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1965-1974: Kripke and Esakia connected the Heyting algebras with
posets as follows:

» With every Heyting algebra A we associate the poset A, of
meet irreducible (a.k.a. prime) filters of A.

> With every poset X we associate a Heyting algebra
Up(X) := (Up(X); N, U, =, X)
whose universe is the set of upsets of X and — is defied as

U—V:i={xecX:foreveryy>x, ifyeU, theny € V}.

» In addition, every Heyting algebra A embeds into Up(A.) via
the map defined by the rule

a— {Fe€A,:acF}.
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Definition
A Sahlqvist quasiequation is an expression of the form

P=p ANy<z&...&p, Ny<z=—y<z

where @1,..., ¢, are Sahlqvist formulas.

For instance, up to equivalence in Heyting algebras,
» The excluded middle x V —x can be rendered as

xANy<z&xNy<z=y<z
» The prelinearity axiom (x3 — x2) V (x2 — x1) as
(1 > 0)Ay<z&(xy > x) A\y<z=y<z

» The bounded top width n axiom as

& (ﬁ(ﬁxiA A xj)/\y<z>:>y<z.

1<i<n+1 0<j<i
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Sahlqvist Theorem for fragments of IPC with A

The following conditions hold for a Sahlqvist quasiequation ® in
the language of a fragment L of IPC comprising A:

1. Canonicity: For every L-subreduct A of a Heyting algebra,
if AF @, then Up(A,) F ®;

2. Correspondence: There is an effectively computable sentence
tr(®) in the language of posets such that for every poset X,

X E tr(®) iff Up(X) F .

For instance, if ® is the Sahlqvist quasiequation corresponding to
» the excluded middle, we have that

tr(®) = “the order of X is the identity",
» the bounded top width n axiom, we have that

tr(®) = “in principal upsets in X, every (1 + 1)-element

antichain is below an 7-element one”.
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Aim to the talk

To extend Sahlqvist theory to protoalgebraic logics. As a corollary,
we will obtain a Sahlqvist theorem for fragments of IPC with —.

To this end, recall that:

» An element a of a lattice L is compact when for all X C L,
ifa < \/X there exists a finite Y C X s.t. a < \/Y.

» A complete lattice is algebraic when every element is a join of
compact ones.

» When ordered under the dual order, the compact elements of
an algebraic lattice L form a meet-semilattice L%.

Representation Theorem J

Every algebraic lattice L is isomorphic to the lattice of filters of L%.
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» A (propositional) logic I is a finitary consequence relation on
the set of formulas of an arbitrary algebraic language that,
moreover, is substitution invariant, i.e.,

if I'F @, then 0[] - o(g),

for every set of formulas I' U {¢} and every substitution o.

Definition
A logic |- is protoalgebraic if there exists a set of formulas A(x,y)
such that @ - A(x, x) and x, A(x,y) F y.

Example. Most logics with a respectable implication connective
x — y. To see this, take A := {x — y}.
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To extend Sahlqvist theory beyond IPC, we rely on the metalogical
properties governing the behavior of the intuitionistic connectives:

Definition
A logic I is said to have:

» the inconsistency lemma (IL) when for every n € Z* there
exists a finite set ~,(x1,...,x,) of formulas s.t.

I'U{ei,...,¢n} is inconsistent iff I'Fr~,(@1,..., Qn);

» the deduction theorem (DT) when there exists a finite set
x =y of formulas s.t.

Loy ifft TEoe=1;

» the proof by cases (PC) when there exists a finite set x Y y of
formulas s.t.

IobFyand I+ iff F,(le[JI—'y.
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Definition
Let - be a logic. A subset F of an algebra A is said to be a
deductive filter of - on A if for every set I' U {¢} of formulas,

if I' = @, then for every homomorphism f: Fm — A
we have that if f[I'] C F, then f(¢) € F.

We denote by Fii(A) the lattice of deductive filters of - on A.

» Remark. The lattice Fi-(A) is algebraic.

Theorem (Czelakowski, Dziobiak, and Raftery)

A protoalgebraic logic I has the IL (resp. DT, PC) iff the
semilattice Fi{’(A) is pseudocomplemented (resp. implicative
semilattice, distributive lattice) for every algebra A.
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A formula ¢(x1,...,x,) of IPCis compatible with a logic - when
» If = occurs in @, then I has the IL;
» If — occurs in @, then - has the DT;
» If V occurs in ¢, then I has the PC.

In this case, we can associate with ¢ a set of formulas of = which
globally behave as ¢.
More precisely, given k € Z™, the k-translation of @ is the finite set

k(1 k 1 k
@ (X1, XY, Xy, X))

of formulas of i defined as follows:
> If ¢ = x;, then ¢ == {x},..., xf};
> If ¢ = 11 APy, then q)k = tp’f U 1[)72‘;
» If o = = and ¥ = {x1,..., xm}, then
¢ =~ (X1, Xm),

where ~y, (z1,...,2zy) is the set witnessing the IL for |;
» Similarly, for V and —.
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The spectrum of an algebra A relative to a logic I is the poset
Speci (A) of the meet irreducible deductive filters of - on A.

General Sahlqvist Theorem
TFAE for a Sahlqvist quasiequation

P=p1 ANy<z&.. &puNy<z=—y<z

compatible with a protoalgebraic logic I

» The logic | validates the metarules

F/q)li(’)a/"-/’?n)D’)b F/(I)%(’?l/'-w’?n)b

4

oy

for all k € Z* and finite sets of formulas I' U {y, 77, . .

» For every algebra A, we have Spec (A) F tr(P).

'/’771};
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vvyyVvyy

Fir (A) = the lattice of filters of the semilattice Fif (A).

v

Consequently, Speci-(A) = Fi'(A)..
Thus, Up(Spec.-(A)) E .
» By Correspondence, Spec (A) F tr(P).

v
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Examples. Let - be a protoalgebraic logic with the IL.
Corollary (Lavicka & Prenosil)

The logic I~ validates the following metarules for n € Z*:

F/'le---/')’n|>¢ F/Nn('Yl/---/'Yn)Dl/J
>

iff it is semisimple: the poset Spec,(A) is discrete, for every A.

Corollary (for n = 1, Lavicka, M., Raftery)

The logic - validates the following metarules for n € Z*:

I~ (V11U Uy qU~F)>pforevery l <i<n+1
Iy

iff it has bounded top width 7: the principal upsets in Spec (A)
have at most n maximal elements, for every A.
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Fragments of IPC with implication.
» Forevery I' = {71,...,7n} and ¢, we write

Fr—s¢=m—=1=>(.(m—=>9)..)).
» Then for every Sahlqvist quasiequation
=1 Ny<z&.. &, N\y<z=—y<z
compatible with a fragment of IPC with —, we define
= |J (@ = x)U--- U@, = x) = x

keZ+t

Sahlqvist Canonicity for fragments of IPC with —

Let L be a fragment of IPC comprising —. For every L-subreduct A
of a Heyting algebra,

if AFE @, then Up(Spec, (A)) F @,

where Spec| (A) is the poset of meet irr. implicative filters of A.

<
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Intuitionistic linear logic.
» Recall that ILL is the substructural logic algebraized by the
variety of commutative FL-algebras.
» To apply this version of Sahlqvist theory of ILL, it is convenient
to identify its extensions with the IL, the DT, and the PC.
Theorem (Fornasiere & M., Galatos)
An axiomatic extension = of ILL has the

1. IL iff there exist some k € Z and a function f: Z+ — Z*
such that the theorems of = include the formulas

1k x and (1A —(xA1)™)f ) 5 —(1Ax)E,
for every m € Z.", where
L=1A1+0)A1+ (1—1));

2. DT iff there exists some k € Zt such that the theorems of -
include the formula (1 A x)*¥ — (1 A x)F1.

Lastly, every axiomatic extension of ILL has the PC.
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variety of commutative FL-algebras that algebraizes it.
» Furthermore, given A € K., we denote by Spec(A) the poset
of meet irreducible congruences of A.
Sahlqvist Correspondence for extensions of ILL

Lt D=1 ANy <z&...& ¢, Ny <z= y < z be a Sahlqvist
quasieq. compatible with an axiomatic extension - of ILL. TFAE:

1. The theorems of = include the formula
1A@Y) V-V (1Ag,);

2. Spec(A) E tr(®), for every algebra A € K.

» Example. The logic - has the IL and is semisimple iff there
exist some k € Z" and a function f: ZT — Z* such that the
theorems of | include the following formulas for all m € Z*:

1Fsx AA=(xA)M 0 5 (1 Ax)E
(1AX)V (TA=(x A5,




Thank you very much for your attention!



