Positive (Modal) Logic Beyond Distributivity

Anna Dmitrieva (University of East Anglia)

joint work with Nick Bezhanishvili, Jim de Groot and Tommaso Moraschini

September 6, 2022

HOW TO HELP UKRAINE

- Donate
- Volunteer
- Host

Слава Україні!

Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

Introduction

This talk is based on our paper [BDdGM22] with Nick Bezhanishvili, Jim de Groot and Tommaso Moraschini.

This talk is based on our paper [BDdGM22] with Nick Bezhanishvili, Jim de Groot and Tommaso Moraschini. The paper itself is partially based on my Master thesis [Dmi21], supervised by Nick Bezhanishvili and Tommaso Moraschini.

Positive modal logic and duality

• Duality is a classical tool for studying modal and intermediate logics [BRV01, CZ97].

Positive modal logic and duality

- Duality is a classical tool for studying modal and intermediate logics [BRV01, CZ97].
- Sahlqvist canonicity and correspondence results are some of the important applications of the duality theory [SV89].

Positive modal logic and duality

- Duality is a classical tool for studying modal and intermediate logics [BRV01, CZ97].
- Sahlqvist canonicity and correspondence results are some of the important applications of the duality theory [SV89].
- In [CJ99], Celani and Jansana developed a Priestley-like duality for modal distributive lattices, leading to Sahlqvist theory for positive distributive modal logic.

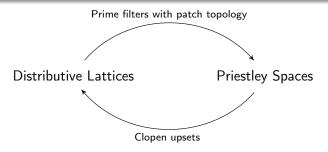
• There have been many attempts to extend classical duality theory to to the setting of all lattices, for example by:

- There have been many attempts to extend classical duality theory to to the setting of all lattices, for example by:
 - Urquhart [Urq78],
 - Hartonas [Har19, HO19],
 - Gehrke and van Gool [GVG14],
 - Goldblatt [Gol20].

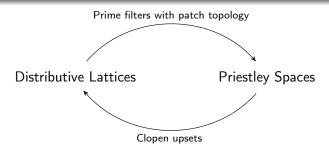
- There have been many attempts to extend classical duality theory to to the setting of all lattices, for example by:
 - Urquhart [Urq78],
 - Hartonas [Har19, HO19],
 - Gehrke and van Gool [GVG14],
 - Goldblatt [Gol20].
- However, each of these uses either a ternary relation, or two-sorted frames, making them quite different from known dualities, such as Stone and Priestley dualities.

- There have been many attempts to extend classical duality theory to to the setting of all lattices, for example by:
 - Urquhart [Urq78],
 - Hartonas [Har19, HO19],
 - Gehrke and van Gool [GVG14],
 - Goldblatt [Gol20].
- However, each of these uses either a ternary relation, or two-sorted frames, making them quite different from known dualities, such as Stone and Priestley dualities.
- Instead, we concentrate on the the duality for meet-semilattices developed by Hofmann, Mislove and Stralka [HMS74] and its generalization to lattices by Jipsen and Moshier [MJ14].

Priestley duality



Priestley duality

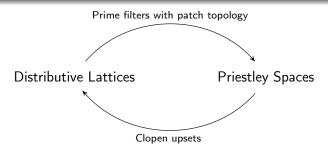


Definition

A Priestley space is a tuple (X, \leq, τ) , where \leq is a partial order and τ is a topology space, such that

Duality Positive logic Positive modal logic

Priestley duality

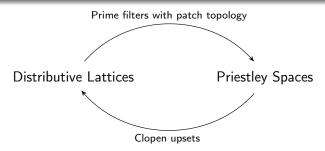


Definition

A Priestley space is a tuple (X, \leq, τ), where \leq is a partial order and τ is a topology space, such that

Duality Positive logic Positive modal logic

Priestley duality



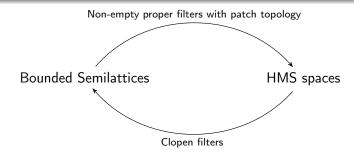
Definition

A Priestley space is a tuple (X, \leq, τ) , where \leq is a partial order and τ is a topology space, such that

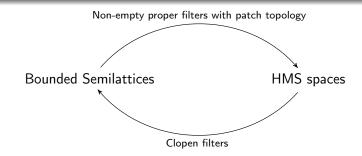
- (X, τ) is compact,
- If x ≤ y, then there exists a clopen upset U such that x ∈ U and y ∉ U.

Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

HMS duality



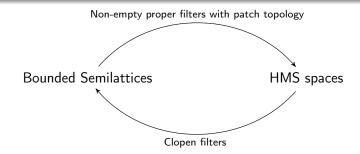
HMS duality



Definition

An HMS space is a tuple (X, \wedge, τ) , where \wedge is a meet and τ is a topology space, such that

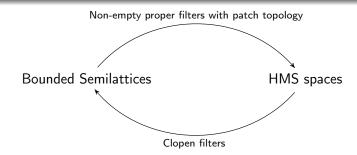
HMS duality



Definition

An HMS space is a tuple (X, \wedge, τ) , where \wedge is a meet and τ is a topology space, such that

HMS duality



Definition

An HMS space is a tuple (X, \wedge, τ) , where \wedge is a meet and τ is a topology space, such that

- (X, τ) is compact,
- If x ≤ y, then there exists a clopen filter a such that x ∈ a and y ∉ a.

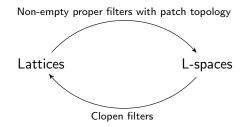
Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

Lattice duality

The following duality is a modified version of the duality introduced by Jipsen and Moshier [MJ14].

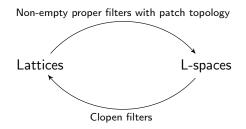
Lattice duality

The following duality is a modified version of the duality introduced by Jipsen and Moshier [MJ14].



Lattice duality

The following duality is a modified version of the duality introduced by Jipsen and Moshier [MJ14].



Definition

An L-space is an HMS space such that for every pair of clopen filters a, b, the filter $a \uparrow b := a \cup b \cup \uparrow \{x \land y \mid x \in a, y \in b\}$ is clopen as well.

Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

Language

Definition

Let L denote the language of positive propositional logic, i.e. generated by the grammar

$$\phi ::= \mathbf{p} \mid \top \mid \bot \mid \phi \land \phi \mid \phi \lor \phi,$$

Language

Definition

Let L denote the language of positive propositional logic, i.e. generated by the grammar

$$\phi ::= \pmb{p} \mid \top \mid \bot \mid \phi \land \phi \mid \phi \lor \phi,$$

Definition

A consequence pair is simply an expression of the form $\phi \leq \psi$, where ϕ and ψ are formulae in L.

Axioms and rules

Let \mathcal{L} be the smallest set of consequence pairs closed under the following axioms and rules:

Axioms and rules

Let \mathcal{L} be the smallest set of consequence pairs closed under the following axioms and rules: *top* and *bottom*

$$\phi \triangleleft \top, \qquad \bot \triangleleft \phi,$$

Axioms and rules

Let \mathcal{L} be the smallest set of consequence pairs closed under the following axioms and rules: *top* and *bottom*

$$\phi \triangleleft \top, \qquad \bot \triangleleft \phi,$$

reflexivity and transitivity

$$\phi \triangleleft \phi, \qquad rac{\phi \triangleleft \psi \quad \psi \triangleleft \chi}{\phi \triangleleft \chi},$$

Axioms and rules

Let \mathcal{L} be the smallest set of consequence pairs closed under the following axioms and rules: *top* and *bottom*

$$\phi \triangleleft \top, \qquad \bot \triangleleft \phi,$$

reflexivity and transitivity

$$\phi \triangleleft \phi, \qquad \frac{\phi \triangleleft \psi \quad \psi \triangleleft \chi}{\phi \triangleleft \chi},$$

the conjunction rules

$$\phi \wedge \psi \triangleleft \phi, \qquad \phi \wedge \psi \triangleleft \psi, \qquad \frac{\chi \triangleleft \phi \quad \chi \triangleleft \psi}{\chi \triangleleft \phi \wedge \psi},$$

Axioms and rules

Let \mathcal{L} be the smallest set of consequence pairs closed under the following axioms and rules: *top* and *bottom*

$$\phi \triangleleft \top, \qquad \bot \triangleleft \phi,$$

reflexivity and transitivity

$$\phi \triangleleft \phi, \qquad \frac{\phi \triangleleft \psi \quad \psi \triangleleft \chi}{\phi \triangleleft \chi},$$

the conjunction rules

$$\phi \wedge \psi \triangleleft \phi, \qquad \phi \wedge \psi \triangleleft \psi, \qquad \frac{\chi \triangleleft \phi \quad \chi \triangleleft \psi}{\chi \triangleleft \phi \wedge \psi},$$

the disjunction rules

$$\phi \triangleleft \phi \lor \psi, \qquad \psi \triangleleft \phi \lor \psi, \qquad \frac{\phi \triangleleft \chi \quad \psi \triangleleft \chi}{\phi \lor \psi \triangleleft \chi}.$$

Algebraic semantics

• Lattices naturally form semantics for L.

- Lattices naturally form semantics for L.
- Applying duality, L-spaces with a clopen valuation, assigning to each proposition letter a clopen filter, also form semantics for L.

- Lattices naturally form semantics for L.
- Applying duality, L-spaces with a clopen valuation, assigning to each proposition letter a clopen filter, also form semantics for L.
- This gives rise to completeness as usual.

- Lattices naturally form semantics for L.
- Applying duality, L-spaces with a clopen valuation, assigning to each proposition letter a clopen filter, also form semantics for L.
- This gives rise to completeness as usual.
- But we can also forget about the topology and look at the valuations of the underlining L-frame.

- Lattices naturally form semantics for L.
- Applying duality, L-spaces with a clopen valuation, assigning to each proposition letter a clopen filter, also form semantics for L.
- This gives rise to completeness as usual.
- But we can also forget about the topology and look at the valuations of the underlining L-frame.
- This gives rise to the Sahlqvist results.

L-models

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) .

L-models

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

$$\begin{bmatrix} \top \end{bmatrix} = X \qquad \llbracket \bot \rrbracket = \varnothing$$
$$\llbracket p \rrbracket = V(p) \qquad \llbracket \phi \land \psi \rrbracket = \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket$$
$$\llbracket \phi \lor \psi \rrbracket = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \cup \uparrow \{x \land y \mid x \in \llbracket \phi \rrbracket, y \in \llbracket \psi \rrbracket \}$$

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

$$\begin{bmatrix} \top \end{bmatrix} = X \qquad \begin{bmatrix} \bot \end{bmatrix} = \emptyset$$
$$\begin{bmatrix} p \end{bmatrix} = V(p) \qquad \begin{bmatrix} \phi \land \psi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix} \cap \begin{bmatrix} \psi \end{bmatrix}$$
$$\begin{bmatrix} \phi \lor \psi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix} \cup \begin{bmatrix} \psi \end{bmatrix} \cup \uparrow \{x \land y \mid x \in \llbracket \phi \end{bmatrix}, y \in \llbracket \psi \end{bmatrix} \}$$

It can be shown that the interpretation of every formula is a filter.

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

$$\begin{bmatrix} \top \end{bmatrix} = X \qquad \begin{bmatrix} \bot \end{bmatrix} = \emptyset$$
$$\begin{bmatrix} p \end{bmatrix} = V(p) \qquad \begin{bmatrix} \phi \land \psi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix} \cap \llbracket \psi \end{bmatrix}$$
$$\begin{bmatrix} \phi \lor \psi \end{bmatrix} = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \cup \uparrow \{x \land y \mid x \in \llbracket \phi \rrbracket, y \in \llbracket \psi \rrbracket \}$$

It can be shown that the interpretation of every formula is a filter. We say that a frame (X, \wedge) validates the consequence pair $\phi \leq \psi$ if

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

$$\begin{bmatrix} \top \end{bmatrix} = X \qquad \begin{bmatrix} \bot \end{bmatrix} = \emptyset$$
$$\begin{bmatrix} p \end{bmatrix} = V(p) \qquad \begin{bmatrix} \phi \land \psi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix} \cap \llbracket \psi \end{bmatrix}$$
$$\begin{bmatrix} \phi \lor \psi \end{bmatrix} = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \cup \uparrow \{x \land y \mid x \in \llbracket \phi \rrbracket, y \in \llbracket \psi \rrbracket \}$$

It can be shown that the interpretation of every formula is a filter. We say that a frame (X, \wedge) validates the consequence pair $\phi \leq \psi$ if $\llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket$ for every model based on it,

An L-model (X, \wedge, V) is an L-frame (semilattice) with a valuation that assigns to each proposition letter a filter of (X, \wedge) . The interpretation $\llbracket \phi \rrbracket$ of $\phi \in L$ is given by

$$\begin{bmatrix} \top \end{bmatrix} = X \qquad \begin{bmatrix} \bot \end{bmatrix} = \emptyset$$
$$\begin{bmatrix} p \end{bmatrix} = V(p) \qquad \begin{bmatrix} \phi \land \psi \end{bmatrix} = \begin{bmatrix} \phi \end{bmatrix} \cap \llbracket \psi \end{bmatrix}$$
$$\begin{bmatrix} \phi \lor \psi \end{bmatrix} = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \cup \uparrow \{x \land y \mid x \in \llbracket \phi \rrbracket, y \in \llbracket \psi \rrbracket \}$$

It can be shown that the interpretation of every formula is a filter. We say that a frame (X, \wedge) validates the consequence pair $\phi \leq \psi$ if $\llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket$ for every model based on it, and write $(X, \wedge) \Vdash \phi \leq \psi$.

Sahlqvist results

Notation

If \mathbb{X} is an L-space, then we write $\kappa \mathbb{X}$ for its underlying L-frame.

Sahlqvist results

Notation

If X is an L-space, then we write κX for its underlying L-frame.

Theorem

Let $\phi \leq \psi$ be a consequence pair of L-formulae.

Sahlqvist results

Notation

If X is an L-space, then we write κX for its underlying L-frame.

Theorem

Let $\phi \leqslant \psi$ be a consequence pair of L-formulae.

• $\phi \triangleleft \psi$ locally corresponds to a first-order formula with one free variable.

Sahlqvist results

Notation

If X is an L-space, then we write κX for its underlying L-frame.

Theorem

Let $\phi \leq \psi$ be a consequence pair of L-formulae.

- $\phi \triangleleft \psi$ locally corresponds to a first-order formula with one free variable.
- **2** For every L-space X, if $X \Vdash \phi \triangleleft \psi$ then $\kappa X \Vdash \phi \triangleleft \psi$.

Sahlqvist results

Notation

If $\mathbb X$ is an L-space, then we write $\kappa \mathbb X$ for its underlying L-frame.

Theorem

Let $\phi \triangleleft \psi$ be a consequence pair of L-formulae.

- $\phi \triangleleft \psi$ locally corresponds to a first-order formula with one free variable.
- **2** For every L-space X, if $X \Vdash \phi \triangleleft \psi$ then $\kappa X \Vdash \phi \triangleleft \psi$.
- If Γ is a set of consequence pairs, then L(Γ) is sound and complete with respect to the class of L-frames validating all consequence pairs in Γ.

Sketch of the proof of Sahlqvist canonicity

• The technique is similar to that of Sambin and Vaccaro [SV89].

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma,

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma, saying that any closed valuation is an intersection of the clopen valuations extending it.

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma, saying that any closed valuation is an intersection of the clopen valuations extending it.
- Then we construct a minimal valuation, which turns out to be closed.

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma, saying that any closed valuation is an intersection of the clopen valuations extending it.
- Then we construct a minimal valuation, which turns out to be closed. Therefore, being validated by all clopen valuations implies being validated by the minimal valuation, which implies being validated by all valuations.

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma, saying that any closed valuation is an intersection of the clopen valuations extending it.
- Then we construct a minimal valuation, which turns out to be closed. Therefore, being validated by all clopen valuations implies being validated by the minimal valuation, which implies being validated by all valuations.
- An alternative approach to Sahlqvist correspondence and canonicity for non-distributive logics has been undertaken by Conradie and Palmigiano in [CP19].

- The technique is similar to that of Sambin and Vaccaro [SV89].
- We need to show that if a consequence pair is validated by all clopen valuations, then it is validated by all valuations in general.
- We first prove an analogue of the intersection lemma, saying that any closed valuation is an intersection of the clopen valuations extending it.
- Then we construct a minimal valuation, which turns out to be closed. Therefore, being validated by all clopen valuations implies being validated by the minimal valuation, which implies being validated by all valuations.
- An alternative approach to Sahlqvist correspondence and canonicity for non-distributive logics has been undertaken by Conradie and Palmigiano in [CP19]. But this approach is purely algebra based and does not use duality theory.

Definition

The double filter completion or F^2 -completion of a lattice *L* is the lattice of all filters of an L-space dual to *L*.

Definition

The double filter completion or F^2 -completion of a lattice *L* is the lattice of all filters of an L-space dual to *L*.

Corollary

Every variety of lattices is closed under taking F^2 -completions.

Definition

The double filter completion or F^2 -completion of a lattice *L* is the lattice of all filters of an L-space dual to *L*.

Corollary

Every variety of lattices is closed under taking F^2 -completions.

This is an analogue of the result by Baker and Hales [BH74, Theorem B] that ideal completions preserve lattice equations.

Definition

The double filter completion or F^2 -completion of a lattice *L* is the lattice of all filters of an L-space dual to *L*.

Corollary

Every variety of lattices is closed under taking F^2 -completions.

This is an analogue of the result by Baker and Hales [BH74, Theorem B] that ideal completions preserve lattice equations. Our Sahlqvist results also give a proof via duality for this theorem and extend it to the modal case.

Move to modal logic

 We extend the logic from above with modal operators □ and ◇.

- We extend the logic from above with modal operators □ and ◇.
- As before, we define modal L-frames, modal L-models, modal lattices, modal L-spaces.

- We extend the logic from above with modal operators □ and ◇.
- As before, we define modal L-frames, modal L-models, modal lattices, modal L-spaces.
- We also establish duality and obtain (more restricted) Sahlqvist results.

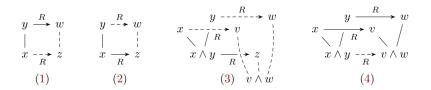
- We extend the logic from above with modal operators □ and ◇.
- As before, we define modal L-frames, modal L-models, modal lattices, modal L-spaces.
- We also establish duality and obtain (more restricted) Sahlqvist results.
- But our \diamond turns out to not be necessarily normal.

- We extend the logic from above with modal operators □ and ◇.
- As before, we define modal L-frames, modal L-models, modal lattices, modal L-spaces.
- We also establish duality and obtain (more restricted) Sahlqvist results.
- But our ◊ turns out to not be necessarily normal. Moreover, we are forced to add seriality (⊤ ≤ ◊⊤).

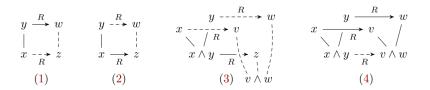
Modal L-frames

A modal L-frame is an L-frame with a binary relation R such that:

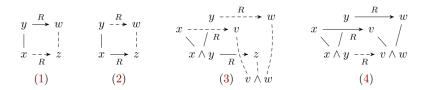
If x ≤ y and yRz, there exists a w such that xRw and w ≤ y;
If x ≤ y and xRw, there exists a z such that yRz and w ≤ z;



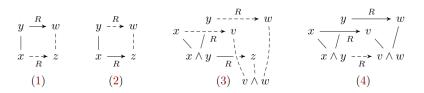
- If $x \le y$ and yRz, there exists a w such that xRw and $w \le y$;
- 3 If $x \le y$ and xRw, there exists a z such that yRz and $w \le z$;
- If (x ∧ y)Rz, there exist v, w such that xRv and yRw and v ∧ w ≤ z;



- If $x \le y$ and yRz, there exists a w such that xRw and $w \le y$;
- 3 If $x \le y$ and xRw, there exists a z such that yRz and $w \le z$;
- If (x ∧ y)Rz, there exist v, w such that xRv and yRw and v ∧ w ≤ z;
- If xRv and yRw then $(x \wedge y)R(v \wedge w)$;



- If $x \le y$ and yRz, there exists a w such that xRw and $w \le y$;
- 3 If $x \leq y$ and xRw, there exists a z such that yRz and $w \leq z$;
- If (x ∧ y)Rz, there exist v, w such that xRv and yRw and v ∧ w ≤ z;
- If xRv and yRw then $(x \wedge y)R(v \wedge w)$;
- For all x there exists an y such that xRy.



Modal L-models

A modal L-model is a a modal L-frame with a valuation V that assigns to each proposition letter a filter of (X, \wedge) .

Modal L-models

A modal L-model is a a modal L-frame with a valuation V that assigns to each proposition letter a filter of (X, \wedge) . Propositional connectives are interpreted as before, and

$$\llbracket \Box \phi \rrbracket = \{ x \in X \mid \forall y \in X, xRy \text{ implies } \mathfrak{M}, y \Vdash \phi \} \\ \llbracket \diamondsuit \phi \rrbracket = \{ x \in X \mid \exists y \in X \text{ such that } xRy \text{ and } \mathfrak{M}, y \Vdash \phi \}$$

Modal lattices

Lemma

The following modal consequence pairs are valid in all modal L-frames:

Modal lattices

Lemma

The following modal consequence pairs are valid in all modal L-frames:

 $\begin{array}{c} \top \triangleleft \Box \top \quad \top \triangleleft \diamond \top \quad \diamond \bot \triangleleft \bot \quad (\text{top, seriality \& bottom}) \\ \Box(p \land q) \triangleleft \Box p \land \Box q \quad \diamond p \triangleleft \diamond (p \lor q) \quad (\text{monotonicity}) \\ \Box p \land \Box q \triangleleft \Box (p \land q) \quad \diamond p \land \Box q \triangleleft \diamond (p \land q) \quad (\text{normality \& duality}) \end{array}$

Modal lattices

Lemma

The following modal consequence pairs are valid in all modal L-frames:

 $\begin{array}{c} \top \triangleleft \Box \top \quad \top \triangleleft \diamond \top \quad \diamond \bot \triangleleft \bot \quad (\text{top, seriality \& bottom}) \\ \Box(p \land q) \triangleleft \Box p \land \Box q \quad \diamond p \triangleleft \diamond (p \lor q) \quad (\text{monotonicity}) \\ \Box p \land \Box q \triangleleft \Box (p \land q) \quad \diamond p \land \Box q \triangleleft \diamond (p \land q) \quad (\text{normality \& duality}) \end{array}$

Definition

A modal lattice (A, \Box, \diamond) is a lattice A with two maps $\Box, \diamond : A \rightarrow A$ satisfying the inequalities above.

Modal lattices

Lemma

The following modal consequence pairs are valid in all modal L-frames:

 $\begin{array}{c} \top \triangleleft \Box \top \quad \top \triangleleft \diamond \top \quad \diamond \bot \triangleleft \bot \quad (\text{top, seriality \& bottom}) \\ \Box(p \land q) \triangleleft \Box p \land \Box q \quad \diamond p \triangleleft \diamond (p \lor q) \quad (\text{monotonicity}) \\ \Box p \land \Box q \triangleleft \Box (p \land q) \quad \diamond p \land \Box q \triangleleft \diamond (p \land q) \quad (\text{normality \& duality}) \end{array}$

Definition

A modal lattice (A, \Box, \diamondsuit) is a lattice A with two maps $\Box, \diamondsuit : A \to A$ satisfying the inequalities above.

We denote the corresponding logic by $\mathcal{L}_{\Box\Diamond}$.

Definition

A modal L-space is a tuple $\mathbb{X} = (X, \wedge, \tau, R)$ such that:

Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

Definition

A modal L-space is a tuple $\mathbb{X} = (X, \wedge, \tau, R)$ such that:

(X, ∧, τ) is an L-space, R is a binary relation on X, and each x ∈ X has an R-successor;

Definition

A modal L-space is a tuple $\mathbb{X} = (X, \wedge, \tau, R)$ such that:

- (X, ∧, τ) is an L-space, R is a binary relation on X, and each x ∈ X has an R-successor;
- ② If *a* is a clopen filter, then so are $[R]a := \{x \in X \mid R[x] \subseteq a\}$ and $\langle R \rangle a := \{x \in X \mid R[x] \cap a \neq \emptyset\}$;

Definition

A modal L-space is a tuple $\mathbb{X} = (X, \wedge, \tau, R)$ such that:

- (X, ∧, τ) is an L-space, R is a binary relation on X, and each x ∈ X has an R-successor;
- ② If a is a clopen filter, then so are $[R]a := \{x \in X \mid R[x] \subseteq a\}$ and $\langle R \rangle a := \{x \in X \mid R[x] \cap a \neq \emptyset\}$;
- We have xRy iff for all clopen filter a,
 - $x \in [R]a$ implies $y \in a$, and
 - $y \in a$ implies $x \in \langle R \rangle a$.

Definition

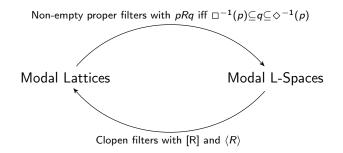
A modal L-space is a tuple $\mathbb{X} = (X, \wedge, \tau, R)$ such that:

- (X, ∧, τ) is an L-space, R is a binary relation on X, and each x ∈ X has an R-successor;
- ② If *a* is a clopen filter, then so are $[R]a := \{x \in X \mid R[x] \subseteq a\}$ and $\langle R \rangle a := \{x \in X \mid R[x] \cap a \neq \emptyset\}$;
- We have xRy iff for all clopen filter a,
 - $x \in [R]a$ implies $y \in a$, and
 - $y \in a$ implies $x \in \langle R \rangle a$.

It can be shown that (X, \wedge, R) is a modal L-frame.

Duality Positive logic Positive modal logic

Modal duality



Duality Positive logic Positive modal logic

Sahlqvist consequence pairs

Definition

• A boxed atom is a formula of the form $\Box \cdots \Box p$.

Anna Dmitrieva (University of East Anglia) Positive (Modal) Logic Beyond Distributivity

Sahlqvist consequence pairs

Definition

- A boxed atom is a formula of the form $\Box \cdots \Box p$.
- A Sahlqvist antecedent is a formula made from boxed atoms, \top and \bot by freely using \land , \lor and \diamondsuit .

Sahlqvist consequence pairs

Definition

- A boxed atom is a formula of the form $\Box \cdots \Box p$.
- A Sahlqvist antecedent is a formula made from boxed atoms, \top and \bot by freely using \land , \lor and \diamondsuit .
- A Sahlqvist consequence pair is a consequence pair $\phi \triangleleft \psi$ where ϕ is a Sahlqvist antecedent.

Sahlqvist consequence pairs

Definition

- A boxed atom is a formula of the form $\Box \cdots \Box p$.
- A Sahlqvist antecedent is a formula made from boxed atoms, \top and \bot by freely using \land , \lor and \diamondsuit .
- A Sahlqvist consequence pair is a consequence pair $\phi \triangleleft \psi$ where ϕ is a Sahlqvist antecedent.

Note that $\diamond(a \lor b) \triangleleft \diamond a \lor \diamond b$ (the normality of \diamond) is a Sahlqvist consequence pair.

Sahlqvist results

Theorem

Let $\phi \triangleleft \psi$ be a Sahlqvist consequence pair.

- $\phi \leq \psi$ locally corresponds to a first-order formula with one free variable.
- $\textbf{ Sor every modal L-space } \mathbb{X}, \text{ if } \mathbb{X} \Vdash \phi \triangleleft \psi \text{ then } \kappa \mathbb{X} \Vdash \phi \triangleleft \psi.$
- If Γ is a set of Sahlqvist consequence pairs, then L_{□◊}(Γ) is sound and complete with respect to the class of L-frames validating all consequence pairs in Γ.

Duality Positive logic Positive modal logic

Thank you for your attention!

References I

Nick Bezhanishvili, Anna Dmitrieva, Jim de Groot, and Tommaso Moraschini.
Positive (modal) logic beyond distributivity, 2022.
K. A. Baker and A. W. Hales.
From a lattice to its ideal lattice. *Algebra Universalis*, 4:250–258, 1974.
P. Blackburn, M. de Rijke, and Y. Venema. *Modal Logic*.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.
S. A. Celani and R. Jansana.
Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason theorem for positive modal logic. *Logic Journal of the IGPL*, 7:683–715, 1999.
W. Conradie and A. Palmigiano.

Algorithmic correspondence and canonicity for non-distributive logics. Ann. Pure Appl. Log., 170(9):923–974, 2019.

A. Chagrov and M. Zakharyaschev.

Modal Logic, volume 35 of *Oxford logic guides*. Clarendon Press, 1997.

References II

A. Dmitrieva.

Positive modal logic beyond distributivity: duality, preservation and completeness. Master's thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2021.

R. Goldblatt.

Morphisims and duality for polarities and lattices with operators. FLAP, 7(6):1017–1070, 2020.

M. Gehrke and S. Van Gool.

Distributive envelopes and topological duality for lattices via canonical extensions. *Order*, 31(3):435–461, 2014.

C. Hartonas.

Discrete duality for lattices with modal operators. J. Log. Comput., 29(1):71–89, 2019.

K. H. Hofmann, M. Mislove, and A. Stralka.

The Pontryagin duality of compact 0-dimensional semi-lattices and its applications. Springer, Berlin, New York, 1974.

C. Hartonas and E. Orlowska.

Representation of lattices with modal operators in two-sorted frames. *Fundam. Informaticae*, 166(1):29–56, 2019.

References III

M. Moshier and P. Jipsen.

Topological duality and lattice expansions, I: A topological construction of canonical extensions. *Algebra Universalis*, pages 109–126, 2014.

G. Sambin and V. Vaccaro.

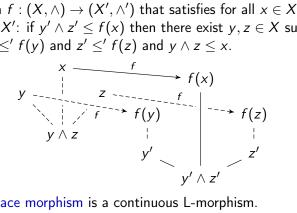
A new proof of Sahlqvist's theorem on modal definability and completeness. The Journal of Symbolic Logic, 54(3):992–999, 1989.

A. Urquhart.

A topological representation theory for lattices. *Algebra Universalis*, 8(1):45–58, 1978.

Morphism slides

- An HMS morphism is a continuous meet-semilattice morphism.
- An L-morphism from (X, \wedge) to (X', \wedge') is a meet-preserving function $f: (X, \wedge) \to (X', \wedge')$ that satisfies for all $x \in X$ and $y', z' \in X'$: if $y' \wedge z' < f(x)$ then there exist $y, z \in X$ such that $y' \leq f(y)$ and $z' \leq f(z)$ and $y \wedge z \leq x$.



An L-space morphism is a continuous L-morphism.

Morphism slides

- A bounded L-morphism from (X, ∧, R) to (X', ∧', R') is a function f : X → X' such that f : (X, ∧) → (X', ∧') is an L-morphism and for all x, y ∈ X and z' ∈ X':
 - If xRy then f(x)R'f(y);
 - ② If f(x)R'z' then there exists a *z* ∈ *X* such that *xRz* and $f(z) \le z'$;
 - **③** If f(x)R'z' then there exists a w ∈ X such that xRz and z' ≤' f(w).
- A modal lattice homomorphism is a lattice homomorphism that preserves modal operators.
- A modal L-space morphism is a continuous bounded L-morphism.