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1 Backgrounds

Quantum logic (QL) is the field which deal with strange

propositions about physical values of particle or about

states in quantum mechanics.

Ex: “Velocity of the particle is 20”.

In this logic, due to the uncertainty principle, etc., some

properties that normally hold do not hold.

Ex: The distributive law does not hold.

A ∧ (B ∨ C) ̸= (A ∧B) ∨ (A ∧ C)



Extensions of quantum logics

Knowledge: Epistemic quantum logic

“Agent (experimenter) knows that velocity of the particle is 20”

(Beltrametti, E., Dalla Chiara M. L., Giuntini, R, Leporini, R.,

Sergioli, G.(2013), Baltag, A., Smets, S.(2010) (2017) )

Actions: Dynamic quantum logic.

“After unitary transformation U , velocity of the particle is 20”

(Baltag, A., Smets, S.(2004- ))



Motivation of this study

1. The logic for “knowledge + multiple observers +

actions” is less advanced.

2. As models in previous studies introduce many concepts of

quantum mechanics, these models are little complicated

and deduction system is not much discussed.

As a part of solving these problems, in this study, new

abstract models and deduction system based on

orthomodular logic (OML) and public announcement

logic (PAL).
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Quantum physics

States space : A Hilbert space H

States : 1D closed subspaces of H



Orthomodular logic

Example: in 3D Hilbert space

∼ (m = 3) = (m = 1) ⊔ (m = 2) ̸= ¬(m = 3)

Propositions : Associated to closed subspaces of H.

Quantum disjunction ⊔ : Spanned space

Quantum negation : ∼ : Orthogonal space



Observations in quantum mechanics

・After observation of truth of A, state is projected to the state that

A is true.

・In other words, getting information from the state changes the state

itself.



Orthomodular logic

A ::= p| ∼ A|A∧B

p, q, r, ... ：Propositional variables

∼：quantum negation (orthogonal space)

∧： conjunction

A ⊔B =　∼ (∼ A∧ ∼ B)

quantum disjunction (spanned space)

[A]B = ∼ A ⊔ (A ∧B)

After get information A, B is true



SOM (strict orthmodular)-model(W, ̸⊥, V, RA, RB , ...)

W : non empty set. (expressing quantum states in a Hilbert space)

̸⊥: binary relation on W which is reflexive and

symmetric. (non-orthogonal relation between states).

V : function assigning each propositional variable p to a ⊥-closed

subset of W . V (∼ A) = V (A)⊥, V (A ∧B) = V (A) ∩ V (B).

RA...: binary relations for projections

・ For all ⊥-closed subsets X,Y of X, X ∩ (X⊥ ⊔ (X ∩ Y )) ⊆ Y .

(OM-law)

Given X ⊆W ,

X⊥ = {w ∈W |for all x in X, w⊥x}.
We say that X is ⊥-closed or testable if X⊥⊥ = X.

A ⊥-closed set represents a closed subspace on the Hilbert space.



2 Multi-agent dynamic epistemic

quantum logic











Problem for expressing state of two particles by algebraic model or

simple frame

State space for multiple quantum particle : H1 ⊗H2 ⊗H3 ⊗ . . .

Suppose H1 ≈ L1, H2 ≈ L2 (L expresses OM-lattice)

L1 ⊗ L2 does not correspond to H1 ⊗H2.



Multi-agent dynamic epistemic quantum logic (MDEQL)

Language of MDEQL:

q-formula A ::= pi | ∼ A | A∧A
g-formula ϕ ::= A | ¬ϕ | ϕ∧ϕ | Kiϕ | [Ai]ϕ (i ∈ I)

quantum-formula : express basic observational propositions.

general-formula : express propositions including knowledge and

dynamism.

The propositional variables are divided into I classes, which represent

the basic observational proposition of each agent.

i-pv : pi, qi, ri, . . .

i-formula : Ai, Bi, Ci, . . . (q-formula that includes only i-pv)



Base model for new logic

I-SOM-model (S, ̸⊥, V, RA, RB , ...)

・(S, ̸⊥, V, RA, RB , ...) is an SOM-model

・V must satisfy the following spatial division conditions

1. If i ̸= j, then for all pi, pj , V (pi) = V ((pi ∧ pj) ∨ (pi∧ ∼ pj))

(compatibility)

2. If i ̸= j, then for all pi, pj , if

V (pi) ̸= V (⊤), V (pi) ̸= V (⊥), V (pj) ̸= V (⊤), V (pj) ̸= V (⊥),

then V (pi) * V (pj) and V (pj) * V (pi) (non-atomicity)



Model for MDEQL (MDEQ-model)

Definition multi agent epistemic quantum model (MDEQ-model)　

is constructed from the following base model.

M = (S, ̸⊥, V, RA, RB , ...,WS , R1, R2, . . . , Rn)

・ (S, ̸⊥, V, RA, RB , ...) is an I-SOM-model。
・ WS is a set of elements labeled by the elements of S.

・ R1, R2, . . . , Rn are equivalence relations on WS .

That is,

WS = {xs, yt...} (s, t, . . . ∈ S)



Additional models by obtaining information

M[Ai]
= (S, ̸⊥, V,WS[Ai]

, V[Ai]
, R1[Ai]

, R2[Ai]
, . . . , Rn[Ai]

)

is defined from

M = (S, ̸⊥, V,WS , R1, R2, . . . , Rn) as follows.

There exists a bijective partial function f from WS to WS[Ai]
such

that

・dom(f) = {ws ∈WS |s ̸|=∼ Ai}
・If f(ws) = xt, then s(Ai)t.

We write ws(Ai)xt if f(ws) = xt.

Definition of Rj[Ai]

・ws(Rj[Ai]
)xt iff f−1(ws)(Rj)f

−1(xt).



Global equivalence relations Ri[]

M′ is reachable from M if there exists A1
α, A

2
β , . . . A

n
γ such that

M′ = M[A1
α][A2

β
]...[An

γ ]

r(M) : the set of all reachable models from M

Ri[] (i ∈ I) are defined as equivalence relations on elements of

W (∈M ′ ∈ r(M)).

・In (S, ̸⊥, V,WS , R1, R2, . . . , Rn) ∈ r(M), if ws(Ri)xt, then

ws(Ri[])xt.

・In (M′ = (S, ̸⊥, V,W ′
S , R

′
1, R

′
2, . . . , R

′
n) ∈ r(M) and

(M′′ = (S, ̸⊥, V,W ′′
S , R

′′
1 , R

′′
2 , . . . , R

′′
n) ∈ r(M), if ws ∈W ′

S and

xt ∈W ′′
S satisfy the following conditions, then ws(Ri[])xt.

i ̸= j and Aj exists such that M′′ = M′
[Aj ]

　　
ws(Aj)xt

・ws(Ri[])xt is only in the above cases.



Truth value on model

ws |= A
def⇔ s ∈ V (A)(of a SOM-model (S, ̸⊥, V )),

ws |= ¬ϕ def⇔ ws ̸|= ϕ,

ws |= ϕ ∧ ψ def⇔ ws |= ϕ and ws |= ψ,

ws |= Kiϕ
def⇔ for all xt ∈WS such that ws(Ri[])xt, xt |= ϕ,

ws |= [Ai]ϕ
def⇔ if ws(Ai)xt, then xt |= ϕ.













In this model the following formula is valid, which expresses that an

individual’s knowledge does not change with the acquisition of other

agents’ knowledge.

KiA→ [Bj ]KiA (i ̸= j)

¬KiA→ [Bj ]¬KiA (i ̸= j)

But, the following formula is not valid.

KiAi → [Bi]KiAi

But if Ai = (Ai ∧Bi) ∨ (Ai∧ ∼ Bi)), then it is valid.



In PAL, the following formulas are valid.

[ϕ]p↔ (ϕ→ p)

[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)
[ϕ]Kψ ↔ (ϕ→ K[ϕ]ψ)

Theorem　Similar to PAL, in MDEQ-models, the following formulas

are valid.

[Ai]B ↔∼ Ai ⊔ (Ai ∧B))

[Ai](ϕ ∧ ψ) ↔ ([Ai]ϕ ∧ [Ai]ψ)

[Ai]¬ϕ↔ (¬ ∼ Ai → ¬[Ai]ϕ)

[Ai]Kjϕ↔ (¬ ∼ Ai → Kj[Ai]ϕ) (i = j)

[Ai]Kjϕ↔ Kjϕ (i ̸= j)



Deduction system SDEQ

Axioms: ϕ ⇒ ϕ

Ai ⇒ (Ai ∧ Bj) ∨ (Ai∧ ∼ Bj)
(Ai ∧ Bj) ∨ (Ai∧ ∼ Bj) ⇒ Ai (i ̸= j)

Rules:
Γ ⇒ ∆,ϕ ϕ,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(cut)

Γ ⇒ ∆

ϕ, Γ ⇒ ∆
(w L)

Γ ⇒ ∆

Γ ⇒ ∆,ϕ
(w R)

Γ ⇒ ∆,A

∼ A, Γ ⇒ ∆
(∼ L)q

A ⇒ ∆

∼ ∆ ⇒∼ A
(∼ R)q

A, Γ ⇒ ∆

∼∼ A, Γ ⇒ ∆
(∼∼ L)q

Γ ⇒ ∆,A

Γ ⇒ ∆,∼∼ A
(∼∼ R)q

∼ B ⇒∼ A ∼ A,B ⇒
∼ A ⇒∼ B

(OM)q



ϕ, Γ ⇒ ∆

ϕ∧ψ, Γ ⇒ ∆
(∧L)

ψ, Γ ⇒ ∆

ϕ∧ψ, Γ ⇒ ∆
(∧L)

Γ ⇒ ∆,ϕ Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ∧ψ
(∧R)

Γ ⇒ ∆,ϕ

¬ϕ, Γ ⇒ ∆
(¬L)

ϕ, Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ
(¬R)

Γ ⇒ ∆

[Ai]Γ ⇒ [Ai]∆
([ ])∗∗

ϕ, Γ ⇒ ∆

Kiϕ, Γ ⇒ ∆
(Ki1)

KiΓ ⇒ Ki∆,ϕ

KiΓ ⇒ Ki∆,Kiϕ
(Ki2)

Γ ⇒ ∆,Ai B, Γ ⇒ ∆

[Ai]B, Γ ⇒ ∆
([ ]L)q

< Ai > Γ,Ai ⇒ B

Γ ⇒ [Ai]B
([ ]R)∗q

[Ai]⊥, Γ ⇒ ∆ Γ ⇒ ∆, [Ai]ϕ

[Ai]¬ϕ, Γ ⇒ ∆
(¬[ ])

[Ai]ϕ, Γ ⇒ ∆

Kjϕ, Γ ⇒ ∆
(K[ ]3)

Γ ⇒ ∆,Ki[Ai]ϕ

Γ ⇒ ∆, [Ai]Kiϕ
(K[ ]1)

[Ai]⊥, Γ ⇒ ∆ Ki[Ai]ϕ, Γ ⇒ ∆

[Ai]Kiϕ, Γ ⇒ ∆
(K[ ]2)

*< A > C = A∧ ∼ (A∧ ∼ C). < A > Γ = { < A > C|C ∈ Γ}.
**∆ must not be empty.



Theorem 2.1 The soundness and completeness theorem for SMDEQL

Γ ⇒ ∆ is derivable in SMDEQL iff Γ ⇒ ∆ is valid in MEQ-models.

By a standard way using canonical models.



3 Additional formula and conditions

To express detailed conditions for quantum propositions in tensor

product Hilbert space (H1 ⊗H2), we have to extend the language.

q-formula A ::= pi | ∼ A | A∧A
g-formula

ϕ ::= A | ¬ϕ | ϕ∧ϕ | Kiϕ | [Ai]ϕ | �ϕ | ∀pi(A) (i ∈ I)

�: Modal symbol for relation ̸⊥.

Modal logic B : symmetry and reflectivity relation.

B and OML are associated by McKinsey-Tarski transfer.

�¬A = ∼ A



Conditions

For all x, y ∈W , there exists z ∈W such that xRz and zRy.

22A→ 2nA (for each n ∈ N)

Each propositional variable represents a one-dimensional subspace

of each Hilbert space.

(pi ∧Ai) → 22(pi → Ai)

Non-implications of propositions of an individual particle.

(¬22Ai ∧ ¬22¬Ai ∧ ¬22Bj ∧ ¬22¬Bj) →
33(¬Ai ∧Bj) ∧33(Ai ∧ ¬Bj) (i ̸= j)

”Particle i and j are entangled”

Ei,j = ∀pi(¬pi) ∧ ∀qj(¬qj) ∧ ∀pi∃qj [pi]qj ∧ ∀qj∃pi[qj ]pi



Conclusions

Abstract model for multi agent dynamic epistemic logic is constructed.

Suitable sequent calculi is constructed and it satisfies soundness and

completeness.

Additional language and conditions (future works).



Problem for expressing state of two particles by algebraic model or

simple frame

State space for two quantum particle : H1 ⊗H2

Suppose H1 ≈ L1, H2 ≈ L2 (L expresses OM-lattice)

However, L1 ⊗ L2 does not correspond to H1 ⊗H2.

The solution adopted in this study

We regards single L as H1 ⊗H2,

and use subscripted propositional variables p1, q2, ri, . . .)

L ≈ H = H1 ⊗H2



Thank you for listening !
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