LATD 10/9/2022

Abstract Model and Deduction System for Logic of Multiple Agent in Quantum Physics

Ferris Jogakuin
Tokyo Institute of Technology
Graduate School of Information Science and Engineering

Tomoaki Kawano

1 Backgrounds

Quantum logic (QL) is the field which deal with strange propositions about physical values of particle or about states in quantum mechanics.

Ex: "Velocity of the particle is 20 ".

In this logic, due to the uncertainty principle, etc., some properties that normally hold do not hold.

Ex: The distributive law does not hold.
$A \wedge(B \vee C) \neq(A \wedge B) \vee(A \wedge C)$

Extensions of quantum logics

Knowledge: Epistemic quantum logic
"Agent (experimenter) knows that velocity of the particle is 20 "
(Beltrametti, E., Dalla Chiara M. L., Giuntini, R, Leporini, R., Sergioli, G.(2013), Baltag, A., Smets, S.(2010) (2017))

Actions: Dynamic quantum logic.
"After unitary transformation U, velocity of the particle is 20 "
(Baltag, A., Smets, S.(2004-))

Motivation of this study

1. The logic for "knowledge + multiple observers + actions" is less advanced.
2. As models in previous studies introduce many concepts of quantum mechanics, these models are little complicated and deduction system is not much discussed.

As a part of solving these problems, in this study, new abstract models and deduction system based on orthomodular logic (OML) and public announcement logic (PAL).

Contents

- About quantum physics and orthomodular logic
- About model and deduction system of new logic
- Additional approach to multiple agents

Quantum physics

States space : A Hilbert space H
States: 1D closed subspaces of H

Orthomodular logic

Example: in 3D Hilbert space
$\sim(m=3)=(m=1) \sqcup(m=2) \quad \neq \neg(m=3)$
Propositions: Associated to closed subspaces of H.
Quantum disjunction \sqcup : Spanned space
Quantum negation: \sim : Orthogonal space

Observations in quantum mechanics

- After observation of truth of A, state is projected to the state that A is true.
- In other words, getting information from the state changes the state itself.

Orthomodular logic

$A::=p|\sim A| A \wedge B$
p, q, r, \ldots : Propositional variables
\sim : quantum negation (orthogonal space)
\wedge : conjunction
$A \sqcup B=\sim(\sim A \wedge \sim B)$
quantum disjunction (spanned space)
$[A] B=\sim A \sqcup(A \wedge B)$
After get information A, B is true

SOM (strict orthmodular)-model $\left(W, \not \perp, V, R_{A}, R_{B}, \ldots\right)$
W : non empty set. (expressing quantum states in a Hilbert space)
$\not \perp$: binary relation on W which is reflexive and symmetric. (non-orthogonal relation between states).
V : function assigning each propositional variable p to a \perp-closed subset of $W . \quad V(\sim A)=V(A)^{\perp}, \quad V(A \wedge B)=V(A) \cap V(B)$.
$R_{A} \ldots$: binary relations for projections

- For all \perp-closed subsets X, Y of $X, X \cap\left(X^{\perp} \sqcup(X \cap Y)\right) \subseteq Y$. (OM-law)

Given $X \subseteq W$,
$X^{\perp}=\{w \in W \mid$ for all x in $X, w \perp x\}$.
We say that X is \perp-closed or testable if $X^{\perp \perp}=X$.

A \perp-closed set represents a closed subspace on the Hilbert space.

2 Multi-agent dynamic epistemic quantum logic

Indistinguishable to Agent 1

Problem for expressing state of two particles by algebraic model or simple frame

State space for multiple quantum particle : $H_{1} \otimes H_{2} \otimes H_{3} \otimes \ldots$
Suppose $\quad H_{1} \approx L_{1}, H_{2} \approx L_{2} \quad(L$ expresses OM-lattice)
$L_{1} \otimes L_{2}$ does not correspond to $H_{1} \otimes H_{2}$.

Multi-agent dynamic epistemic quantum logic (MDEQL)

Language of MDEQL:

q-formula $A::=p_{i}|\sim A| A \wedge A$
g-formula $\phi::=A|\neg \phi| \phi \wedge \phi\left|\mathrm{K}_{i} \phi\right|\left[A_{i}\right] \phi \quad(i \in I)$
quantum-formula : express basic observational propositions.
general-formula : express propositions including knowledge and dynamism.

The propositional variables are divided into I classes, which represent the basic observational proposition of each agent.
i-pv: $p_{i}, q_{i}, r_{i}, \ldots$
i-formula : $A_{i}, B_{i}, C_{i}, \ldots$ (q-formula that includes only i-pv)

Base model for new logic

I-SOM-model $\left(S, \not \perp, V, R_{A}, R_{B}, \ldots\right)$
$\cdot\left(S, \not \perp, V, R_{A}, R_{B}, \ldots\right)$ is an SOM-model

- V must satisfy the following spatial division conditions

1. If $i \neq j$, then for all $p_{i}, p_{j}, V\left(p_{i}\right)=V\left(\left(p_{i} \wedge p_{j}\right) \vee\left(p_{i} \wedge \sim p_{j}\right)\right)$ (compatibility)
2. If $i \neq j$, then for all p_{i}, p_{j}, if
$V\left(p_{i}\right) \neq V(\top), V\left(p_{i}\right) \neq V(\perp), V\left(p_{j}\right) \neq V(\top), V\left(p_{j}\right) \neq V(\perp)$, then $V\left(p_{i}\right) \nsubseteq V\left(p_{j}\right)$ and $V\left(p_{j}\right) \nsubseteq V\left(p_{i}\right)$ (non-atomicity)

Model for MDEQL (MDEQ-model)

Definition multi agent epistemic quantum model (MDEQ-model)
is constructed from the following base model.
$\mathcal{M}=\left(S, \not \perp, V, R_{A}, R_{B}, \ldots, W_{S}, R_{1}, R_{2}, \ldots, R_{n}\right)$

- ($\left.S, \not \perp, V, R_{A}, R_{B}, \ldots\right)$ is an I-SOM-model。
- W_{S} is a set of elements labeled by the elements of S.
- $R_{1}, R_{2}, \ldots, R_{n}$ are equivalence relations on W_{S}.

That is,

$$
W_{S}=\left\{x_{s}, y_{t} \ldots\right\} \quad(s, t, \ldots \in S)
$$

Additional models by obtaining information
$\mathcal{M}_{\left[A_{i}\right]}=\left(S, \not 又, V, W_{S\left[A_{i}\right]}, V_{\left[A_{i}\right]}, R_{1\left[A_{i}\right]}, R_{2\left[A_{i}\right]}, \ldots, R_{n\left[A_{i}\right]}\right)$
is defined from
$\mathcal{M}=\left(S, \not \subset, V, W_{S}, R_{1}, R_{2}, \ldots, R_{n}\right)$ as follows.

There exists a bijective partial function f from W_{S} to $W_{S\left[A_{i}\right]}$ such that
$\cdot \operatorname{dom}(f)=\left\{w_{s} \in W_{S} \mid s \nmid \sim A_{i}\right\}$

- If $f\left(w_{s}\right)=x_{t}$, then $s\left(A_{i}\right) t$.

We write $w_{s}\left(A_{i}\right) x_{t}$ if $f\left(w_{s}\right)=x_{t}$.

Definition of $R_{j\left[A_{i}\right]}$

- $w_{s}\left(R_{j\left[A_{i}\right]}\right) x_{t}$ iff $f^{-1}\left(w_{s}\right)\left(R_{j}\right) f^{-1}\left(x_{t}\right)$.

Global equivalence relations $R_{i[]}$
\mathcal{M}^{\prime} is reachable from \mathcal{M} if there exists $A_{\alpha}^{1}, A_{\beta}^{2}, \ldots A_{\gamma}^{n}$ such that $\mathcal{M}^{\prime}=\mathcal{M}_{\left[A_{\alpha}^{1}\right]\left[A_{\beta}^{2}\right] \ldots\left[A_{\gamma}^{n}\right]}$
$r(\mathcal{M})$: the set of all reachable models from M
$R_{i[]}(i \in I)$ are defined as equivalence relations on elements of $W\left(\in M^{\prime} \in r(\mathcal{M})\right)$.
$\cdot \ln \left(S, \not \perp, V, W_{S}, R_{1}, R_{2}, \ldots, R_{n}\right) \in r(\mathcal{M})$, if $w_{s}\left(R_{i}\right) x_{t}$, then $w_{s}\left(R_{i[]}\right) x_{t}$.

- In $\left(\mathcal{M}^{\prime}=\left(S, \not \subset, V, W_{S}^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{n}^{\prime}\right) \in r(\mathcal{M})\right.$ and
$\left(\mathcal{M}^{\prime \prime}=\left(S, \not \perp, V, W_{S}^{\prime \prime}, R_{1}^{\prime \prime}, R_{2}^{\prime \prime}, \ldots, R_{n}^{\prime \prime}\right) \in r(\mathcal{M})\right.$, if $w_{s} \in W_{S}^{\prime}$ and $x_{t} \in W_{S}^{\prime \prime}$ satisfy the following conditions, then $w_{s}\left(R_{i[}\right) x_{t}$.
$i \neq j$ and A_{j} exists such that $\mathcal{M}^{\prime \prime}=\mathcal{M}^{\prime}{ }_{\left[A_{j}\right]}$
$w_{s}\left(A_{j}\right) x_{t}$
- $w_{s}\left(R_{i[]}\right) x_{t}$ is only in the above cases.

Truth value on model

$$
\begin{aligned}
& w_{s} \models A \stackrel{\text { def }}{\Leftrightarrow} s \in V(A)(\text { of a SOM-model }(S, \not \perp, V)), \\
& w_{s} \models \neg \phi \stackrel{\text { def }}{\Leftrightarrow} w_{s} \not \models \phi, \\
& w_{s} \models \phi \wedge \psi \stackrel{\text { def }}{\Leftrightarrow} w_{s} \models \phi \text { and } w_{s} \models \psi, \\
& w_{s} \models \mathrm{~K}_{i} \phi \stackrel{\text { def }}{\Leftrightarrow} \text { for all } x_{t} \in W_{S} \text { such that } w_{s}\left(R_{i[]}\right) x_{t}, x_{t} \models \phi, \\
& w_{s} \models\left[A_{i}\right] \phi \stackrel{\text { def }}{\Leftrightarrow} \text { if } w_{s}\left(A_{i}\right) x_{t}, \text { then } x_{t} \models \phi .
\end{aligned}
$$

I-SOM-model $\quad W(=\{x, y, z, w\})$

I-SOM-model $\quad W(=\{x, y, z, w\})$

$$
\mathbf{x}^{\sim p_{2}} \quad \mathbf{y} \underset{p_{2}}{ } z^{p_{2}} \quad w^{p_{2}}
$$

I-SOM-model $\quad W(=\{x, y, z, w\})$

$$
\mathbf{x}^{\sim p_{2}} \quad \mathbf{y} \underset{p_{2}}{ } z^{p_{2}} \quad \mathbf{w}^{p_{2}}
$$

MEQ-model

I-SOM-model $\quad W(=\{x, y, z, w\})$

$$
\mathbf{x}^{\sim p_{2}} \quad \mathbf{y} \underset{p_{2}}{ } z^{p_{2}} \quad \mathbf{w}^{p_{2}}
$$

MEQ-model

I-SOM-model $\quad W(=\{x, y, z, w\})$

In this model the following formula is valid, which expresses that an individual's knowledge does not change with the acquisition of other agents' knowledge.

$$
\begin{aligned}
& \mathrm{K}_{i} A \rightarrow\left[B_{j}\right] \mathrm{K}_{i} A \quad(i \neq j) \\
& \neg \mathrm{K}_{i} A \rightarrow\left[B_{j}\right] \neg \mathrm{K}_{i} A \quad(i \neq j)
\end{aligned}
$$

But, the following formula is not valid.
$\mathrm{K}_{i} A_{i} \rightarrow\left[B_{i}\right] \mathrm{K}_{i} A_{i}$
But if $\left.A_{i}=\left(A_{i} \wedge B_{i}\right) \vee\left(A_{i} \wedge \sim B_{i}\right)\right)$, then it is valid.

In PAL, the following formulas are valid.

$$
\begin{aligned}
& {[\phi] p \leftrightarrow(\phi \rightarrow p)} \\
& {[\phi](\psi \wedge \chi) \leftrightarrow([\phi] \psi \wedge[\phi] \chi)} \\
& {[\phi] \neg \psi \leftrightarrow(\phi \rightarrow \neg[\phi] \psi)} \\
& {[\phi] \mathrm{K} \psi \leftrightarrow(\phi \rightarrow \mathrm{~K}[\phi] \psi)}
\end{aligned}
$$

Theorem Similar to PAL, in MDEQ-models, the following formulas are valid.
$\left.\left[A_{i}\right] B \leftrightarrow \sim A_{i} \sqcup\left(A_{i} \wedge B\right)\right)$
$\left[A_{i}\right](\phi \wedge \psi) \leftrightarrow\left(\left[A_{i}\right] \phi \wedge\left[A_{i}\right] \psi\right)$
$\left[A_{i}\right] \neg \phi \leftrightarrow\left(\neg \sim A_{i} \rightarrow \neg\left[A_{i}\right] \phi\right)$
$\left[A_{i}\right] \mathrm{K}_{\mathrm{j}} \phi \leftrightarrow\left(\neg \sim A_{i} \rightarrow \mathrm{~K}_{\mathrm{j}}\left[A_{i}\right] \phi\right) \quad(i=j)$
$\left[A_{i}\right] \mathrm{K}_{\mathrm{j}} \phi \leftrightarrow \mathrm{K}_{\mathrm{j}} \phi \quad(i \neq j)$

Deduction system SDEQ

Axioms:

$$
\phi \Rightarrow \phi
$$

$$
\begin{aligned}
& A_{i} \Rightarrow\left(A_{i} \wedge B_{j}\right) \vee\left(A_{i} \wedge \sim B_{j}\right) \\
& \left(A_{i} \wedge B_{j}\right) \vee\left(A_{i} \wedge \sim B_{j}\right) \Rightarrow A_{i} \quad(i \neq j)
\end{aligned}
$$

Rules:

$$
\begin{gathered}
\frac{\Gamma \Rightarrow \Delta, \phi \quad \phi, \Pi \Rightarrow \Sigma}{\Gamma, \Pi \Rightarrow \Delta, \Sigma}(\mathrm{cut}) \\
\frac{\Gamma \Rightarrow \Delta}{\phi, \Gamma \Rightarrow \Delta}(\mathrm{w} \mathrm{~L}) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \phi}(\mathrm{w} \mathrm{R}) \\
\frac{\Gamma \Rightarrow \Delta, A}{\sim A, \Gamma \Rightarrow \Delta}(\sim \mathrm{~L})_{q} \quad \frac{A \Rightarrow \Delta}{\sim \Delta \Rightarrow \sim A}(\sim \mathrm{R})_{q} \\
\frac{A, \Gamma \Rightarrow \Delta}{\sim \sim A, \Gamma \Rightarrow \Delta}(\sim \sim \mathrm{~L})_{q} \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \sim \sim A}(\sim \sim \mathrm{R})_{q} \\
\frac{\sim B \Rightarrow \sim A \sim A, B \Rightarrow}{\sim A \Rightarrow \sim B}(\mathrm{OM})_{q}
\end{gathered}
$$

$$
\begin{gather*}
\frac{\phi, \Gamma \Rightarrow \Delta}{\phi \wedge \psi, \Gamma \Rightarrow \Delta}(\wedge \mathrm{L}) \quad \frac{\psi, \Gamma \Rightarrow \Delta}{\phi \wedge \psi, \Gamma \Rightarrow \Delta}(\wedge \mathrm{L}) \quad \frac{\Gamma \Rightarrow \Delta, \phi \quad \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \wedge \psi}(\wedge \mathrm{R}) \\
\frac{\Gamma \Rightarrow \Delta, \phi}{\neg \phi, \Gamma \Rightarrow \Delta}(\neg \mathrm{L}) \quad \frac{\phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \phi}(\neg \mathrm{R}) \\
\frac{\Gamma \Rightarrow \Delta}{\left[A_{i}\right] \Gamma \Rightarrow\left[A_{i}\right] \Delta}([])^{* *} \quad \frac{\phi, \Gamma \Rightarrow \Delta}{\mathrm{~K}_{\mathrm{i}} \phi, \Gamma \Rightarrow \Delta}\left(\mathrm{~K}_{\mathrm{i}} 1\right) \quad \frac{\mathrm{K}_{\mathrm{i}} \Gamma \Rightarrow \mathrm{~K}_{\mathrm{i}} \Delta, \phi}{\mathrm{~K}_{\mathrm{i}} \Gamma \Rightarrow \mathrm{~K}_{\mathrm{i}} \Delta, \mathrm{~K}_{\mathrm{i}} \phi}\left(\mathrm{~K}_{\mathrm{i}} 2\right) \\
\frac{\Gamma \Rightarrow \Delta, A_{i} \quad B, \Gamma \Rightarrow \Delta}{\left[A_{i}\right] B, \Gamma \Rightarrow \Delta}([] \mathrm{L})_{q} \quad \frac{<A_{i}>\Gamma, A_{i} \Rightarrow B}{\Gamma \Rightarrow\left[A_{i}\right] B}([] \mathrm{R})_{q}^{*} \\
\frac{\left[A_{i}\right] \perp, \Gamma \Rightarrow \Delta \quad \Gamma \Rightarrow \Delta,\left[A_{i}\right] \phi}{\left[A_{i}\right] \neg \phi, \Gamma \Rightarrow \Delta}(\neg[]) \quad \frac{\left[A_{i}\right] \phi, \Gamma \Rightarrow \Delta}{\mathrm{K}_{\mathrm{j}} \phi, \Gamma \Rightarrow \Delta}(\mathrm{~K}[] 3) \tag{}\\
\frac{\Gamma \Rightarrow \Delta, \mathrm{K}_{\mathrm{i}}\left[A_{i}\right] \phi}{\Gamma \Rightarrow \Delta,\left[A_{i}\right] \mathrm{K}_{\mathrm{i}} \phi}(\mathrm{~K}[] 1) \quad \frac{\left[A_{i}\right] \perp, \Gamma \Rightarrow \Delta}{\mathrm{K}_{\mathrm{i}}\left[A_{i}\right] \phi, \Gamma \Rightarrow \Delta}(\mathrm{K}[] 2) \tag{}\\
{\left[A_{i}\right] \mathrm{K}_{\mathrm{i}} \phi, \Gamma \Rightarrow \Delta} \\
*<A>C=A \wedge \sim(A \wedge \sim C) . \quad<A>\Gamma=\{<A>C \mid C \in \Gamma\} . \\
* * \text { must not be empty. }
\end{gather*}
$$

Theorem 2.1 The soundness and completeness theorem for SMDEQL $\Gamma \Rightarrow \Delta$ is derivable in SMDEQL iff $\Gamma \Rightarrow \Delta$ is valid in MEQ-models.

By a standard way using canonical models.

3 Additional formula and conditions

To express detailed conditions for quantum propositions in tensor product Hilbert space $\left(H_{1} \otimes H_{2}\right)$, we have to extend the language.

$$
\begin{aligned}
& \text { q-formula } A::=p_{i}|\sim A| A \wedge A \\
& \text { g-formula } \\
& \phi::=A|\neg \phi| \phi \wedge \phi\left|\mathrm{K}_{i} \phi\right|\left[A_{i}\right] \phi|\square \phi| \forall p_{i}(A) \quad(i \in I)
\end{aligned}
$$

\square : Modal symbol for relation $\not 又$.

Modal logic B:symmetry and reflectivity relation.
B and OML are associated by McKinsey-Tarski transfer.
$\square \neg A=\sim A$

Conditions

For all $x, y \in W$, there exists $z \in W$ such that $x R z$ and $z R y$. $\square \square A \rightarrow \square^{n} A \quad$ (for each $n \in \mathbb{N}$)

Each propositional variable represents a one-dimensional subspace of each Hilbert space. $\left(p_{i} \wedge A_{i}\right) \rightarrow \square \square\left(p_{i} \rightarrow A_{i}\right)$

Non-implications of propositions of an individual particle.
$\left(\neg \square \square A_{i} \wedge \neg \square \square \neg A_{i} \wedge \neg \square \square B_{j} \wedge \neg \square \square \neg B_{j}\right) \rightarrow$
$\diamond \diamond\left(\neg A_{i} \wedge B_{j}\right) \wedge \diamond \diamond\left(A_{i} \wedge \neg B_{j}\right) \quad(i \neq j)$
"Particle i and j are entangled"
$\mathcal{E}_{i, j}=\forall p_{i}\left(\neg p_{i}\right) \wedge \forall q_{j}\left(\neg q_{j}\right) \wedge \forall p_{i} \exists q_{j}\left[p_{i}\right] q_{j} \wedge \forall q_{j} \exists p_{i}\left[q_{j}\right] p_{i}$

Conclusions

Abstract model for multi agent dynamic epistemic logic is constructed.

Suitable sequent calculi is constructed and it satisfies soundness and completeness.

Additional language and conditions (future works).

Problem for expressing state of two particles by algebraic model or simple frame

State space for two quantum particle : $H_{1} \otimes H_{2}$

Suppose $H_{1} \approx L_{1}, H_{2} \approx L_{2} \quad(L$ expresses OM-lattice)

However, $L_{1} \otimes L_{2}$ does not correspond to $H_{1} \otimes H_{2}$.

The solution adopted in this study

We regards single L as $H_{1} \otimes H_{2}$, and use subscripted propositional variables $p_{1}, q_{2}, r_{i}, \ldots$)
$L \approx H=H_{1} \otimes H_{2}$

Thank you for listening !
［1］Aerts，D．：Description of compound physical systems and logical interaction of physical systems．E．G．Beltrametti．，B．C．van Fraassen（eds．），Current Issues on Quantum Logic，Ettore Majorana，International Science Series， Physical Sciences，（8），381－－405（1981）
［2］Baltag，A．，Smets，S．：The logic of quantum programs．QPL 2004．39－56 （2004）
［3］Baltag，A．，Smets，S．：Correlated Knowledge：an Epistemic－Logic View on Quantum Entanglement．International Journal of Theoretical Physics． 49（12），3005－3021（2010）
［4］Baltag，A．，Smets，S．：A Dynamic－Logical Perspective on Quantum Behavior．Studia Logica．89，187－－211（2008）
［5］Beltrametti，E．，Dalla Chiara M．L．，Giuntini，R，Leporini，R．，Sergioli，G．：A Quantum Computational Semantics for Epistemic Logical Operators．Part I： Epistemic Structures．International Journal of Theoretical Physics．53（10）， 3279－3292（2013）
［6］Beltrametti，E．，Dalla Chiara M．L．，Giuntini，R，Leporini，R．，Sergioli，G．：A Quantum Computational Semantics for Epistemic Logical Operators．Part II：Semantics．International Journal of Theoretical Physics．53（10）， 3293－3307（2013）
［7］Birkhoff，G．，Von Neumann，J．：The Logic of Quantum Mechanics．The

Annals of Mathematics. 37(4), 823-843 (1936)
[8] Cattaneo, G., Dalla Chiara M. L., Giuntini, R., Paoli F: Quantum Logic and Nonclassical Logics. Handbook of Quantum Logic and Quantum Structures: Quantum Structures. Kurt Engesser, Dov M. Gabbay, Daniel Lehmann (eds.), Elsevier. (2007)
[9] Chiara, M. L. D., Giuntini, R.: Quantum Logics. Gabbay, D. M., Guenthner, F. (ed.): Handbook Of Philosophical Logic 2nd Edition. 6 (1), 129-228 (2002)
[10] van Ditmarsch, H. P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Berlin. (2007)
[11] Kalmbach, G.: Orthomodular Logic. MLQ Math. Log. Q. 20, 295-406 (1974)
[12] Kawano, T.: Advanced Kripke Frame for Quantum Logic. Proceedings of 25th Workshop on Logic, Language, Information and Computation. 237-249 (2018)
[13] Kawano, T.: Studies on Implications and Sequent Calculi for Quantum Logic. Tokyo Institute of technology, Ph.D. thesis. (2018)
[14] Negri, S.: Proof Analysis in Modal Logic. Journal of Philosophical Logic. 34, 507-544 (2005)
[15] Negri, S.: Proof theory for modal logic. Philosophy Compass. 6(8), 523-538 (2011)
[16] Nishimura, H.: Sequential Method in Quantum Logic. The Journal of

Symbolic Logic. 45(2), 339-352 (1980)
[17] Nishimura, H.: Proof Theory for Minimal Quantum Logic I. International Journal of Theoretical Physics. 33(1), 103-113 (1994)
[18] Nishimura, H.: Proof Theory for Minimal Quantum Logic II. International Journal of Theoretical Physics. 33(7), 1427-1443 (1994)

