Intuitionistic Sahlqvist correspondence for deductive systems

Tommaso Moraschini

Department of Philosophy, University of Barcelona

LATD 2022 & MOSAIC Kick Off Meeting

Joint work with Damiano Fornasiere

With every Heyting algebra A we associate the poset A_{*} of meet irreducible (a.k.a. prime) filters of A.

- With every Heyting algebra A we associate the poset A_{*} of meet irreducible (a.k.a. prime) filters of A.
- ▶ With every poset X we associate a Heyting algebra

$$\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

whose universe is the set of upsets of X

- With every Heyting algebra A we associate the poset A_{*} of meet irreducible (a.k.a. prime) filters of A.
- With every poset X we associate a Heyting algebra

$$\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

whose universe is the set of upsets of X and \rightarrow is defied as

$$U \to V := \{x \in X : \text{for every } y \ge x, \text{ if } y \in U, \text{ then } y \in V\}.$$

- With every Heyting algebra A we associate the poset A_{*} of meet irreducible (a.k.a. prime) filters of A.
- With every poset X we associate a Heyting algebra

 $\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$

whose universe is the set of upsets of X and \rightarrow is defied as

$$U \to V := \{x \in X : \text{for every } y \ge x, \text{ if } y \in U, \text{ then } y \in V\}.$$

In addition, every Heyting algebra A embeds into Up(A*) via the map defined by the rule

$$a\longmapsto \{F\in A_*:a\in F\}.$$

A Sahlqvist quasiequation is an expression of the form

$$\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_n \wedge y \leqslant z \Longrightarrow y \leqslant z,$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

A Sahlqvist quasiequation is an expression of the form

$$\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_n \wedge y \leqslant z \Longrightarrow y \leqslant z,$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

For instance, up to equivalence in Heyting algebras,

The excluded middle $x \lor \neg x$ can be rendered as

$$x \wedge y \leqslant z \And \neg x \wedge y \leqslant z \Longrightarrow y \leqslant z;$$

A Sahlqvist quasiequation is an expression of the form

$$\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_n \wedge y \leqslant z \Longrightarrow y \leqslant z,$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

For instance, up to equivalence in Heyting algebras,

The excluded middle $x \lor \neg x$ can be rendered as

$$x \wedge y \leqslant z \And \neg x \wedge y \leqslant z \Longrightarrow y \leqslant z;$$

▶ The prelinearity axiom $(x_1 \rightarrow x_2) \lor (x_2 \rightarrow x_1)$ as

 $(x_1 \rightarrow x_2) \land y \leqslant z \& (x_2 \rightarrow x_1) \land y \leqslant z \Longrightarrow y \leqslant z;$

A Sahlqvist quasiequation is an expression of the form

$$\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_n \wedge y \leqslant z \Longrightarrow y \leqslant z,$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

For instance, up to equivalence in Heyting algebras,

The excluded middle $x \lor \neg x$ can be rendered as

$$x \wedge y \leqslant z \And \neg x \wedge y \leqslant z \Longrightarrow y \leqslant z;$$

▶ The prelinearity axiom $(x_1 \rightarrow x_2) \lor (x_2 \rightarrow x_1)$ as

$$(x_1 \to x_2) \land y \leqslant z \& (x_2 \to x_1) \land y \leqslant z \Longrightarrow y \leqslant z;$$

The bounded top width n axiom as

$$\underbrace{\&}_{1\leqslant i\leqslant n+1}\left(\neg(\neg x_i \land \bigwedge_{0< j< i} x_j) \land y \leqslant z\right) \Longrightarrow y \leqslant z.$$

The following conditions hold for a Sahlqvist quasiequation Φ in the language of a fragment L of IPC comprising \wedge :

The following conditions hold for a Sahlqvist quasiequation Φ in the language of a fragment L of IPC comprising \wedge :

1. Canonicity: For every L-subreduct A of a Heyting algebra,

if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$;

The following conditions hold for a Sahlqvist quasiequation Φ in the language of a fragment L of IPC comprising \wedge :

1. Canonicity: For every L-subreduct A of a Heyting algebra,

if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$;

2. Correspondence: There is an effectively computable sentence $tr(\Phi)$ in the language of posets such that for every poset X,

 $X \vDash tr(\Phi)$ iff $Up(X) \vDash \Phi$.

The following conditions hold for a Sahlqvist quasiequation Φ in the language of a fragment L of IPC comprising \wedge :

1. Canonicity: For every L-subreduct A of a Heyting algebra,

if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$;

2. Correspondence: There is an effectively computable sentence $tr(\Phi)$ in the language of posets such that for every poset X,

 $X \vDash tr(\Phi)$ iff $Up(X) \vDash \Phi$.

For instance, if Φ is the Sahlqvist quasiequation corresponding to the excluded middle, we have that

 $\operatorname{tr}(\Phi) =$ "the order of X is the identity",

The following conditions hold for a Sahlqvist quasiequation Φ in the language of a fragment L of IPC comprising \wedge :

1. Canonicity: For every L-subreduct A of a Heyting algebra,

if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$;

2. Correspondence: There is an effectively computable sentence $tr(\Phi)$ in the language of posets such that for every poset X,

 $X \vDash tr(\Phi)$ iff $Up(X) \vDash \Phi$.

For instance, if Φ is the Sahlqvist quasiequation corresponding to the excluded middle, we have that

 $\operatorname{tr}(\Phi) =$ "the order of X is the identity",

the bounded top width n axiom, we have that

 $\operatorname{tr}(\Phi) =$ "in principal upsets in X, every (n+1)-element antichain is below an *n*-element one".

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To this end, recall that:

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To this end, recall that:

▶ An element *a* of a lattice *L* is compact when for all $X \subseteq L$,

if
$$a \leq \bigvee X$$
, there exists a finite $Y \subseteq X$ s.t. $a \leq \bigvee Y$.

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To this end, recall that:

An element a of a lattice L is compact when for all $X \subseteq L$,

if $a \leq \bigvee X$, there exists a finite $Y \subseteq X$ s.t. $a \leq \bigvee Y$.

 A complete lattice is algebraic when every element is a join of compact ones.

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To this end, recall that:

An element a of a lattice L is compact when for all $X \subseteq L$,

if $a \leq \bigvee X$, there exists a finite $Y \subseteq X$ s.t. $a \leq \bigvee Y$.

- A complete lattice is algebraic when every element is a join of compact ones.
- ▶ When ordered under the dual order, the compact elements of an algebraic lattice L form a meet-semilattice L^ω.

To extend Sahlqvist theory to protoalgebraic logics. As a corollary, we will obtain a Sahlqvist theorem for fragments of IPC with \rightarrow .

To this end, recall that:

An element a of a lattice L is compact when for all $X \subseteq L$,

if $a \leq \bigvee X$, there exists a finite $Y \subseteq X$ s.t. $a \leq \bigvee Y$.

- A complete lattice is algebraic when every element is a join of compact ones.
- When ordered under the dual order, the compact elements of an algebraic lattice L form a meet-semilattice L^{\u03c0}.

Representation Theorem

Every algebraic lattice L is isomorphic to the lattice of filters of L^{ω} .

A (propositional) logic ⊢ is a finitary consequence relation on the set of formulas of an arbitrary algebraic language A (propositional) logic ⊢ is a finitary consequence relation on the set of formulas of an arbitrary algebraic language that, moreover, is substitution invariant, i.e.,

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$,

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

A (propositional) logic ⊢ is a finitary consequence relation on the set of formulas of an arbitrary algebraic language that, moreover, is substitution invariant, i.e.,

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

Definition

A logic \vdash is protoalgebraic if there exists a set of formulas $\Delta(x, y)$ such that $\emptyset \vdash \Delta(x, x)$ and $x, \Delta(x, y) \vdash y$.

A (propositional) logic ⊢ is a finitary consequence relation on the set of formulas of an arbitrary algebraic language that, moreover, is substitution invariant, i.e.,

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

Definition

A logic \vdash is protoalgebraic if there exists a set of formulas $\Delta(x, y)$ such that $\emptyset \vdash \Delta(x, x)$ and $x, \Delta(x, y) \vdash y$.

Example. Most logics with a respectable implication connective $x \to y$. To see this, take $\Delta := \{x \to y\}$.

Definition

A logic \vdash is said to have:

Definition

A logic \vdash is said to have:

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \ldots, x_n)$ of formulas s.t.

 $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$ is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n);$

Definition

A logic \vdash is said to have:

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \ldots, x_n)$ of formulas s.t.

 $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$ is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n);$

► the deduction theorem (DT) when there exists a finite set x ⇒ y of formulas s.t.

$$\Gamma, \varphi \vdash \psi \text{ iff } \Gamma \vdash \varphi \Rightarrow \psi;$$

Definition

A logic \vdash is said to have:

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \ldots, x_n)$ of formulas s.t.

 $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$ is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n);$

• the deduction theorem (DT) when there exists a finite set $x \Rightarrow y$ of formulas s.t.

$$\Gamma, \varphi \vdash \psi$$
 iff $\Gamma \vdash \varphi \Rightarrow \psi$;

► the proof by cases (PC) when there exists a finite set x Y y of formulas s.t.

$$\Gamma, \varphi \vdash \gamma \text{ and } \Gamma, \psi \vdash \gamma \text{ iff } \Gamma, \varphi \bigvee \psi \vdash \gamma.$$

Definition

Let \vdash be a logic. A subset F of an algebra A is said to be a deductive filter of \vdash on A if for every set $\Gamma \cup \{\varphi\}$ of formulas,

$$\begin{array}{l} \text{if } \Gamma \vdash \varphi \text{, then for every homomorphism } f \colon Fm \to A \\ \text{we have that if } f[\Gamma] \subseteq F \text{, then } f(\varphi) \in F. \end{array}$$

Definition

Let \vdash be a logic. A subset F of an algebra A is said to be a deductive filter of \vdash on A if for every set $\Gamma \cup \{\varphi\}$ of formulas,

$$\begin{array}{l} \text{if } \Gamma \vdash \varphi \text{, then for every homomorphism } f \colon \pmb{Fm} \to \pmb{A} \\ \text{we have that if } f[\Gamma] \subseteq F \text{, then } f(\varphi) \in F. \end{array}$$

We denote by $Fi_{\vdash}(A)$ the lattice of deductive filters of \vdash on A.

Definition

Let \vdash be a logic. A subset F of an algebra A is said to be a deductive filter of \vdash on A if for every set $\Gamma \cup \{\varphi\}$ of formulas,

$$\begin{array}{l} \text{if } \Gamma \vdash \varphi \text{, then for every homomorphism } f \colon \pmb{Fm} \to \pmb{A} \\ \text{we have that if } f[\Gamma] \subseteq F \text{, then } f(\varphi) \in F. \end{array}$$

We denote by $Fi_{\vdash}(A)$ the lattice of deductive filters of \vdash on A.

• Remark. The lattice $Fi_{\vdash}(A)$ is algebraic.

Definition

Let \vdash be a logic. A subset F of an algebra A is said to be a deductive filter of \vdash on A if for every set $\Gamma \cup \{\varphi\}$ of formulas,

 $\begin{array}{l} \text{if } \Gamma \vdash \varphi \text{, then for every homomorphism } f \colon \textit{Fm} \to \textit{A} \\ \text{we have that if } f[\Gamma] \subseteq \textit{F} \text{, then } f(\varphi) \in \textit{F}. \end{array}$

We denote by $Fi_{\vdash}(A)$ the lattice of deductive filters of \vdash on A.

Remark. The lattice $Fi_{\vdash}(A)$ is algebraic.

Theorem (Czelakowski, Dziobiak, and Raftery)

A protoalgebraic logic \vdash has the IL (resp. DT, PC) iff the semilattice $\operatorname{Fi}_{\vdash}^{\omega}(A)$ is pseudocomplemented (resp. implicative semilattice, distributive lattice) for every algebra A.

A formula $\varphi(x_1, \ldots, x_n)$ of IPC is compatible with a logic \vdash when
A formula $\varphi(x_1, \ldots, x_n)$ of IPC is compatible with a logic \vdash when If \neg occurs in φ , then \vdash has the IL;

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

- ▶ If \neg occurs in φ , then \vdash has the IL;
- ▶ If \rightarrow occurs in φ , then \vdash has the DT;
- ▶ If \lor occurs in φ , then \vdash has the PC.

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If \lor occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as $\varphi.$

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If
$$\lor$$
 occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as φ .

More precisely, given $k \in \mathbb{Z}^+$, the k-translation of arphi is the finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash defined as follows:

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If
$$\lor$$
 occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as φ .

More precisely, given $k \in \mathbb{Z}^+$, the k-translation of arphi is the finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash defined as follows:

• If
$$\varphi = x_i$$
, then $\varphi^k \coloneqq \{x_i^1, \dots, x_i^k\}$;

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If
$$\lor$$
 occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as φ .

More precisely, given $k \in \mathbb{Z}^+$, the k-translation of φ is the finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash defined as follows:

▶ If
$$\varphi = x_i$$
, then $\varphi^k := \{x_i^1, \dots, x_i^k\}$;
▶ If $\varphi = \psi_1 \land \psi_2$, then $\varphi^k := \psi_1^k \cup \psi_2^k$;

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If
$$\lor$$
 occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as φ .

More precisely, given $k \in \mathbb{Z}^+$, the k-translation of φ is the finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash defined as follows:

where $\sim_m (z_1, \ldots, z_m)$ is the set witnessing the IL for \vdash ;

▶ If \neg occurs in φ , then \vdash has the IL;

▶ If \rightarrow occurs in φ , then \vdash has the DT;

▶ If
$$\lor$$
 occurs in φ , then \vdash has the PC.

In this case, we can associate with φ a set of formulas of \vdash which globally behave as φ .

More precisely, given $k \in \mathbb{Z}^+$, the k-translation of φ is the finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash defined as follows:

▶ If
$$\varphi = x_i$$
, then $\varphi^k := \{x_i^1, \dots, x_i^k\}$;
▶ If $\varphi = \psi_1 \land \psi_2$, then $\varphi^k := \psi_1^k \cup \psi_2^k$;
▶ If $\varphi = \neg \psi$ and $\psi^k = \{\chi_1, \dots, \chi_m\}$, then
 $\varphi^k := \sim_m(\chi_1, \dots, \chi_m)$,

where $\sim_m (z_1, \ldots, z_m)$ is the set witnessing the IL for \vdash ; Similarly, for \lor and \rightarrow . The spectrum of an algebra A relative to a logic \vdash is the poset $\mathsf{Spec}_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

The spectrum of an algebra A relative to a logic \vdash is the poset $Spec_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

General Sahlqvist Theorem

TFAE for a Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_m \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a protoalgebraic logic \vdash :

The spectrum of an algebra A relative to a logic \vdash is the poset $Spec_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

General Sahlqvist Theorem TFAE for a Sahlqvist guasieguation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_m \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a protoalgebraic logic \vdash :

► The logic ⊢ validates the metarules

$$\frac{\Gamma, \boldsymbol{\varphi}_{1}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi \quad \ldots \quad \Gamma, \boldsymbol{\varphi}_{m}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi}{\Gamma \rhd \psi}$$

for all $k \in \mathbb{Z}^+$ and finite sets of formulas $\Gamma \cup \{\psi, \vec{\gamma_1}, \dots, \vec{\gamma_n}\}$;

The spectrum of an algebra A relative to a logic \vdash is the poset $Spec_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

General Sahlqvist Theorem TFAE for a Sahlqvist guasieguation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_m \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a protoalgebraic logic \vdash :

► The logic ⊢ validates the metarules

$$\frac{\Gamma, \boldsymbol{\varphi}_{1}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi}{\Gamma \rhd \psi} \cdots \Gamma, \boldsymbol{\varphi}_{m}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi}$$

for all $k \in \mathbb{Z}^+$ and finite sets of formulas $\Gamma \cup \{\psi, \vec{\gamma_1}, \dots, \vec{\gamma_n}\}$; For every algebra A, we have $\text{Spec}_{\vdash}(A) \vDash \text{tr}(\Phi)$. Proof by example.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \lor \neg x$ is compatible with \vdash .

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}_{\vdash}^{\omega}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}.$$

▶ Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

► Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \triangleright \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \triangleright \psi}{\Gamma \triangleright \psi}$$

▶ Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

• Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.
- As $Fi_{\vdash}(A)$ is an algebraic lattice,

 $\mathsf{Fi}_{\vdash}(A)\cong$ the lattice of filters of the semilattice $\mathsf{Fi}^{\omega}_{\vdash}(A).$

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \triangleright \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \triangleright \psi}{\Gamma \triangleright \psi}$$

• Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.
- As $Fi_{\vdash}(A)$ is an algebraic lattice,

 $\mathsf{Fi}_{\vdash}(A) \cong$ the lattice of filters of the semilattice $\mathsf{Fi}^{\omega}_{\vdash}(A)$.

► Consequently,
$$\text{Spec}_{\vdash}(A) \cong \text{Fi}^{\omega}_{\vdash}(A)_*$$
.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \triangleright \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \triangleright \psi}{\Gamma \triangleright \psi}$$

• Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.
- As $Fi_{\vdash}(A)$ is an algebraic lattice,

 $\mathsf{Fi}_{dash }(A)\cong$ the lattice of filters of the semilattice $\mathsf{Fi}^{\omega}_{arphi}(A).$

- Consequently, $\text{Spec}_{\vdash}(A) \cong \text{Fi}^{\omega}_{\vdash}(A)_*$.
- ► Thus, $Up(Spec_{\vdash}(A)) \vDash \Phi$.

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $Fi^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules of the form

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

• Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.
- As $Fi_{\vdash}(A)$ is an algebraic lattice,

 $\mathsf{Fi}_{dash }(A)\cong$ the lattice of filters of the semilattice $\mathsf{Fi}^{\omega}_{arphi}(A).$

- Consequently, $\text{Spec}_{\vdash}(A) \cong \text{Fi}^{\omega}_{\vdash}(A)_*$.
- ► Thus, $Up(Spec_{\vdash}(A)) \vDash \Phi$.
- ▶ By Correspondence, $Spec_{\vdash}(A) \vDash tr(\Phi)$.

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\text{Spec}_{\vdash}(A)$ is discrete, for every A.

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\text{Spec}_{\vdash}(A)$ is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \sim (\vec{\gamma}_1 \cup \dots \cup \vec{\gamma}_{i-1} \cup \sim \vec{\gamma}_i) \triangleright \psi \text{ for every } 1 \leqslant i \leqslant n+1}{\Gamma \rhd \psi}$$

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\text{Spec}_{\vdash}(A)$ is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \sim (\vec{\gamma}_1 \cup \dots \cup \vec{\gamma}_{i-1} \cup \sim \vec{\gamma}_i) \triangleright \psi \text{ for every } 1 \leqslant i \leqslant n+1}{\Gamma \triangleright \psi}$$

iff it has bounded top width n: the principal upsets in Spec_{\vdash}(A) have at most n maximal elements, for every A.

For every
$$\Gamma = \{\gamma_1, \ldots, \gamma_n\}$$
 and φ , we write

$$\Gamma \to \varphi \coloneqq \gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)).$$

For every $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq \gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)).$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \And \dots \And \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a fragment of IPC with \rightarrow , we define

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\varphi_1^k \to x) \cup \cdots \cup (\varphi_n^k \to x)) \to x.$$

For every $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq \gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)).$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \And \dots \And \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a fragment of IPC with \rightarrow , we define

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\varphi_1^k \to x) \cup \cdots \cup (\varphi_n^k \to x)) \to x.$$

Sahlqvist Canonicity for fragments of IPC with \rightarrow

Let L be a fragment of IPC comprising \rightarrow .

For every $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq \gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)).$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \And \dots \And \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a fragment of IPC with \rightarrow , we define

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\varphi_1^k \to x) \cup \cdots \cup (\varphi_n^k \to x)) \to x.$$

Sahlqvist Canonicity for fragments of IPC with ightarrow

Let L be a fragment of IPC comprising \rightarrow . For every L-subreduct A of a Heyting algebra,

if
$$A \vDash \Phi^*$$
, then $\mathsf{Up}(\mathsf{Spec}_{\mathsf{L}}(A)) \vDash \Phi^*$,

where $\text{Spec}_{L}(A)$ is the poset of meet irr. implicative filters of A.

Intuitionistic linear logic.

Intuitionistic linear logic.

Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- To apply this version of Sahlqvist theory of ILL, it is convenient to identify its extensions with the IL, the DT, and the PC.

- Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- To apply this version of Sahlqvist theory of ILL, it is convenient to identify its extensions with the IL, the DT, and the PC.

Theorem (Fornasiere & M., Galatos)

An axiomatic extension \vdash of ILL has the

- Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- To apply this version of Sahlqvist theory of ILL, it is convenient to identify its extensions with the IL, the DT, and the PC.

Theorem (Fornasiere & M., Galatos)

An axiomatic extension \vdash of ILL has the

1. IL iff there exist some $k \in \mathbb{Z}^+$ and a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that the theorems of \vdash include the formulas

$$\perp^k \rightarrow x$$
 and $(1 \wedge \neg (x \wedge 1)^m)^{f(m)} \rightarrow \neg (1 \wedge x)^k$,

for every $m \in \mathbb{Z}^+$, where

 $\bot \coloneqq 1 \land (1 \leftrightarrow 0) \land (1 \leftrightarrow (1 \rightarrow 1));$

- Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- To apply this version of Sahlqvist theory of ILL, it is convenient to identify its extensions with the IL, the DT, and the PC.

Theorem (Fornasiere & M., Galatos)

An axiomatic extension \vdash of ILL has the

1. IL iff there exist some $k \in \mathbb{Z}^+$ and a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that the theorems of \vdash include the formulas

$$\perp^k \rightarrow x \text{ and } (1 \wedge \neg (x \wedge 1)^m)^{f(m)} \rightarrow \neg (1 \wedge x)^k$$
,

for every $m \in \mathbb{Z}^+$, where

$$\bot \coloneqq 1 \land (1 \leftrightarrow 0) \land (1 \leftrightarrow (1 \rightarrow 1));$$

DT iff there exists some k ∈ Z⁺ such that the theorems of ⊢ include the formula (1 ∧ x)^k → (1 ∧ x)^{k+1}.

- Recall that ILL is the substructural logic algebraized by the variety of commutative FL-algebras.
- To apply this version of Sahlqvist theory of ILL, it is convenient to identify its extensions with the IL, the DT, and the PC.

Theorem (Fornasiere & M., Galatos)

An axiomatic extension \vdash of ILL has the

1. IL iff there exist some $k \in \mathbb{Z}^+$ and a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that the theorems of \vdash include the formulas

$$\perp^k \rightarrow x \text{ and } (1 \wedge \neg (x \wedge 1)^m)^{f(m)} \rightarrow \neg (1 \wedge x)^k$$
,

for every $m \in \mathbb{Z}^+$, where

$$\bot \coloneqq 1 \land (1 \leftrightarrow 0) \land (1 \leftrightarrow (1 \rightarrow 1));$$

 DT iff there exists some k ∈ Z⁺ such that the theorems of ⊢ include the formula (1 ∧ x)^k → (1 ∧ x)^{k+1}.
Lastly, every axiomatic extension of ILL has the PC. ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL.

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL. TFAE:

1. The theorems of \vdash include the formula

$$(1 \wedge \boldsymbol{\varphi}_1^1) \vee \cdots \vee (1 \wedge \boldsymbol{\varphi}_m^1);$$

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL. TFAE:

1. The theorems of \vdash include the formula

$$(1 \wedge \boldsymbol{\varphi}_1^1) \vee \cdots \vee (1 \wedge \boldsymbol{\varphi}_m^1);$$

2. $\mathsf{Spec}(A) \vDash \mathsf{tr}(\Phi)$, for every algebra $A \in \mathsf{K}_{\vdash}$.

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL. TFAE:

1. The theorems of \vdash include the formula

$$(1 \wedge \boldsymbol{\varphi}_1^1) \vee \cdots \vee (1 \wedge \boldsymbol{\varphi}_m^1);$$

2. $\mathsf{Spec}(A) \vDash \mathsf{tr}(\Phi)$, for every algebra $A \in \mathsf{K}_{\vdash}$.

Example. The logic ⊢ has the IL and is semisimple iff

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL. TFAE:

1. The theorems of \vdash include the formula

$$(1 \wedge \boldsymbol{\varphi}_1^1) \vee \cdots \vee (1 \wedge \boldsymbol{\varphi}_m^1);$$

2. Spec $(A) \vDash tr(\Phi)$, for every algebra $A \in K_{\vdash}$.

Example. The logic ⊢ has the IL and is semisimple iff there exist some k ∈ Z⁺ and a function f: Z⁺ → Z⁺ such that the theorems of ⊢ include the following formulas for all m ∈ Z⁺:

- ► Given an axiomatic extension ⊢ of ILL, we denote by K_⊢ the variety of commutative FL-algebras that algebraizes it.
- Furthermore, given A ∈ K_⊢, we denote by Spec(A) the poset of meet irreducible congruences of A.

Let $\Phi = \varphi_1 \land y \leq z \& \dots \& \varphi_m \land y \leq z \Longrightarrow y \leq z$ be a Sahlqvist quasieq. compatible with an axiomatic extension \vdash of ILL. TFAE:

1. The theorems of \vdash include the formula

$$(1 \wedge \boldsymbol{\varphi}_1^1) \vee \cdots \vee (1 \wedge \boldsymbol{\varphi}_m^1);$$

2. Spec $(A) \vDash tr(\Phi)$, for every algebra $A \in K_{\vdash}$.

Example. The logic ⊢ has the IL and is semisimple iff there exist some k ∈ Z⁺ and a function f: Z⁺ → Z⁺ such that the theorems of ⊢ include the following formulas for all m ∈ Z⁺:

$$egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{ar$$

Thank you very much for your attention!