Some facts and questions around the Kuznetsov problem

Guram Bezhanishvili, David Gabelaia and Mamuka Jibladze

LATD \& MOSAIC, Paestum, September 52022

The Question

Kuznetsov problem
Is every superintuitionistic logic topologically complete?
A. V. Kuznetsov asked this in 1974.

More precisely, an equivalent question is contained in his plenary lecture at the Vancouver ICM, which he could not deliver himself since Soviet officials did not let him go there.

In the meanwhile...

Around that same time, Kit Fine constructed a Kripke incomplete modal logic above S4.

In 1975, M. Gerson figured out that the same logic is also topologically incomplete.

In the meanwhile...

Around that same time, Kit Fine constructed a Kripke incomplete modal logic above S4.

In 1975, M. Gerson figured out that the same logic is also topologically incomplete.
(More precisely, Gerson was using neighborhood semantics.)

Gerson's version of the axioms

$L_{\text {Fine }}:=\mathbf{S 4}+\mathbf{G}+\mathbf{H}$
where \mathbf{G} is $E \rightarrow F$,

Gerson's version of the axioms

$$
L_{\text {Fine }}:=\mathbf{S} 4+\mathbf{G}+\mathbf{H}
$$

where \mathbf{G} is $E \rightarrow F$, where

$$
\begin{aligned}
& E=\left(p_{0} \vee p_{1}\right) \wedge \diamond A_{0} \wedge J_{1} \wedge \cdots \wedge J_{6}, \\
& F=\diamond\left(\left(p_{0} \vee p_{1}\right) \wedge\left(\left(\diamond A_{1}\right)-\left(\diamond A_{0}\right)\right)\right),
\end{aligned}
$$

Gerson's version of the axioms

$L_{\text {Fine }}:=\mathbf{S 4}+\mathbf{G}+\mathbf{H}$
where \mathbf{G} is $E \rightarrow F$, where

$$
\begin{aligned}
& E=\left(p_{0} \vee p_{1}\right) \wedge \diamond A_{0} \wedge J_{1} \wedge \cdots \wedge J_{6}, \\
& F=\diamond\left(\left(p_{0} \vee p_{1}\right) \wedge\left(\left(\diamond A_{1}\right)-\left(\diamond A_{0}\right)\right)\right),
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
J_{1} & =\square\left(p_{0} \rightarrow\left(\left(\diamond p_{1}\right)-p_{1}\right)\right), & J_{2} & =\square\left(-\left(p_{0} \vee p_{1}\right) \rightarrow \square\left(-\left(p_{0} \vee p_{1}\right)\right)\right), \\
J_{3} & =\square\left(B_{1} \rightarrow\left(\left(\diamond B_{0}\right)-\left(\diamond C_{0}\right)\right)\right), & J_{4} & =\square\left(C_{1} \rightarrow\left(\left(\diamond C_{0}\right)-\left(\diamond B_{0}\right)\right)\right), \\
J_{5}=\square-\left(B_{0} \wedge \diamond B_{1}\right), & J_{6} & =\square-\left(C_{0} \wedge \diamond C_{1}\right) \\
& \text { and } A_{m}=\left(\diamond B_{m+1} \wedge \diamond C_{m+1}\right)-\diamond B_{m+2}, &
\end{array}
$$

Gerson's version of the axioms

$L_{\text {Fine }}:=\mathbf{S 4}+\mathbf{G}+\mathbf{H}$
where \mathbf{G} is $E \rightarrow F$, where
$E=\left(p_{0} \vee p_{1}\right) \wedge \diamond A_{0} \wedge J_{1} \wedge \cdots \wedge J_{6}$,
$F=\diamond\left(\left(p_{0} \vee p_{1}\right) \wedge\left(\left(\diamond A_{1}\right)-\left(\diamond A_{0}\right)\right)\right)$,
where

$$
\begin{array}{ll}
J_{1}=\square\left(p_{0} \rightarrow\left(\left(\diamond p_{1}\right)-p_{1}\right)\right), & J_{2}=\square\left(-\left(p_{0} \vee p_{1}\right) \rightarrow \square\left(-\left(p_{0} \vee p_{1}\right)\right)\right), \\
J_{3}=\square\left(B_{1} \rightarrow\left(\left(\diamond B_{0}\right)-\left(\diamond C_{0}\right)\right)\right), & J_{4}=\square\left(C_{1} \rightarrow\left(\left(\diamond C_{0}\right)-\left(\diamond B_{0}\right)\right)\right), \\
J_{5}=\square-\left(B_{0} \wedge \diamond B_{1}\right), & J_{6}=\square-\left(C_{0} \wedge \diamond C_{1}\right) \\
& \text { and } A_{m}=\left(\diamond B_{m+1} \wedge \diamond C_{m+1}\right)-\diamond B_{m+2},
\end{array}
$$

where $B_{0}=q_{0}, C_{0}=r_{0}, B_{1}=q_{1}, C_{1}=r_{1}$ are sentence letters and

$$
\begin{aligned}
B_{m+2} & =\left(\diamond B_{m+1} \wedge \diamond C_{m}\right)-\diamond C_{m+1}, \\
C_{m+2} & =\left(\diamond C_{m+1} \wedge \diamond B_{m}\right)-\diamond B_{m+1} .
\end{aligned}
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

The H of Fine

The formula \mathbf{H} is

$$
-(s \wedge \square(s \rightarrow \diamond((t-s) \wedge \diamond((-(s \vee t)) \wedge \diamond s)))) .
$$

$$
\begin{aligned}
& s \\
& -(s \vee t) \\
& t-s \\
& s
\end{aligned}
$$

In a nutshell

In few words, $\mathbf{G}=E \rightarrow F$ allows, for any valuation \mathscr{V} in a Kripke frame with $\mathscr{V}(E) \neq \varnothing$, to construct an infinite ascending chain; this then is incompatible with \mathbf{H}, so $-E$ holds in any $L_{\text {Fine }}$-Kripke frame.

In a nutshell

In few words, $\mathbf{G}=E \rightarrow F$ allows, for any valuation \mathscr{V} in a Kripke frame with $\mathscr{V}(E) \neq \varnothing$, to construct an infinite ascending chain; this then is incompatible with \mathbf{H}, so $-E$ holds in any $L_{\text {Fine }}$-Kripke frame.

Gerson upgraded the infinite ascending chain to $W_{0}, W_{1}, W_{2}, \ldots$ in a neighborhood frame, with $W_{i} \cap W_{j}=\varnothing$ for $i \neq j$ and $W_{n} \subseteq \overline{W_{n+1}}$ (closure);

In a nutshell

In few words, $\mathbf{G}=E \rightarrow F$ allows, for any valuation \mathscr{V} in a Kripke frame with $\mathscr{V}(E) \neq \varnothing$, to construct an infinite ascending chain; this then is incompatible with \mathbf{H}, so $-E$ holds in any $L_{\text {Fine }}$-Kripke frame.

Gerson upgraded the infinite ascending chain to $W_{0}, W_{1}, W_{2}, \ldots$ in a neighborhood frame, with $W_{i} \cap W_{j}=\varnothing$ for $i \neq j$ and $W_{n} \subseteq \overline{W_{n+1}}$ (closure); then $\mathscr{V}(s)=W_{0} \cup W_{3} \cup W_{6} \cup \cdots$ and $\mathscr{V}(t)=W_{1} \cup W_{4} \cup W_{7} \cup \cdots$ violate \mathbf{H}.

In a nutshell

In few words, $\mathbf{G}=E \rightarrow F$ allows, for any valuation \mathscr{V} in a Kripke frame with $\mathscr{V}(E) \neq \varnothing$, to construct an infinite ascending chain; this then is incompatible with \mathbf{H}, so $-E$ holds in any $L_{\text {Fine }}$-Kripke frame.

Gerson upgraded the infinite ascending chain to $W_{0}, W_{1}, W_{2}, \ldots$ in a neighborhood frame, with $W_{i} \cap W_{j}=\varnothing$ for $i \neq j$ and $W_{n} \subseteq \overline{W_{n+1}}$ (closure); then $\mathscr{V}(s)=W_{0} \cup W_{3} \cup W_{6} \cup \cdots$ and $\mathscr{V}(t)=W_{1} \cup W_{4} \cup W_{7} \cup \cdots$ violate \mathbf{H}.

On a general frame, you can avoid having these infinite unions; and indeed Fine constructed an $L_{\text {Fine }}$-model with $\mathscr{V}(E) \neq \varnothing$ on the famous frame \mathscr{F} of his name, thereby showing that $L_{\text {Fine }} \nmid-E$.

Enter Shehtman

What Shehtman did in 1977:
he reduced the number of variables in \mathbf{G} from six to two;
he found an intuitionistic analog \amalg of \mathbf{G}, which does basically the same job;
most importantly, he found a replacement in the intuitionistic setting for \mathbf{H}

Enter Shehtman

What Shehtman did in 1977:
he reduced the number of variables in \mathbf{G} from six to two;
he found an intuitionistic analog \amalg of \mathbf{G}, which does basically the same job;
most importantly, he found a replacement in the intuitionistic setting for \mathbf{H} (contribution of the latter does not seem to be translatable into IPC because of that interleaving pattern along a chain, $s, t-s,-(t \vee s), s, \ldots)$

Enter Shehtman

What Shehtman did in 1977:
he reduced the number of variables in \mathbf{G} from six to two;
he found an intuitionistic analog \amalg of \mathbf{G}, which does basically the same job;
most importantly, he found a replacement in the intuitionistic setting for \mathbf{H} (contribution of the latter does not seem to be translatable into IPC because of that interleaving pattern along a chain, $s, t-s,-(t \vee s), s, \ldots)$

For that, instead of interleave along a chain, he used interleave along an antichain! He achieved it using the Gabbay-de Jongh bounded branching formula $\mathbf{b b}_{2}$.
$\mathbf{b b}_{2}$ is

$$
\begin{aligned}
& {[(x \rightarrow(y \vee z)) \rightarrow(y \vee z)]} \\
& \wedge[(y \rightarrow(x \vee z)) \rightarrow(x \vee z)] \\
& \wedge[(z \rightarrow(x \vee y)) \rightarrow(x \vee y)] \\
& \rightarrow(x \vee y \vee z)
\end{aligned}
$$

expresses branching not exceeding two in finite Kripke structures.
$\mathbf{b b}_{2}$ is

$$
\begin{aligned}
& {[(x \rightarrow(y \vee z)) \rightarrow(y \vee z)]} \\
& \wedge[(y \rightarrow(x \vee z)) \rightarrow(x \vee z)] \\
& \wedge[(z \rightarrow(x \vee y)) \rightarrow(x \vee y)] \\
& \quad \rightarrow(x \vee y \vee z)
\end{aligned}
$$

expresses branching not exceeding two in finite Kripke structures.

That is, no point shall have more than two immediate successors.

Topologically, $\mathbf{b} \mathbf{b}_{2}$ says this: given three closed sets C_{1}, C_{2}, C_{3} with $C_{1} \cap C_{2}=C_{1} \cap C_{3}=C_{2} \cap C_{3}=C$, if C is nowhere dense in each of the C_{i} then $C=\varnothing$.

Topologically, $\mathbf{b b}_{2}$ says this: given three closed sets C_{1}, C_{2}, C_{3} with $C_{1} \cap C_{2}=C_{1} \cap C_{3}=C_{2} \cap C_{3}=C$, if C is nowhere dense in each of the C_{i} then $C=\varnothing$. (Nowhere dense means $\overline{C_{i}-C}=C_{i}$.)

In other words, $\mathbf{b b}_{2}$ forbids such things:

Topologically, $\mathbf{b b}_{2}$ says this: given three closed sets C_{1}, C_{2}, C_{3} with $C_{1} \cap C_{2}=C_{1} \cap C_{3}=C_{2} \cap C_{3}=C$, if C is nowhere dense in each of the C_{i} then $C=\varnothing$. (Nowhere dense means $\overline{C_{i}-C}=C_{i}$.)

In other words, $\mathbf{b b}_{2}$ forbids such things:

In the Kripke semantics, "nowhere dense" means "nowhere cofinal". Given lower sets $C \subset D$, we say that C is nowhere cofinal in D if $\downarrow(D-C)=D$.

Topologically, $\mathbf{b b}_{2}$ says this: given three closed sets C_{1}, C_{2}, C_{3} with $C_{1} \cap C_{2}=C_{1} \cap C_{3}=C_{2} \cap C_{3}=C$, if C is nowhere dense in each of the C_{i} then $C=\varnothing$. (Nowhere dense means $\overline{C_{i}-C}=C_{i}$.)

In other words, $\mathbf{b b}_{2}$ forbids such things:

In the Kripke semantics, "nowhere dense" means "nowhere cofinal". Given lower sets $C \subset D$, we say that C is nowhere cofinal in D if $\downarrow(D-C)=D$.

For Esakia spaces, this can be further reduced to $C \cap \max (D)=\varnothing$ (for clopen downsets $C \subset D$).

$\mathbf{b b}_{2}$ topologically

$\mathbf{b b}_{2}$ is a severe restriction on a topological space. It is less restrictive than hereditary extremal disconnectedness imposed by $(p \rightarrow q) \vee(q \rightarrow p)$ but still very strong.

Fine frame and Esakia semantics

In the complete Heyting algebra of all upper sets of the Fine frame \mathscr{F}, consider the subalgebra \mathbb{A} generated by values of the variables p, q of Ш.

Fine frame and Esakia semantics

In the complete Heyting algebra of all upper sets of the Fine frame \mathscr{F}, consider the subalgebra \mathbb{A} generated by values of the variables p, q of $Ш$. As it turns out, the dual Esakia space of \mathbb{A} is obtained by adding a single limit point to \mathscr{F}.

Fine frame and Esakia semantics

In the complete Heyting algebra of all upper sets of the Fine frame \mathscr{F}, consider the subalgebra \mathbb{A} generated by values of the variables p, q of $Ш$. As it turns out, the dual Esakia space of \mathbb{A} is obtained by adding a single limit point to \mathscr{F}.

Our take on III

Let $m_{i}=\perp_{i}:=p_{i} \wedge q_{i}, u_{i}=p_{i} \vee q_{i}$, and denote $\neg_{\neg} X:=x \rightarrow \perp_{i}$.
Moreover let $a_{i}=\neg_{i} \neg_{i} u_{i}$ and $d_{i}=\neg_{i} u_{i} \vee \neg_{i} \neg_{i} u_{i}$.
Here $p_{0}=p, q_{0}=q$ and

$$
p_{i+1}=q_{i} \vee \neg i q_{i}, \quad q_{i+1}=p_{i} \vee \neg i p_{i} .
$$

Our take on III

Let $m_{i}=\perp_{i}:=p_{i} \wedge q_{i}, u_{i}=p_{i} \vee q_{i}$, and denote $\neg_{i} X:=x \rightarrow \perp_{i}$.
Moreover let $a_{i}=\neg i \neg i u_{i}$ and $d_{i}=\neg_{i} u_{i} \vee \neg i \neg i u_{i}$.
Here $p_{0}=p, q_{0}=q$ and

$$
p_{i+1}=q_{i} \vee \neg_{i} q_{i}, \quad q_{i+1}=p_{i} \vee \neg_{i} p_{i} .
$$

Then, Ш is equivalent to both

$$
\left(a_{2} \rightarrow d_{3}\right) \rightarrow d_{2}
$$

and to

$$
\left(a_{3} \rightarrow d_{2}\right) \wedge\left(\left(a_{1} \rightarrow d_{3}\right) \rightarrow d_{3}\right) .
$$

Crucial: means $-\mathscr{V}\left(d_{3}\right)$ is nowhere \{dense,cofinal,...\} in $-\mathscr{V}\left(a_{1}\right)$!

Our take on III

III in the Esakia semantics

$x \in P_{1}:$

Here and in what follows for convenience we are using complementary clopen lower sets instead of clopen upper sets; $P:=\llbracket p \rrbracket=-\mathscr{V}(p), Q=\llbracket q \rrbracket$, etc.

III in the Esakia semantics

$x \in P_{2}:$

$x \in P_{1}$ and there is a $y \geqslant x$ with $y \in Q_{1}$ and $y \notin P_{1} ;$

III in the Esakia semantics

$x \in P_{2}:$

$x \in P_{1}$ and there is a $y \geqslant x$ with $y \in Q_{1}$ and $y \notin P_{1} ;$
in detail: there is a $y_{0} \geqslant x$ with $y_{0} \notin P$ and there are $x^{\prime} \geqslant y \geqslant x$ with $y \in Q, x^{\prime} \notin Q$, and for no $c \geqslant y c \notin P$.

III in the Esakia semantics

$x \in P_{3}:$

$x \in P_{2}$ and there is a $y \geqslant x$ with $y \in Q_{2}$ and $y \notin P_{2} ;$

III in the Esakia semantics

$x \in P_{3}:$

Q

$x \in P_{2}$ and there is a $y \geqslant x$ with $y \in Q_{2}$ and $y \notin P_{2} ;$
in detail: there are $x_{1}^{\prime} \geqslant y_{1} \geqslant x$ with $y_{1} \in Q, x_{1}^{\prime} \notin Q$, and for no $c \geqslant y_{1}$ $c \notin P$, and also there are $y_{1}^{\prime} \geqslant x_{1} \geqslant y \geqslant x, x_{0} \geqslant y$ such that $x_{0} \notin Q$, $x_{1} \in P \cap Q, y_{1}^{\prime} \notin P$, for no $c \geqslant x_{1} c \notin Q$, and moreover for all $b \geqslant a \geqslant y$ with ...

III in the Esakia semantics

$x \in A_{0}$:

Q
there is a $y \geqslant x$ with $y \in P_{2} \cap Q_{2}$ and for all $a \geqslant y, a \in P_{2} \Longleftrightarrow a \in Q_{2}$;

III in the Esakia semantics

$x \in A_{0}$:

there is a $y \geqslant x$ with $y \in P_{2} \cap Q_{2}$ and for all $a \geqslant y, a \in P_{2} \Longleftrightarrow a \in Q_{2}$;
here we recall for the first time that we are in a Esakia space, hence this is equivalent to requiring that there is a $y \geqslant x$ with

$$
y \in P_{2} \cap Q_{2} \cap \max \left(P_{2} \cup Q_{2}\right)
$$

III in the Esakia semantics

Ш (well, almost...)

Algebraic semantics

For Heyting algebras, the natural question to consider is whether every variety of Heyting algebras is generated by complete Heyting algebras (Litak says Visser proposed to call this complete completeness).

This is weaker than topological completeness: a complete Heyting algebra is isomorphic to the algebra of all open sets of a topological space iff each of its elements is a join of primes.
(p prime means $x \wedge y=p \Rightarrow x=p \vee y=p$.)

"Staying closer to Kripke"

Every Heyting algebra of all upper sets of a Kripke frame is in fact bi-Heyting (its opposite is Heyting too).

Bi-Heyting algebras provide algebraic semantics for Heyting-Brouwer logics.

"Staying closer to Kripke"

Every Heyting algebra of all upper sets of a Kripke frame is in fact bi-Heyting (its opposite is Heyting too).

Bi-Heyting algebras provide algebraic semantics for Heyting-Brouwer logics.

Last year we managed to show, generalizing
Fine-Gerson-Shehtman techniques, that there are completely incomplete Heyting-Brouwer logics.
In fact, we showed there are continuum many such, adapting a result of Litak from the Kripke context.

"Staying closer to Kripke"

Every Heyting algebra of all upper sets of a Kripke frame is in fact bi-Heyting (its opposite is Heyting too).

Bi-Heyting algebras provide algebraic semantics for Heyting-Brouwer logics.

Last year we managed to show, generalizing
Fine-Gerson-Shehtman techniques, that there are completely incomplete Heyting-Brouwer logics.
In fact, we showed there are continuum many such, adapting a result of Litak from the Kripke context.

This also implies that there are continuum many varieties of Heyting algebras not generated by complete bi-Heyting algebras.

"Staying closer to Kripke"

And also that there are continuum many superintuitionistic logics incomplete with respect to complete bi-Heyting algebras.
The latter has been also proved by Guillaume Massas using completely different approach related to the semantics of the Propositional Lax Logic and the Dragalin semantics.

Currently together with Wes Holliday we are looking into alternative viewpoint on the techniques of Massas.

This is another sense in which one "stays closer to Kripke".

"Staying closer to Kripke"

And also that there are continuum many superintuitionistic logics incomplete with respect to complete bi-Heyting algebras.

The latter has been also proved by Guillaume Massas using completely different approach related to the semantics of the Propositional Lax Logic and the Dragalin semantics.

Currently together with Wes Holliday we are looking into alternative viewpoint on the techniques of Massas.
This is another sense in which one "stays closer to Kripke".
In the Fairtlough-Mendler/Dragalin semantics, one can
efficiently represent any complete Heyting algebra by (some)
upper sets of a Kripke frame in such a way that arbitrary infinite
intersections are preserved!

"Staying closer to Kripke"

The tradeoff is that even the binary unions are not preserved.
This comes very close to our main obstacle.
Using Ш we obtain closed sets $A_{0}, A_{1}, A_{2}, \ldots$ with
$D_{i}=A_{i} \cap A_{i+1}=A_{i} \cap A_{i+2}=\ldots$ nowhere dense in A_{i}.
This allows us to violate $\mathbf{b b}_{2}$ using $C_{0}=A_{0} \cup A_{3} \cup A_{6} \cup \cdots$,
$C_{1}=A_{1} \cup A_{4} \cup A_{7} \cup \cdots, C_{2}=A_{2} \cup A_{5} \cup A_{8} \cup \cdots$, with $C=\cup D_{i}$.

"Staying closer to Kripke"

The tradeoff is that even the binary unions are not preserved.
This comes very close to our main obstacle.
Using Ш we obtain closed sets $A_{0}, A_{1}, A_{2}, \ldots$ with
$D_{i}=A_{i} \cap A_{i+1}=A_{i} \cap A_{i+2}=\ldots$ nowhere dense in A_{i}.
This allows us to violate $\mathbf{b b}_{2}$ using $C_{0}=A_{0} \cup A_{3} \cup A_{6} \cup \cdots$, $C_{1}=A_{1} \cup A_{4} \cup A_{7} \cup \cdots, C_{2}=A_{2} \cup A_{5} \cup A_{8} \cup \cdots$, with $C=\cup D_{i}$.

However to achieve $C_{i} \cap C_{j}=C$ we need infinite joins of closed sets to distribute over binary meets, which implies bi-Heytingness.

"Staying closer to Kripke"

The tradeoff is that even the binary unions are not preserved.
This comes very close to our main obstacle.
Using Ш we obtain closed sets $A_{0}, A_{1}, A_{2}, \ldots$ with
$D_{i}=A_{i} \cap A_{i+1}=A_{i} \cap A_{i+2}=\ldots$ nowhere dense in A_{i}.
This allows us to violate $\mathbf{b b}_{2}$ using $C_{0}=A_{0} \cup A_{3} \cup A_{6} \cup \cdots$, $C_{1}=A_{1} \cup A_{4} \cup A_{7} \cup \cdots, C_{2}=A_{2} \cup A_{5} \cup A_{8} \cup \cdots$, with $C=\cup D_{i}$.

However to achieve $C_{i} \cap C_{j}=C$ we need infinite joins of closed sets to distribute over binary meets, which implies bi-Heytingness.

In "ordinary" topological semantics, binary meets of closed sets are just intersections, while infinite joins go out of control, being closures of unions.

"Staying closer to Kripke"

The tradeoff is that even the binary unions are not preserved.
This comes very close to our main obstacle.
Using Ш we obtain closed sets $A_{0}, A_{1}, A_{2}, \ldots$ with
$D_{i}=A_{i} \cap A_{i+1}=A_{i} \cap A_{i+2}=\ldots$ nowhere dense in A_{i}.
This allows us to violate $\mathbf{b b}_{2}$ using $C_{0}=A_{0} \cup A_{3} \cup A_{6} \cup \cdots$,
$C_{1}=A_{1} \cup A_{4} \cup A_{7} \cup \cdots, C_{2}=A_{2} \cup A_{5} \cup A_{8} \cup \cdots$, with $C=\cup D_{i}$.
However to achieve $C_{i} \cap C_{j}=C$ we need infinite joins of closed sets to distribute over binary meets, which implies bi-Heytingness.

In "ordinary" topological semantics, binary meets of closed sets are just intersections, while infinite joins go out of control, being closures of unions.

In the Dragalin/Fairtlough-Mendler semantics, infinite joins are just infinite unions! But binary meets go out of control, unfortunately.

"Staying closer to Kripke"

Still another sense in which one may "stay closer to Kripke" is to consider Scott topologies on directed-complete partial orders.

However for a continuous poset this topology is bi-Heyting (in fact, topologies of continuous posets are precisely completely distributive lattices).
(Is a characterization of dcpo's with bi-Heyting (not necessarily completely distributive) Scott topology known?)
So to get something new in this direction one has to deal with really ugly dcpo's.

A couple of questions about quantifier eliminability

When trying to simplify the Shehtman axiom, this question arose:

Given a pair of elements a, b of a Heyting algebra such that $a=x \vee \neg x$ and $b=y \vee \neg y$ for some x, y with $x \wedge y=\varnothing$. Can one write an equivalent condition characterizing such a, b, without mentioning x, y ?

A couple of questions about quantifier eliminability

When trying to simplify the Shehtman axiom, this question arose:

Given a pair of elements a, b of a Heyting algebra such that $a=x \vee \neg x$ and $b=y \vee \neg y$ for some x, y with $x \wedge y=\varnothing$. Can one write an equivalent condition characterizing such a, b, without mentioning x, y ?

For the well known (much) simpler case, note that a has form $x \vee \neg x$ for some x if and only if $\neg a=\perp$ (the bottom element of the algebra).

Another related question: when does a have form $\neg x \vee \neg \neg x$?

A couple of questions about quantifier eliminability

When trying to simplify the Shehtman axiom, this question arose:

Given a pair of elements a, b of a Heyting algebra such that $a=x \vee \neg x$ and $b=y \vee \neg y$ for some x, y with $x \wedge y=\varnothing$. Can one write an equivalent condition characterizing such a, b, without mentioning x, y ?

For the well known (much) simpler case, note that a has form $x \vee \neg x$ for some x if and only if $\neg a=\perp$ (the bottom element of the algebra).

Another related question: when does a have form $\neg x \vee \neg \neg x$?
In Esakia semantics, $a=x \vee \neg x \Leftrightarrow \neg a=\perp$ means that the clopen upper set a contains the whole maximum.

A couple of questions about quantifier eliminability

When trying to simplify the Shehtman axiom, this question arose:

Given a pair of elements a, b of a Heyting algebra such that $a=x \vee \neg x$ and $b=y \vee \neg y$ for some x, y with $x \wedge y=\varnothing$. Can one write an equivalent condition characterizing such a, b, without mentioning x, y ?

For the well known (much) simpler case, note that a has form $x \vee \neg x$ for some x if and only if $\neg a=\perp$ (the bottom element of the algebra).

Another related question: when does a have form $\neg x \vee \neg \neg x$?
In Esakia semantics, $a=x \vee \neg x \Leftrightarrow \neg a=\perp$ means that the clopen upper set a contains the whole maximum.
Whereas $a=\neg X \vee \neg \neg X$ means that a contains the "fat maximum"

- all points which see a unique point in the maximum.

A couple of (hopefully) easier questions

Another possible simplification - throw in some (intuitionistic) modalities.

For example, the Kuznetsov-Muravitsky calculus KM extends the language of IPC with a modality Δ; intended interpretation of Δ in the topological semantics is

$$
[\Delta \varphi \rrbracket=-\delta-\llbracket \varphi \rrbracket,
$$

where δS is the set of limit points of the set S.

A couple of (hopefully) easier questions

This increases expressive power sufficiently to talk, e. g., about scatteredness:

$$
(\Delta \varphi \rightarrow \varphi) \rightarrow \varphi .
$$

The question about topological (in)completeness of extensions of KM might be not so difficult to answer.

A couple of (hopefully) easier questions

Not directly related to Kuznetsov but "similar in spirit": is every variety of Heyting algebras generated by bi-Heyting algebras?

Thank you!

