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Finite basis theorems
A finite basis theorem gives a sufficient condition for the theory of a finite
set of finite algebras in a finite signature K to be finitely axiomatizable.

Equational theory (Baker ‘77):

V(K) congruence distributive =⇒ finitely axiomatizable.

Quasiequational theory (Pigozzi, ‘88):

Q(K) relatively congruence distributive =⇒ finitely axiomatizable.

In the logical setting, K consists of matrices, i.e. algebras with a designated
subset. Its logical theory is the set of logical rules (Γ ⊢ ϕ) valid in K.

Logical theory (Palasińska ‘94):

Log(K) filter distributive and protoalgebraic =⇒ finitely axiomatizable.
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Finite basis theorems

The above finite basis theorems are deep and general theorems.

In comparison, what I shall prove a shallow and specific theorem.

However, it introduces an idea which may be worth exploring: a logic with
no finite Hilbert-style axiomatization (by logical rules γ1, . . . ,γn ⊢ ϕ) may
still have a finite Gentzen-style axiomatization (by rules and meta-rules).

Another theme is the distinction between filter classes and logical classes.
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Filter classes

Which families of upsets of distributive lattices are there
that behave like the family of all lattice filters?

Key properties of lattice filters: closed under

homomorphic preimages (F filter =⇒ h−1[F] filter),

arbitrary intersections (Fi filters =⇒
⋂

i∈I Fi filter),

directed unions (Fi dir. family of filters =⇒
⋃

i∈I Fi filter).

Definition. A (finitary) filter class of upsets of distributive lattices is one
closed under homomorphic preimages and intersections (and dir. unions).
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Filter classes

Equivalent definition. A filter class (of upsets of distributive lattices) is a
class of structures of the form 〈A, F〉 (where A is a distributive lattice and
F is an upset of A) which is closed under

(H−1
S ) surjective homomorphic preimages,

(S) substructures,

(P) products of structures.

A finitary filter class is moreover closed under

(PU) ultraproducts.

Fact. The filter class generated by K is H−1
S SP(K). Equivalently, it is the

class of all intersections of homomorphic preimages of structures in K.
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Filter classes

Theorem. The lattices of non-trivial finitary filter classes upsets of
distributive lattices looks like this:

...

filters

2-filters

3-filters

upsets

DL1

DL2

DL3

DL∞

generated by B1

generated by B2

generated by B3

generated by {Bn | n≥ 1}

Proof. Find the generators. Show that DLn and DLn+1 form a splitting.
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2-filters

Consider B2 := 〈B2, P2〉 where B2 := (B1)2 and P2 := {a ∈ B2 | a> f}:

This is what we call a 2-filter: an upset F such that

x ∧ y, y∧ z, z∧ x ∈ F =⇒ x ∧ y∧ z ∈ F.

(In this case because given 3 elements in F at least 2 are comparable.)
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n-filters

Consider Bn := 〈Bn, Pn〉 where Bn := (B1)n and Pn := {a ∈ Bn | a> f}.

This is an n-filter: an upset F such that for each non-empty finite X ⊆ F
∧

Y ∈ F for each Y ⊆ X with 1≤ |Y| ≤ n =⇒
∧

X ∈ F.

Without loss of generality we may take |X|= n+ 1 in this definition.

Fact. n-filters form a finitary filter class of upsets of distributive lattices.

Fact. The n-filters of a distributive lattice L form a distributive lattice Fin L.
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Examples

Fact. The set Pn ⊆ Bn is an n-filter but not an m-filter for any m< n.

Example. P3 ⊆ B3 is not a 2-filter (x ∧ y, y∧ z, z∧ x ∈ F but x ∧ y∧ z /∈ F):

x y z
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Examples

Fact. Each union of n ordinary filters is an n-filter (but not vice versa).

Corollary. Each upset of a finite lattice is an n-filter for some n.

Example. The following are 2-filters on B4:
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Prime n-filters and k-prime filters

Definition. A meet k-prime element of a lattice L is an a ∈ L such that for
each non-empty finite X ⊆ L (w.l.o.g. with |X|= k+ 1)
∧

X ≤ a =⇒
∧

Y ≤ a for some Y ⊆ X with 1≤ |Y| ≤ k.

For k := 1 this yields the usual definition of meet primes.

Definition. An k-prime n-filter on L is a meet k-prime element of Fin L.

Fact. An n-filter is prime if its complement is an ideal.

Fact. A filter is k-prime if its complement is an k-ideal.
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Generating the filter class DLn

How do we find the generators of DL1?

Lemma. Each filter is an intersection of prime filters.

(Proof relies on having a description of the filter generated by an upset.)

Lemma. Each prime filter is a homomorphic preimage of P1 ⊆ B1.

Theorem. The filter class DL1 of all filters is generated by 〈B1, P1〉.
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Lemma. Each n-filter is an intersection of prime n-filters.

(Proof relies on having a description of the n-filter generated by an upset.)

Lemma. Each prime n-filter is a homomorphic preimage of Pn ⊆ Bn.

Theorem. The filter class DLn of all filters is generated by 〈Bn, Pn〉.

Why do the structures 〈Bn, Pn〉 arise in this context?

Because of the following lemma and the dual product construction.

Lemma. Each prime n-filter is a union of at most n prime filters.
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Dual products of matrices

Consider a family 〈Ai, Fi〉 for i ∈ I with projection maps πi :
∏

i∈I Ai→ Ai.

The direct product of this family is the matrix
∏

i∈I

〈Ai, F〉 :=
¬∏

i∈I

Ai,
⋂

i∈I

π−1
i [Fi]
¶

.

The dual product of this family is the matrix

⊗

i∈I

〈Ai, Fi〉 :=
¬∏

i∈
Ai,
⋃

i∈I

π−1
i [Fi]
¶

.

The dual product construction was studied by Badia & Marcos (2018).

Key example. The matrix 〈Bn, {t}〉 is the n-th direct power of 〈B1, {t}〉.
The matrix Bn := 〈Bn, Pn〉 is the n-th dual power of B1 := 〈B1, {t}〉.
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Dual products of matrices

Fact. Consider a family of strict homomorphisms

hi : 〈A, Fi〉 → 〈Bi, Gi〉 for i ∈ I.

Then the product map yields two strict homomorphisms, namely

h: 〈A,
⋂

i∈I

Fi〉 →
∏

i∈I

〈Bi, Gi〉, h: 〈A,
⋃

i∈I

Fi〉 →
⊗

i∈I

〈Bi, Gi〉.

Key example. Consider some prime n-filter F on A. Then F = F1 ∪ · · · ∪ Fn
for some prime filters Fi. This yields a family of strict hi : 〈A, Fi〉 → B1. The
product of these maps is a strict h: 〈A, F〉 → Bn.

Key example. Consider some n-prime F on A. Then F = F1 ∩ · · · ∩ Fn for
some prime filters Fi. This yields a family of strict hi : 〈A, Fi〉 → B1. The
product of these maps is a strict h: 〈A, F〉 → (B1)n.
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De Morgan lattices
We can now play the same game with De Morgan lattices (DMLs), i.e.
distributive lattices equipped with an order-inverting involution ¬.

Let DMn (DM∞) be the class of all matrices 〈A, F〉 where A is a DML and
F ⊆ A is an n-filter (upset). Let BDn (BD∞) be the corresponding logic.

Remark. BD1 is known as Belnap–Dunn logic, or FDE.

The role of B1 will be taken over by the matrix DM1 := 〈DM1, Q1〉:

Lemma. Each prime filter on a DML is a homomorphic preimage of Q1.
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Generating the filter class DMn

The proof for distributive lattices carries over to DMLs.

Lemma. Each n-filter on a DML is an intersection of prime n-filters.

Lemma. Each prime n-filter is a union of at most n prime filters.

Lemma. Each prime filter is a homomorphic preimage of Q1 ⊆ DM1.

Theorem. The filter class DMn of n-filters of upsets of De Morgan lattices
is generated by DMn := (DM1)⊗n (the n-th dual power of DM1).

Remark. There are continuum many other filter classes of upsets of DMLs.
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Logical classes vs. filter classes
Definition. A logical class is a filter class which is moreover closed under

(HS) strict surjective homomorphic images.

That is, 〈A, h−1[G]〉 ∈ K implies 〈B, G〉 ∈ K for h: A→ B surjective.

Fact. The logical class generated by K is H−1
S HSSP(K).

Theorem (Dellunde & Jansana ‘96). Logical classes are precisely the
classes axiomatized by (possibly infinitary) logical rules:

True(γ1) & . . . & True(γn) =⇒ True(ϕ).

Theorem (Stronkowski ‘18). Filter classes are precisely the classes
axiomatized by (possibly infinitary) generalized logical rules:

α1 ≈ β1 & . . . & αm ≈ βm & True(γ1) & . . . & True(γn) =⇒ True(ϕ).

That is, we can use equations in the premises (but not in the conclusion).
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The n-PCP
Definition. A logic has the proof by cases property (PCP) if

Γ ,α ⊢ ϕ & Γ ,β ⊢ ϕ ⇐⇒ Γ ,α∨ β ⊢ ϕ.

Definition. A logic has the 2-proof by cases property (2-PCP) if

Γ ,α∨ β ⊢ ϕ & Γ ,β ∨ γ ⊢ ϕ & Γ ,γ∨α ⊢ ϕ =⇒ Γ ,α∨ β ∨ γ ⊢ ϕ.

The n-PCP is the obvious generalization. The 1-PCP is just the PCP.

Fact. For finitary extensions of BD∞

PCP ⇐⇒ complete w.r.t. a set of DMLs with prime upsets.

Fact. For finitary extensions of BD1

n-PCP ⇐⇒ complete w.r.t. a set of DMLs with n-prime filters.
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Hierarchies of extensions

Theorem. The following are equivalent:

L is a finitary extension of BDn with the PCP,

L is complete w.r.t. some finite set of DMLs with prime n-filters,

L is complete w.r.t. some set of submatrices of DMn.

Some such n exists for each fin. generated extension of BD∞ with the PCP.

Theorem. The following are equivalent:

L is a finitary extension of BD1 with the n-PCP,

L is complete w.r.t. some finite set of DMLs with n-prime filters,

L is complete w.r.t. some set of submatrices of (DM1)n.

Some such n exists for each fin. generated extension of BD1.
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Lattice of extensions of BD1 with the PCP:

BD1

KO

KLP∩ TRIV−

LP CL∩ TRIV−

TRIV−CL

TRIV
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Lattice of extensions of BD1 with the 2-PCP:

BD1

LP∩ ECQω ∩ ETL

LP∩ ECQω LP∩ ETL ECQω ∩ ETL

LP∩K− ECQω

(LP∪ ECQω)∩K−

(LP∪ ECQω)∩ ETL

ETL

K−

KO

KO∪ ECQω

KLP

LP∪ ECQω

CL

TRIV

LP∩ TRIV−

(LP∩ TRIV−)∪ ECQω

CL∩ TRIV−

TRIV−
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Finite basis theorems

Finite basis theorem. Each logic determined by a finite set of finite DMLs
with prime upsets is axiomatized by a finite set of logical rules.

Proof. There are finitely many finitary extensions of BDn with the PCP,
since each is determined by a family of submatrices of DMn. Thus, each
such extension is axiomatized relative to BDn by the PCP and a finite set of
logical rules. The PCP can be eliminated by the transformation

γ1, . . . ,γn ⊢ ϕ 7→ γ1 ∨ x, . . . ,γn ∨ x ⊢ ϕ ∨ x.

Finite basis theorem. Each logic determined by a finite set of finite DMLs
with filters is axiomatized by a finite set of logical rules and meta-rules.

Proof. Same argument, but we cannot eliminate the n-PCP.
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Side remark: filter classes vs. logical classes

A standard way to prove that a logic L is complete w.r.t. a matrix 〈A, F〉 is:

1. Find the algebraic counterpart K of L.

2. Find a good definition of what it means for an L-filter to be prime.

3. Show that L-filters on K-algebras are intersections of prime L-filters.

4. Each prime L-filter on a K-algebra is a homomorphic preimage of F.

This shows that L is in fact complete as a filter class w.r.t. 〈A, F〉.

In a way, completeness theorems which only establish completeness as a
logical class are the exception rather than the rule. But they exist!
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Side remark: filter classes vs. logical classes

Example. The family of 2-filters on distributive lattices is generated by B2
as a filter class, but the family of 2-filters on meet semilattices is generated
by (the semilattice reduct of) B2 only as a logical class, not as a filter class.

In particular, the 2-filter of non-zero elements of the diamond M5 is not an
intersection of preimages of {t} ⊆ B1, as witnessed by the generalized rule

x ∧ y ≈ y∧ z≈ z∧ x & True(x) & True(y) & True(z) =⇒ True(x ∧ y∧ z).

Example. DL∞ is generated by {Bn | n ∈ω} as a finitary filter class, and
also as a logical class, but not as a filter class. A syntactic witness for this
is a generalized rule stating, roughly, that no infinite (anti)chains exist.

Open problems. Axiomatize the filter class generated by upsets of finite
distributive lattices, or the logic determined by finite upsets of finite BAs.
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Thank you for your attention!
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Example. The logic ECQ∞ determined by the 8-element matrix DM1 ×B1
has no finite Hilbert-style axiomatization. It extends BD1 by the rules

(x1 ∧¬x1)∨ · · · ∨ (xn ∧¬xn) ⊢ y.

But it has a finite Gentzen-style axiomatization: it is the smallest extension
of BD1 with the 2-PCP which validates the rule

(x1 ∧¬x1)∨ (x2 ∧¬x2) ⊢ y.
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Example. Shramko’s logic of Anything but Falsehood is determined by:

Theorem. The logic of anything but falsehood extends BD2 by the
excluded middle ; ⊢ x ∨¬x and the rule x ∨ y,¬x ∨ y ⊢ (x ∧¬x)∨ y.

Compare:

Theorem (Shramko). The FMLA-FMLA logic of anything but falsehood
extends the FMLA-FMLA version of BD by the rule x ⊢ (x ∧¬y)∨ y.
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The HSS-order on the substructures of DM2:

B1

B1 ⊗B1K1 P1

B1 ⊗K1 B1 ⊗ P1

DM1

B1 ⊗DM1

K1 ⊗ P1

K1 ⊗K1 P1 ⊗ P1

K1 ⊗DM1 P1 ⊗DM1

DM1 ⊗DM1

Q4

Q7

Q8

Q9

A1
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