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Proof-theoretic approach to interpolation

Syntactic approach via sequent calculus: (complete) sequent calculus
that admits elimination of cuts.

Craig interpolation is often (but not always) provable via induction over
the cut-free derivations.

There is an intimate connection between interpolation and the existence
of sequent calculi. (Iemho�; Kuznets; . . . )

In this talk, I demonstrate
uniform interpolation⇒ complete proof systems

connection is deeper, extending to most expressive logics of all, i.e. �xed
point logic.
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Uniform interpolation

De�nition
Craig interpolation: for every valid implication A → C there is a formula B
(the interpolant) in the common vocabulary of A and C s.t.

A → B is valid & B → C is valid

Uniform interpolation: B depends only on A and the ‘common vocabulary’.

Modal logics are known to widely enjoy interpolation:

K, T, GL, S4, S5, ...

Also true for modal 𝜇-calculus (D’Agostino and Hollenberg 2000) (A., Leigh
and Menedez TABLEAUX 2021).
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Systems for �xed point logic

Gentzen sequents: Γ ⇒ Δ

Axioms:

p ⇒ p p,¬p ⇒ ∅ ∅ ⇒ p,¬p ⊥ ⇒ ∅ ∅ ⇒ >

Logical rules: ∨l,∨r ,∧l,∧r

Modality rules:

Γ,A ⇒ Δ
modl

Π,�Γ,♦A ⇒ ♦Δ,Π′
Γ ⇒ Δ,A

modr
Π,�Γ ⇒ ♦Δ,�A,Π′

Regeneration rules:

Γ ⇒ Δ,A(𝜇xA)
𝜇r

Γ ⇒ Δ, 𝜇xA
Γ,A(𝜈xA) ⇒ Δ

𝜈 l
Γ, 𝜈xA ⇒ Δ

Analogously, 𝜇l and 𝜈 r .
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Interpolating cycles

A cyclic proof is a �nite tree built from these rules s.t. every leaf is either an
axiom, or a successful repeat:

Γ ⇒ Δ...
Γ ⇒ Δ...

A successful repeat on the left/right are interpolated by 𝜇/𝜈 formula:

Γ
y
⇒ Δ...

Γ
I (y)
⇒ Δ...

1 Leaves Γ ⇒ y and y ⇒ Δ with y fresh.
2 Inductively we build I (y) and proofs:

Γ ⇒ y
...

Γ ⇒ I (y)

y ⇒ Δ
...

I (y) ⇒ Δ

3 The interpolant is either 𝜇yI or 𝜈yI .
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More complex interpolants

A repeated sequent may have been used for multiple non-axiomatic leaves:

Γ
y
⇒ Δ...

Γ
y′
⇒ Δ...
...

Γ
I (y,y′)
⇒ Δ...

System of equations:

y =𝜇 I (y, y′)
y′ =𝜈 I (y, y′)

...

The proof induces a priority (‘subsumption’) ordering y @ y′ @ . . . which
determines the quanti�er order: 𝜇y𝜈y′I or 𝜈y′𝜇yI

The order is important to ensure that, after interpolating, every in�nite path
has an in�nitely progressing thread.
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Constructing the uniform interpolant

The calculus can be used for proof search with adding further structural rules
and prioritising inferences.

Run proof search on A ⇒ ?
We rely on the schematic property of sequent calculus
Three general cases to check

– non-axiomatic leaves (previous slide)
– disjunctions on the left, conjunctions on the right
– modalities

Γ,A
I0⇒ Δ Γ, B

I1⇒ Δ ∨l

Γ,A ∨ B
I0∨I1⇒ Δ

Γ
I⇒ Δ,A Γ

I⇒ Δ, B ∧r

Γ
I⇒ Δ,A ∧ B
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Cyclic proof theory for interpolation

1 When does a (cyclic) sequent calculus permit (uniform) interpolation?

2 Can the same arguments be applied to other modal and temporal logics,
e.g. converse modality, PDL, GL, etc.?

3 What is the form of the interpolant?

In the case of modal 𝜇-calculus the interpolant can be chosen to be
conjunctive formulas. This together with ‘nice’ properties of cyclic proofs
allows one to derive completeness for Kozen’s proof system!
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Conjunctive formulas

The operator (a)Γ is the dual operator to the ‘disjunctive’ modality used
frequently in 𝜇-calculus. It is representable by the standard modalities:

(a){C1, . . . ,Cn} = [a]C1 ∨ · · · ∨ [a]Cn ∨ 〈a〉(C1 ∧ · · · ∧ Cn) .

Every 𝜇-formula has an equivalent in the language with (a) as the only
modality: [a]C ≡ (a){C,⊥} and 〈a〉C ≡ (a){C} ∧ (a)∅.

De�nition (Conjunctive formula)
The conjunctive formulas are formed freely from variables, atoms > and ⊥,
the two quanti�ers, arbitrary conjunctions, and disjunctions of speci�c form

(a0)Γ0 ∨ · · · ∨ (ak)Γk

where a0, . . . , ak are pairwise distinct action labels.

(a0)Γ0 ∨ · · · ∨ (ak)Γk is valid i� there is a valid formula in Γ0 ∪ · · · ∪ Γk .
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Strong consequence

Δ is a strong L-consequence of Γ, written Γ ≤L Δ, if for every L-sequent Π
and proof 𝜋 ` Π, Γ there exists a proof 𝜋 ′ ` Π,Δ such that every path of
Π-ancestors through 𝜋 ′ is witnessed as a path of Π-ancestors of 𝜋 .

Properties of strong consequence:
If A ≤ B then Γ,A ≤ Γ, B.
A ∧ B ≤ A and A ∧ B ≤ B.
If Γ ⊆ Γ′ then Γ ≤ Γ′.
A ≤ B implies ` A → B.
𝜎xA ≤ A(𝜎xA) ≤ 𝜎xA.
If A ≤ B then for all C (x), C (A) ≤ C (B).
If A ≤ B(A) then A ≤ 𝜈xB(x).
If A(x) ≤ B(x) then 𝜎xA ≤ 𝜎xB.
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Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.

2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.

3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.

4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs



Uniform interpolation revisited

Theorem (A., Leigh and Menendez Turata, WIP)
Given A and V a vocabulary, there exists a conjunctive (V ∩ V (A))-formula A∗

such that A∗ ≤ A ≤V A∗.

How things come together:
1 For all A, there is a conjunctive A∗ such that A∗ ≤ A ≤ A∗.
2 If B is a valid conjunctive formula Koz ` B.
3 Suppose A ≤ B and B is conjunctive. Then Koz ` A → B.
4 Also Koz ` A∗ → A, by induction on A.

Theorem (Kozen 1983-Walukiewicz 2000)
The proof system Koz is complete.

Suppose A is valid. Since A∗ is equivalent to A we have ` A∗. As A∗ is
conjunctive Koz ` A∗. Together with Koz ` A∗ → A, we conclude Koz ` A.

B. Afshari Interpolation Meets Cyclic Proofs


