
Admissibility of Π2-Inference Rules: interpolation,
model completion, and contact algebras

Silvio Ghilardi, Università degli Studi di Milano
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Aims of the Talk

In this talk we review some recent results of us concerning the decision
problem of recognizing admissibility of some non-standard inference rules.

We begin by introducing our logical context and by illustrating some
examples showing how such non-standard rules arise.
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Modal Systems

The logical context we are planning to work is sufficiently general to
encompass many applications (but we believe that sensible enlargments
are possible).

A modal signature Σ is a finite signature comprising Boolean operators
∧,∨,→,↔,¬,⊥,> as well as additional operators of any arity called the
modal operators.

Out of Σ-symbols and out of a countable set of variables

x , y , z , . . . , p, q, r , . . .

one can build the set of propositional Σ-formulas (indicated with letters
F ,G , . . . or ϕ,ψ, . . . ). Notations such as F (x) mean that the Σ-formula
F contains at most the variables from the tuple x ; the notation F (ϕ/x) is
used for substitutions.
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Modal Systems

Our modalities are normal (in all entries), that is we adopt the following
definition.

A modal system S (over the modal signature Σ) is a set of Σ-formulas
comprising tautologies, the distribution axioms for each n-ary modal
operator �

�[φ, . . . , ψ → ψ′, . . . , φ]→ (�[φ, . . . , ψ, . . . , φ]→ �[φ, . . . , ψ′, . . . , φ])

and closed under the rules of modus ponens (MP) (from φ and φ→ ψ
infer ψ), uniform substitution (US) (from F (x) infer F (ψ/x)), and
necessitation (N) (from ψ infer �[φ, . . . , ψ, . . . , φ]).
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Modal Systems

We write `S φ or S ` φ to mean that φ ∈ S. If `S φ→ ψ holds, we say
that ψ is a local consequence of φ (modulo S).

We shall also need the global consequence relation φ `S ψ: this relation
holds when ψ belongs to the smallest set of formulas containing S and φ
that is closed under modus ponens and necessitation (notice that closure
under uniform substitution here is not required).
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Π2-rules

Definition

An inference rule ρ is a Π2-rule if it is of the form

F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

where F (x , y),G (x) are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

ψ = F (ϕ/x , y)→ χ and θ = G (ϕ/x)→ χ,

where ϕ is a tuple of formulas, χ is a formula, and y is a tuple of
propositional letters not occurring in ϕ and χ.

Let S be a propositional modal system. We say that the rule ρ is
admissible in S if `S+ρ ϕ implies `S ϕ for each formula ϕ.
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Π2-rules

The fact that the rule ρ

F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

is admissible means that in the countably generated free (i.e.
Lindenbaum) S-algebra we have that the sentence

∀x ∀z
(

(∀y F (x , y) ≤ z)⇒ G (x) ≤ z
)

is true (notice the universal quantifier in the antecedent).

Remark. If in the antecedent F of ρ the variables y do not occur, the rule is admisible
iff (trivially) we have `S G(x) → F (x). In this sense, our Π2-rules have a special shape
and their admissibility problem does not generalize the admissibility problem of standard
rules.
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Π2-rules

The prototypical Π2-rule is Gabbay’s irreflexivity rule

y ∧�¬y → χ

> → χ

used in various tense logics axiomatizations.

Let us also mention the density rule, which is admissible in various fuzzy
systems (Metcalfe & Montagna, 2007).
This rule however does not fit our definitions (extending our results so as
to encompass it seems to be an intersting challenging research direction).
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De Vries Duality

Modal systems can be useful to model disparate phenomena and can be
useful in various contexts, ranging from linguistics, to computer science, to
mathematics.

Π2-rules can be unexpectedly useful in the above applications. We shall
analyze below motivations from topology.

Definition

An open subset U of a topological space is called regular open if
U = int(cl(U)).

Let X be a compact Hausdorff space. The set RO(X ) of regular open
subsets of X equipped with the well-inside relation U ≺ V iff cl(U) ⊆ V
forms a de Vries algebra.
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De Vries Duality

Definition

A de Vries algebra is a complete boolean algebra equipped with a binary
relation ≺ satisfying

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c ;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a;
(S7) a ≺ b implies there is c with a ≺ c ≺ b;
(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.
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De Vries Duality

All the information carried by (RO(X ),≺) is enough to recover the
compact Hausdorff space X up to homeomorphism.

Moreover, every de Vries algebra is isomorphic to one of the form
(RO(X ),≺) for some compact Hausdorff space X .

Theorem (De Vries duality (1962))

The category of compact Hausdorff spaces is dually equivalent to the
category of de Vries algebras.

A connection of this framework to modal systems has been explored by
[Balbiani, Tinchev, Vakarelov (2007)]. We follow the equivalent approach
by [G. & N. Bezhanishvili, T. Santoli, Y. Venema (2019)].
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Symmetric Strict Implication Algebras

Let (B,≺) be a de Vries algebra. We can turn (B,≺) into a boolean
algebra with operators by replacing ≺ with a binary operator with values in
{0, 1} (the bottom and top of B).

a b =

{
1 if a ≺ b,

0 otherwise.

 is the characteristic function of ≺ ⊆ B × B.

Definition

Let V be the variety generated by de Vries algebras in the language of
boolean algebras with a binary operator  . We call symmetric strict
implication algebras the algebras of V.
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Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

The symmetric strict implication calculus S2IC is the system given by the
axioms

1. [∀]ϕ↔ (> ϕ),

2. (⊥ ϕ) ∧ (ϕ >),

3. [(ϕ ∨ ψ) χ]↔ [(ϕ χ) ∧ (ψ  χ)],

4. [ϕ (ψ ∧ χ)]↔ [(ϕ ψ) ∧ (ϕ χ)],

5. (ϕ ψ)→ (ϕ→ ψ),

6. (ϕ ψ)↔ (¬ψ  ¬ϕ),

7. [∀]ϕ→ [∀][∀]ϕ,

8. ¬[∀]ϕ→ [∀]¬[∀]ϕ,

9. (ϕ ψ)↔ [∀](ϕ ψ),

and modus ponens (for →) and necessitation (for [∀]).
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Symmetric Strict Implication Algebras

Axiom 1 above is a definition of the unary modality [∀] (which is a
‘universal’ modality by axioms 7-9).

Axioms 2-4 are equivalent to the normality axioms for the binary
connective ¬x  y .

Thus, in particular, S2IC fits the conditions of being a modal system in our
sense.
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Symmetric Strict Implication Algebras

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

`S2IC ϕ iff (B, ) � ϕ for every symmetric strict impl. algebra (B, ).

`S2IC ϕ iff (B,≺) � ϕ for every de Vries algebra (B,≺).

`S2IC ϕ iff (RO(X ),≺) � ϕ for every compact Hausdorff space X .

Analogous strong completeness results hold.

Therefore, we can think of S2IC as the modal calculus of compact
Hausdorff spaces where propositional letters are interpreted as regular
opens.
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Contact Algebras

When a symmetric strict implication algebra is simple,  becomes the
characteristic function of a binary relation. Simple symmetric strict
implication algebras correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation ≺
satisfying the axioms:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c ;
(S3) a, b ≺ c implies a ∨ b ≺ c ;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.
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Contact Algebras

The variety of symmetric strict implication algebras is a discriminator
variety and hence it is generated by its simple algebras which correspond
to contact algebras. Therefore,

`S2IC ϕ iff (B,≺) � ϕ for every contact algebra (B,≺).

Since we also have (see above)

`S2IC ϕ iff (B,≺) � ϕ for every de Vries algebra (B,≺).

we conclude that contact algebras and De Vries algebras (duals to
compact Hausdorff spaces) are indistinguishable as far as the modal
language of S2IC is concerned.
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De Vries vs Contact Algebras

However, De Vries algebras differ from contact algebras because they are
assumed to be complete and to satify a couple of further axioms, namely
(S7) and (S8).
Therefore, (S7) and (S8) are not expressible in S2IC.

(S7) a ≺ b implies there is c with a ≺ c ≺ b;
(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

These conditions involve the richer Π2-fragment of the language (in
particular they require an existential quantifier to be written).

What does this mean from the syntactic point of view?
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De Vries vs Contact Algebras

Theorem

For each Π2-sentence Φ there is an inference rule ρ such that

`S2IC+ρ ϕ iff (B,≺) � ϕ

for every propositional formula ϕ and for every contact algebra
(equivalently: for every simple symmetric strict implication algebra) (B,≺)
satisfying Φ.

The rules corresponding to (S7) and (S8) are

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ
(ρ8)

p ∧ (p  ϕ)→ χ
ϕ→ χ

Thus (S7) and (S8) (which are not expressible in S2IC) correspond to
admissible Π2-rules in S2IC.
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Methods for Recognizing Admissibility

In the main part of the talk, we supply three methods for deciding
admissibility of Π2-rules; these methods involve

conservative extensions,

uniform (global) interpolants,

model completions,

respectively.

In the last part of the talk, we turn to our main motivating
case study, namely contact algebras.
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Conservative Extensions

We say that ϕ(x) ∧ ψ(x , y) is a conservative extension of ϕ(x) in S if

`S ϕ(x) ∧ ψ(x , y)→ χ(x) implies `S ϕ(x)→ χ(x)

for every formula χ(x).

We say that S has the (local) interpolation property iff for every pair of
Σ-formulas φ(x , y), ψ(y , z) such that `S φ→ ψ there is a formula θ(y)
such that `S φ→ θ and `S θ → ψ.

Similarly, we say that S has the global interpolation property iff for every
pair of Σ-formulas φ(x , y), ψ(y , z) such that φ `S ψ there is a formula
θ(y) such that φ `S θ and θ `S ψ.

In the context of our modal systems, the local interpolation property
implies the global one, but the converse does not hold.
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Conservative Extensions

Theorem

If S has the interpolation property, then a Π2-rule ρ is admissible in S iff
G (x) ∧ F (x , y) is a conservative extension of G (x) in S.

Therefore, if S has the interpolation property and conservativity is
decidable in S, then Π2-rules are effectively recognizable in S.
Thus, well-known results (G., Lutz, Wolter, Zakharyaschev, AiML 2006)
apply:

Corollary

The admissibility problem for Π2-rules is

coNexpTime-complete in K and S5;

in ExpSpace and coNexpTime-hard in S4.
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Uniform Interpolants

The first method we supplied is probably the easiest to apply in concrete
cases. We illlustrate however two other approaches, which are conceptually
relevant and (especially the third one) more oriented to algebraic and
model-theoretic methods - and less dependant on specific semantic
algorithms from modal logic.

We first need to recall what uniform interpolants are.
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Uniform Interpolants

Definition

A uniform local pre-interpolant of a formula φ(x , y) wrt the variables x is

a formula ∃lxφ such that: (i) in ∃lxφ at most the variables y occur; (ii) for
every formula ψ(y , z), we have

`S ∃lxφ→ ψ iff `S φ→ ψ . (1)

Definition

A uniform global pre-interpolant of a formula φ(x , y) wrt the variables x is
a formula ∃gxφ such that: (i) in ∃gxφ at most the variables y occur; (ii) for
every formula ψ(y , z), we have

∃gxφ `S ψ iff φ `S ψ. (2)
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Uniform Interpolants

In case uniform local pre-interpolants exist, we have a trivial criterion for
conservativity (and consequently for admissibility of Π2-rules).

If the local uniform pre-interpolant ∃lyF exists, then a Π2-rule ρ of the

form
F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

is admissible in S iff
`S G → ∃lyF .

However, existence of uniform interpolants is a rare phenomenon; in
addition, checking admissibility/conservativity by computing local uniform
interpolants does not match optimal lower bounds, even in basic cases like
the case of the system K .
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Uniform Global Interpolants

Notice that there are cases where local uniform interpolants exist, but
global do not and vice versa. Thus, it makes sense (at least in principle) to
investigate cases where only global uniform interpolants are available. For
the related results, we need to introduce universal modalities. We already
met a universal modality, when axiomatizing symmetric strict implication
algebras; the formal definition is below.

An S5-modality [∀] is called a universal modality if

`S
n∧

i=1

[∀](ϕi ↔ ψi )→ (�[ϕ1, . . . , ϕn]↔ �[ψ1, . . . , ψn])

for every modality � of S.

Theorem

Suppose that S has uniform global pre-interpolants and a universal
modality [∀]. Then a Π2-rule ρ is admissible in S iff

`S [∀]∀gy (F (x , y)→ z)→ (G (x)→ z).
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Model Completions

It is well-known (see the book G.-Zawadowski, Kluwer 2002) that, under
suitable hypotheses (which are satisfied when there is a universal
modality), existence of uniform global interpolants is equivalent to
existence of a model completion for the theory axiomatizing S-algebras.

Thus the hypotheses leading to our second method can be used in a
model-theoretic environment.
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Model Completions

To a Π2-rule ρ
F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

we associate the first-order formula

Π(ρ) := ∀x , z
(

G (x) � z ⇒ ∃y : F (x , y) � z
)
.

In the presence of a universal modality, an S-algebra is simple iff

[∀]x =

{
1 if x = 1,

0 otherwise.

In this case, since the the variety of S-algebras is a discriminator variety, it
is generated by the simple S-algebras.

33 / 46



Model Completions

To a Π2-rule ρ
F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

we associate the first-order formula

Π(ρ) := ∀x , z
(

G (x) � z ⇒ ∃y : F (x , y) � z
)
.

In the presence of a universal modality, an S-algebra is simple iff

[∀]x =

{
1 if x = 1,

0 otherwise.

In this case, since the the variety of S-algebras is a discriminator variety, it
is generated by the simple S-algebras.

33 / 46



Model Completions

To a Π2-rule ρ
F (ϕ/x , y)→ χ

G (ϕ/x)→ χ

we associate the first-order formula

Π(ρ) := ∀x , z
(

G (x) � z ⇒ ∃y : F (x , y) � z
)
.

In the presence of a universal modality, an S-algebra is simple iff

[∀]x =

{
1 if x = 1,

0 otherwise.

In this case, since the the variety of S-algebras is a discriminator variety, it
is generated by the simple S-algebras.

33 / 46



Model Completions

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

Suppose that S has a universal modality. A Π2-rule ρ is admissible in S iff
for each simple S-algebra B there is a simple S-algebra C such that B is a
subalgebra of C and C |= Π(ρ).

We shall exploit this theorem taking inspiration from model-theoretic
algebra.
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Model Completions

Recall that a universal first order theory T has a model completion iff there
is a stronger theory T ? ⊇ T (in the same signature) such that (i) T and
T ? prove the same quantifier-free formulae; (ii) T ? eliminates quantifiers.

It turns out that the model completion of a universal first-order theory T ,
if it exists, is unique and it is the theory of the existentially closed models
of T .
The existence of a model-completion T ? of T implies that the class of the
models of T has the amalgamation property (the latter turns out to be a
necessary and sufficient condition for the existence of T ? in case T is
locally finite and its language is finite).
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Model Completions

The previous theorem (together with basic model theoretic facts) yields
the following

Theorem

Suppose that S has a universal modality and let TS be the first-order
theory of the simple S-algebras. If TS has a model completion T ?

S , then a
Π2-rule ρ is admissible in S iff T ?

S |= Π(ρ) where

Π(ρ) := ∀x , z
(

G (x) � z ⇒ ∃y : F (x , y) � z
)
.
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Model Completions

Thus existence and decidability of T ?
S yields the decidability of the

admissibility problem for our rules.

When S is decidable, locally tabular, amalgamable and has a universal
modality, T ?

S exists and we can exploit the above theorem by enumerating
open formulae as follows. To compute the formula eliminating a quantifier
∃yψ(x , y) in T ?

S , it is sufficient to take the conjunction of the (finitely
many) universal formulae φ(x) which are TS-implied by ψ(x , y). The
correctness of this procedure comes from general facts concerning model
completions.
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Model Completions

As an alternative, when S has a universal modality, is locally tabular,
amalgamable and finite S-algebras can be effectively recognized, one can
go through enumeration of finite algebras as follows. To decide the
T ?
S-validity of

Π(ρ) := ∀x , z
(

G (x) � z ⇒ ∃y : F (x , y) � z
)
.

one checks whether every finite S-algebra generated by x , z and satisfying
G (x) � z can be expanded to a finite S-algebra generated by x , z , y and
satisfying F (x , y) � z . Again, this is justified by general model-theoretic
facts.

Remark. It goes without saying that in principle the model completion can exist (and
be decidable) even in case S is not locally tabular! In such cases we would nevertheless
have a decision procedure.
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The model completion Con?

Recall that simple symmetric strict implication algebras are nothing but
contact algebras.

Theorem

The theory of contact algebras Con is locally finite and has the
amalgamation property. Therefore, it admits a model completion Con?.

Amalgamation can be established via duality: contact algebras are in fact
dual to Stone spaces andowed with a closed, reflexive, symmetric relation.
The duals of embeddings are continuous functions f : (X1,R1)→ (X2,R2)
satisfying the additional condition

∀x , y ∈ X2 [xR2y ⇔ ∃x̃ , ỹ ∈ X1 s.t. f (x̃) = x , f (ỹ) = y & x̃R1ỹ ].
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The model completion Con?

We can consequently apply the above (bounded!) enumeration methods in
order to check admissibility of Π2-rules.
Given that the above duality trivializes in the case of finite algebras
(topology is not needed), an enumeration of the involved finite algebras
easily yields that the rules (ρ7) and (ρ8) we met at the beginning of the
present talk, are in fact admissible.
As another example, consider the Π2-rule

(ρ9)
(p  p) ∧ (ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ

corresponding to the Π2-sentence

Π(ρ9) ∀x , y , z (x  y � z → ∃u : (u  u) ∧ (x  u) ∧ (u  y) � z)

which holds in (RO(X ),≺) iff X is a Stone space.

41 / 46



The model completion Con?

Using our enumeration methods, it is possible to show that this rule is
admissible too. For the second method, it is sufficient to check that every
finite algebra, generated by elements x , y , z satisfying x  y � z can be
embedded into a finite algebra, generated by an additional element u,
satisfying (u  u) ∧ (x  u) ∧ (u  y) � z . This is easy to check via
finite duality (in the finite case, topology is discrete, so it can be
disregarded).

Therefore, we obtain as a corollary that S2IC is complete wrt Stone spaces.

This fact was proved in [G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y.
Venema (2019)].
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The model completion Con?

However, our two bounded enumeration methods do not give optimal
complexity bounds for the decision problem of admissibility.

To get the optimal bound mentioned below, one needs to refine the
algorithm for computing quantifier elimination in Con?:

Theorem

The problem of recognizing the admissibility of a Π2-rule in the symmetric
strict implication calculus S2IC is co-NExpTime-complete.

Notice that the above complexity bound is the same as for the modal
systems K and S5.
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The model completion Con?

We finally consider the problem of axiomatizing Con?:

Theorem

The model completion Con? of the theory of contact algebras is finitely
axiomatizable.

An axiomatization is given by the axioms of contact algebras together with
the following three sentences.
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The model completion Con?

∀a, b1, b2 (a 6= 0 & (b1 ∨ b2) ∧ a = 0 & a ≺ a ∨ b1 ∨ b2 ⇒
∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 6= 0 & a2 6= 0 & a1 ≺ a1 ∨ b1

& a2 ≺ a2 ∨ b2))

∀a, b (a ∧ b = 0 & a 6≺ ¬b ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0

& a1 6≺ ¬b & a2 6≺ ¬b & a1 ≺ ¬a2))

∀a (a 6= 0⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ≺ a & a1 6≺ a1))
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The model completion Con?

Recall that model completions are always axiomatized by Π2-sentences
and that we can move back-and-forth between Π2-sentences (in the
first-order language of simple symmetric strict implication algebras aka
contact algebras) and Π2-rules in S2IC.

It is not clear how to give a direct definition of what a basis of admissible
Π2-rules should be. In any case, any meaningful definition should be
equivalent to the fact that the Π2-rules of such a base, once translated to
Π2-sentences, should constitute an axiomatizazion of Con?.

If we read the above finite axiomatizability result in this way, we have
shown that there is a finite base of admissible Π2-rules for S2IC.

46 / 46



The model completion Con?

Recall that model completions are always axiomatized by Π2-sentences
and that we can move back-and-forth between Π2-sentences (in the
first-order language of simple symmetric strict implication algebras aka
contact algebras) and Π2-rules in S2IC.

It is not clear how to give a direct definition of what a basis of admissible
Π2-rules should be. In any case, any meaningful definition should be
equivalent to the fact that the Π2-rules of such a base, once translated to
Π2-sentences, should constitute an axiomatizazion of Con?.

If we read the above finite axiomatizability result in this way, we have
shown that there is a finite base of admissible Π2-rules for S2IC.

46 / 46



The model completion Con?

Recall that model completions are always axiomatized by Π2-sentences
and that we can move back-and-forth between Π2-sentences (in the
first-order language of simple symmetric strict implication algebras aka
contact algebras) and Π2-rules in S2IC.

It is not clear how to give a direct definition of what a basis of admissible
Π2-rules should be. In any case, any meaningful definition should be
equivalent to the fact that the Π2-rules of such a base, once translated to
Π2-sentences, should constitute an axiomatizazion of Con?.

If we read the above finite axiomatizability result in this way, we have
shown that there is a finite base of admissible Π2-rules for S2IC.

46 / 46



THANK YOU!
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