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1965–1974: Kripke and Esakia connected the Heyting algebras with
posets as follows:

I With every Heyting algebra A we associate the poset A∗ of
meet irreducible (a.k.a. prime) filters of A.

I With every poset X we associate a Heyting algebra

Up(X) := 〈Up(X);∩,∪,→, ∅, X〉

whose universe is the set of upsets of X and → is defied as

U → V := {x ∈ X : for every y > x, if y ∈ U, then y ∈ V}.

I In addition, every Heyting algebra A embeds into Up(A∗) via
the map defined by the rule

a 7−→ {F ∈ A∗ : a ∈ F}.
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Definition
A Sahlqvist quasiequation is an expression of the form

Φ = ϕ1 ∧ y 6 z & . . . & ϕn ∧ y 6 z =⇒ y 6 z,

where ϕ1, . . . , ϕn are Sahlqvist formulas.

For instance, up to equivalence in Heyting algebras,
I The excluded middle x ∨ ¬x can be rendered as

x ∧ y 6 z &¬x ∧ y 6 z =⇒ y 6 z;

I The prelinearity axiom (x1 → x2) ∨ (x2 → x1) as

(x1 → x2) ∧ y 6 z & (x2 → x1) ∧ y 6 z =⇒ y 6 z;

I The bounded top width n axiom as

&
16i6n+1

(
¬(¬xi ∧

∧
0<j<i

xj) ∧ y 6 z
)
=⇒ y 6 z.
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Sahlqvist Theorem for fragments of IPC with ∧
The following conditions hold for a Sahlqvist quasiequation Φ in
the language of a fragment L of IPC comprising ∧:

1. Canonicity: For every L-subreduct A of a Heyting algebra,

if A � Φ, then Up(A∗) � Φ;

2. Correspondence: There is an effectively computable sentence
tr(Φ) in the language of posets such that for every poset X,

X � tr(Φ) iff Up(X) � Φ.

For instance, if Φ is the Sahlqvist quasiequation corresponding to
I the excluded middle, we have that

tr(Φ) = “the order of X is the identity”,

I the bounded top width n axiom, we have that

tr(Φ) = “in principal upsets in X, every (n + 1)-element
antichain is below an n-element one” .
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Aim to the talk
To extend Sahlqvist theory to protoalgebraic logics. As a corollary,
we will obtain a Sahlqvist theorem for fragments of IPC with →.

To this end, recall that:
I An element a of a lattice L is compact when for all X ⊆ L,

if a 6
∨

X, there exists a finite Y ⊆ X s.t. a 6
∨

Y.

I A complete lattice is algebraic when every element is a join of
compact ones.

I When ordered under the dual order, the compact elements of
an algebraic lattice L form a meet-semilattice Lω.

Representation Theorem
Every algebraic lattice L is isomorphic to the lattice of filters of Lω.
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I A (propositional) logic ` is a finitary consequence relation on
the set of formulas of an arbitrary algebraic language

that,
moreover, is substitution invariant, i.e.,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ),

for every set of formulas Γ ∪ {ϕ} and every substitution σ.

Definition
A logic ` is protoalgebraic if there exists a set of formulas ∆(x, y)
such that ∅ ` ∆(x, x) and x, ∆(x, y) ` y.

Example. Most logics with a respectable implication connective
x → y. To see this, take ∆ := {x → y}.
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To extend Sahlqvist theory beyond IPC, we rely on the metalogical
properties governing the behavior of the intuitionistic connectives:

Definition
A logic ` is said to have:
I the inconsistency lemma (IL) when for every n ∈ Z+ there

exists a finite set ∼n(x1, . . . , xn) of formulas s.t.

Γ ∪ {ϕ1, . . . , ϕn} is inconsistent iff Γ `∼n(ϕ1, . . . , ϕn);

I the deduction theorem (DT) when there exists a finite set
x⇒ y of formulas s.t.

Γ, ϕ ` ψ iff Γ ` ϕ⇒ ψ;

I the proof by cases (PC) when there exists a finite set x
b

y of
formulas s.t.

Γ, ϕ ` γ and Γ, ψ ` γ iff Γ, ϕ
j

ψ ` γ.
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I For protoalgebraic logics, the validity of these properties is
related to the algebraic models of the fragments of IPC with ∧.

Definition
Let ` be a logic. A subset F of an algebra A is said to be a
deductive filter of ` on A if for every set Γ ∪ {ϕ} of formulas,

if Γ ` ϕ, then for every homomorphism f : Fm→ A
we have that if f [Γ] ⊆ F, then f (ϕ) ∈ F.

We denote by Fi`(A) the lattice of deductive filters of ` on A.

I Remark. The lattice Fi`(A) is algebraic.

Theorem (Czelakowski, Dziobiak, and Raftery)
A protoalgebraic logic ` has the IL (resp. DT, PC) iff the
semilattice Fiω` (A) is pseudocomplemented (resp. implicative
semilattice, distributive lattice) for every algebra A.
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A formula ϕ(x1, . . . , xn) of IPC is compatible with a logic ` when

I If ¬ occurs in ϕ, then ` has the IL;
I If → occurs in ϕ, then ` has the DT;
I If ∨ occurs in ϕ, then ` has the PC.

In this case, we can associate with ϕ a set of formulas of ` which
globally behave as ϕ.
More precisely, given k ∈ Z+, the k-translation of ϕ is the finite set

ϕk(x1
1, . . . , xk

1, . . . , x1
n, . . . , xk

n)

of formulas of ` defined as follows:
I If ϕ = xi, then ϕk := {x1

i , . . . , xk
i };

I If ϕ = ψ1 ∧ ψ2, then ϕk := ψk
1 ∪ψk

2;
I If ϕ = ¬ψ and ψk = {χ1, . . . , χm}, then

ϕk := ∼m(χ1, . . . , χm),

where ∼m (z1, . . . , zm) is the set witnessing the IL for `;
I Similarly, for ∨ and →.
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The spectrum of an algebra A relative to a logic ` is the poset
Spec`(A) of the meet irreducible deductive filters of ` on A.

General Sahlqvist Theorem
TFAE for a Sahlqvist quasiequation

Φ = ϕ1 ∧ y 6 z & . . . & ϕm ∧ y 6 z =⇒ y 6 z

compatible with a protoalgebraic logic `:
I The logic ` validates the metarules

Γ,ϕk
1(~γ1, . . . ,~γn)� ψ . . . Γ,ϕk

m(~γ1, . . . ,~γn)� ψ

Γ � ψ

for all k ∈ Z+ and finite sets of formulas Γ ∪ {ψ, ~γ1, . . . ,~γn};
I For every algebra A, we have Spec`(A) � tr(Φ).
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Proof by example.

Suppose that the Sahlqvist quasiequation

Φ = x ∧ y 6 z &¬x ∧ y 6 z =⇒ y 6 z.

corresponding to the excluded middle x ∨ ¬x is compatible with `.
Remark. The semilattice Fiω` (A) is pseudocomplemented, for all A.
I Suppose that ` validates the metarules of the form

Γ, γ1, . . . , γn � ψ Γ,∼n (γ1, . . . , γn)� ψ

Γ � ψ.

I Then Fiω` (Fm) validates Φ.
I By protoalgebraicity, Fiω` (A) validates Φ, for every A.
I By Canonicity, Up(Fiω` (A)∗) � Φ.
I As Fi`(A) is an algebraic lattice,

Fi`(A) ∼= the lattice of filters of the semilattice Fiω` (A).

I Consequently, Spec`(A) ∼= Fiω` (A)∗.
I Thus, Up(Spec`(A)) � Φ.
I By Correspondence, Spec`(A) � tr(Φ).
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Examples. Let ` be a protoalgebraic logic with the IL.

Corollary (Lávička & Přenosil)

The logic ` validates the following metarules for n ∈ Z+:

Γ, γ1, . . . , γn � ψ Γ,∼n (γ1, . . . , γn)� ψ

Γ � ψ

iff it is semisimple: the poset Spec`(A) is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic ` validates the following metarules for n ∈ Z+:

Γ,∼ (~γ1 ∪ · · · ∪ ~γi−1∪ ∼~γi)� ψ for every 1 6 i 6 n + 1
Γ � ψ

iff it has bounded top width n: the principal upsets in Spec`(A)
have at most n maximal elements, for every A.
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Fragments of IPC with implication.

I For every Γ = {γ1, . . . , γn} and ϕ, we write

Γ → ϕ := γ1 → (γ2 → (. . . (γn → ϕ) . . . )).

I Then for every Sahlqvist quasiequation

Φ = ϕ1 ∧ y 6 z & . . . & ϕn ∧ y 6 z =⇒ y 6 z

compatible with a fragment of IPC with →, we define

Φ∗ :=
⋃

k∈Z+

((ϕk
1 → x) ∪ · · · ∪ (ϕk

n → x))→ x.

Sahlqvist Canonicity for fragments of IPC with →
Let L be a fragment of IPC comprising →. For every L-subreduct A
of a Heyting algebra,

if A � Φ∗, then Up(SpecL(A)) � Φ∗,

where SpecL(A) is the poset of meet irr. implicative filters of A.
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Intuitionistic linear logic.

I Recall that ILL is the substructural logic algebraized by the
variety of commutative FL-algebras.

I To apply this version of Sahlqvist theory of ILL, it is convenient
to identify its extensions with the IL, the DT, and the PC.

Theorem (Fornasiere & M., Galatos)
An axiomatic extension ` of ILL has the
1. IL iff there exist some k ∈ Z+ and a function f : Z+ → Z+

such that the theorems of ` include the formulas

⊥k → x and (1∧ ¬(x ∧ 1)m) f (m) → ¬(1∧ x)k,

for every m ∈ Z+, where

⊥ := 1∧ (1↔ 0) ∧ (1↔ (1→ 1));

2. DT iff there exists some k ∈ Z+ such that the theorems of `
include the formula (1∧ x)k → (1∧ x)k+1.

Lastly, every axiomatic extension of ILL has the PC.
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I Given an axiomatic extension ` of ILL, we denote by K` the
variety of commutative FL-algebras that algebraizes it.

I Furthermore, given A ∈ K`, we denote by Spec(A) the poset
of meet irreducible congruences of A.

Sahlqvist Correspondence for extensions of ILL
Let Φ = ϕ1 ∧ y 6 z & . . . & ϕm ∧ y 6 z =⇒ y 6 z be a Sahlqvist
quasieq. compatible with an axiomatic extension ` of ILL. TFAE:
1. The theorems of ` include the formula

(1∧ϕ1
1) ∨ · · · ∨ (1∧ϕ1

m);

2. Spec(A) � tr(Φ), for every algebra A ∈ K`.

I Example. The logic ` has the IL and is semisimple iff there
exist some k ∈ Z+ and a function f : Z+ → Z+ such that the
theorems of ` include the following formulas for all m ∈ Z+:

⊥k → x (1∧ ¬(x ∧ 1)m) f (m) → ¬(1∧ x)k

(1∧ x) ∨ (1∧ ¬(x ∧ 1)k).
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Thank you very much for your attention!


