a vocabulary, there exists a conjunctive $(V \cap V(A))$ -formula A^* such that $A^* \leq A \leq_V A^*$.

How things come together:

- For all *A*, there is a conjunctive A^* such that $A^* \le A \le A^*$.
- ② If *B* is a valid conjunctive formula Koz ⊢ B.
- ③ Suppose $A \leq B$ and B is conjunctive. Then $Koz \vdash A \rightarrow B$.
- Also $Koz \vdash A^* \rightarrow A$, by induction on *A*.

Theorem (Kozen 1983-Walukiewicz 2000)

The proof system Koz is complete.

Suppose A is valid. Since A^* is equivalent to A we have $\vdash A^*$. As A^* is conjunctive $Koz \vdash A^*$. Together with $Koz \vdash A^* \rightarrow A$, we conclude $Koz \vdash A$.

• • • • • • • • • • • • •