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Context

- Possibilistic logic is one of the best-known logical systems proposed
for handling uncertainty in Approximated Reasoning.

- We are interested in studying Possibilistic Logic by means modal
Nilpotent Minimum (NM) logic using an algebraic approach.

- Modal NML can be considered as an involutive version of modal
Gödel logic.

- In this work, we explode the fact that the class of NMAs is a
subvariety of Nelson lattices.

- It is very well known that every Nelson lattice (N3) can be generated
from a Heyting algebra using a twist-construction. The same
construction works for NMAs from a Gödel algebra.

- We will expand this construction for N3 with modal operators.

- We will attempt to obtain the most general possible charactarization.
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Preliminaries: Nelson lattices

Nelson lattices

A bounded integral commutative residuated lattice is a Nelson lat-
tice A = 〈A, ∗,→,∧,∨,⊥,>〉 of type (2, 2, 2, 2, 0, 0) such that

• 〈A, ∗,>〉 is a commutative monoid.

• 〈A,∧,∨,⊥,>〉 is a bounded lattice.

• The following residuated property holds:

a ∗ b ≤ c iff a ≤ b→ c.

• The negation ¬a = a→ ⊥ is involutive, i.e. a = ¬¬a.

• The following property holds:

((a2 → b) ∧ ((¬b)2 → ¬a))→ (a→ b) = >.
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Preliminaries: Twist construction

Let H = 〈H,∧,∨,→,⊥,>〉 be a Heyting algebra.

Definition

A filter F of H is said to be Boolean provided the quotient H/F is a
Boolean algebra.

• It is well known and easy to check that a filter F of the Heyting
algebra H is Boolean if and only if
D(H) = {a ∈ H : ¬a = ⊥} ⊆ F . (dense elements of H)

• Boolean filters of H, ordered by inclusion, form a lattice, having the
improper filter H as the greatest element and D(H) as the smallest
element.
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Preliminaries: Twist construction

Theorem (Sendlewski + Busaniche&Cignoli)

Given a Heyting algebra H and a Boolean filter F of H let

R(H, F ) := {(x, y) ∈ H ×H : x ∧ y = ⊥ and x ∨ y ∈ F}.
Then

1 R(H, F ) = (R(H, F ),∧,∨, ∗,⇒,⊥,>) is a Nelson lattice, where
• (x, y) ∨ (s, t) = (x ∨ s, y ∧ t),
• (x, y) ∧ (s, t) = (x ∧ s, y ∨ t),
• (x, y) ∗ (s, t) = (x ∧ s, (x→ t) ∧ (s→ y)),
• (x, y)⇒ (s, t) = ((x→ s) ∧ (t→ y), x ∧ t),
• > = (>,⊥), ⊥ = (⊥,>).

2 ¬(x, y) = (y, x),

3 Given a Nelson lattice A, there is a (unique up to isomorphisms)
Heyting algebra HA and a unique Boolean filter FA of HA such
that A is isomorphic to R(HA, FA).
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Examples

H

⊥

¬aa

b

>

(⊥,>)
R(H, F ′)

F ′ = {b,>}

(⊥, b)

(¬a, a)

(b,⊥)

(>,⊥)

(⊥,>)
R(H, F ′′)

F ′′ = {a, b,>}

(⊥, b)

(⊥, a)

(¬a, a)

(a,¬a)

(a,⊥)

(b,⊥)

(>,⊥)
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From Nelson lattices to Heyting algebras

Important: Nelson lattice A satisfies 3-potency, i.e, ∀a ∈ A : a3 = a2.

On each Nelson lattice A, we can define a congruence ≡ on A by

x ≡ y if and only if x2 = y2.

Let H = {a2 : a ∈ A} and operations a ?∗ b = (a ? b)2 for every binary
operation ? ∈ A.Then

H∗ = (H,∨∗,∧∗,→∗, 0, 1)

is a Heyting algebra and F = {(a ∨ ¬a)2 : a ∈ A} is a Boolean filter.
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From Nelson lattices to Heyting algebras

Theorem

Let N be a Nelson lattice. Then N is isomorphic to

R(H∗, F ) := {(x, y) ∈ H ×H : x ∧ y = ⊥ and x ∨ y ∈ F}
where F = {(a ∨ ¬a)2 : a ∈ N}.

i : N → R(H∗, F )

i(a) = (a2, (¬a)2)
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Modal N3-lattices

A modal N3-lattices is an algebra 〈A,�,�〉 such that the reduct
A is an N3-lattice and, for all a, b ∈ A,

(1) �a = ¬�¬a,

(2) if a2 = b2 then (�a)2 = (�b)2 and (�a)2 = (�b)2,

(3) If (a ∧ b)2 = ⊥ then (�a ∧ �b)2 = ⊥.

A is said to be regular if it further satisfies

(4) �(a ∧ b) = �a ∧�b.

Moreover, by using (1) and (4), we can conclude:

(4′) �(a ∨ b) = �a ∨ �b.

A is normal if it is regular and

(5) �> = >.
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Comparison with existing work

U. Rivieccio. Paraconsistent modal logics. Electronic Notes in
Theoretical Computer Science,278:173–186, 2011.

Rivieccio studied Modal N4-lattices and since Nelson algebras conform a
subclass of N4-lattices, we can compare the results in the N3 context
because Nelson algebras and Nelson residuated lattices are term
equivalent.

Nelson algebras = N4-lattices + x ∧ ¬x � y
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Comparison with existing work

Definition (Rivieccio)

A monotone modal N4-lattice is an algebra B = 〈B,∧,∨,⇒,¬,�〉 such
that the reduct 〈B,∧,∨,⇒,¬〉 is an N4-lattice and, for all a, b ∈ B,

• if a � b, then �a � �b,

• if ¬a � ¬b, then ¬�a � ¬�b.
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Comparison with existing work

In the N3 context, we have

Monotone modal N4-lattice Monotone N3-lattice
+ =⇒

(x ∧ ¬x) � y a2 ≤ b→ (�a)2 ≤ �b
(¬a)2 ≤ ¬b→ (¬�a)2 ≤ ¬�b

which is subclass of

Modal N3-lattices
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Modal Heyting algebras

A modal Heyting algebra MA is an algebra 〈A,�,3〉 such that
the reduct A is an Heyting algebra and

If a ∧ b = ⊥ then �a ∧3b = ⊥.

MH denotes the quasi-variety of modal Heyting algebras.

For example, an extension of this quasi-variety is the variety of normal
modal Heyting algebras which is obtained by further considering

1 ¬3a = �¬a,

2 �(a→ b)→ (�a→ �b) = > and

3 �> = >.
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Modal Heyting example

2> = >; 3> = ⊥;
2⊥ = ⊥; 3⊥ = ⊥;
2a = a; 3a = ¬a;
2¬a = a; 3¬a = ¬a;
2b = ¬a; 3b = a;

⊥

¬aa

b

>

⊥

¬a
a

b

>
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First result

Theorem

Let H be a modal Heyting algebra and let F be a Boolean filter such that

if a ∧ b = ⊥ and a ∨ b ∈ F then �a ∨3b ∈ F.

Then R(H, F ) = (R(H, F ),∧,∨, ∗,⇒,⊥,>,�,�) is a Modal Nelson
lattice, where the operators �,� are defined as follows:

�(x, y) = (�x,3y), �(x, y) = (3x,�y).

i : N → R(H∗, F )

i(�a) = ((�a)2, (¬�a)2)
= ((�a)2, (�¬a)2)
= (�∗a2,3∗(¬a)2)
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Example

�(>,⊥) = (>,⊥); �(b,⊥) = (¬a,⊥);
�(¬a,⊥) = (a,⊥); �(a,⊥) = (a,⊥);
�(¬a, a) = (a,¬a); �(a,¬a) = (a,¬a);
�(⊥, a) = (⊥,¬a); �(⊥,¬a) = (⊥,¬a);
�(⊥, b) = (⊥, a);
�(⊥,⊥) = (⊥,⊥); �(⊥,>) = (⊥,⊥);

(⊥,>)

(⊥, b)

(⊥, a)

(¬a, a)

(⊥,¬a)

(¬a,⊥)

(a,¬a)

(a,⊥)

(b,⊥)

(>,⊥)

(⊥,⊥)
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Next results

Lemma

Let N be a modal N3 lattice. Then
H∗ = (H,∨∗,∧∗,→∗,¬∗, 0, 1,2∗,3∗) with H = {a2 : a ∈ N},
F = {(a ∨ ¬a)2 : a ∈ N} and modal operators

�∗a2 = (�a)2, 3∗a2 = (�a)2,

is a modal Heyting algebra. In addition, if a2 ∨∗ b2 ∈ F and a2 ∧∗ b2 = 0
then �∗a2 ∨∗ 3∗b2 ∈ F .

Theorem

Let N be a modal N3 lattice. Then N is isomorphic to

R(H∗, F ) := {(x, y) ∈ H ×H : x ∧ y = ⊥ and x ∨ y ∈ F}
where F = {(a ∨ ¬a)2 : a ∈ N}.
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Final comments

Modal Nilpotent Minimum algebras

They are modal Nelson lattices which further satisfy

(Prelinearity) (x→ y) ∨ (y → x) = >

(a ∗ b→ ⊥) ∨ (a ∧ b→ a ∗ b) = >

Modal Gödel algebras

They are modal Heyting algebras which further satisfy

(Prelinearity) (x→ y) ∨ (y → x) = >

All mentioned connections between modal N3 lattices and modal Heyting
algebras can be established between Modal Nilpotent Minimum algebras
and Modal Gödel algebras.
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Conclusions and future works

- Our results generalize the existing conditions regarding modal
operators on twist-structures in the N3-context.

- We want to provide a topological duality for these structures by
means of Esakia spaces endowed with (non-monotonic)
neighborhood functions.

- We would like to explore the notions of N3-neighborhood frame and
N3.Kripke frame as alternative semantics, and their connections with
the algebraic semantics introduced before.

- We plan to study more deeply the connection between to Modal
NM-algebras and modal Gödel algebras when more axioms are
added.
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Regular Nelson lattices

- A Nelson lattice is Regular if and only if the Heyting algebra H∗

satisfies the Stone identity ¬x ∨ ¬¬x = 1.

- NR is a subvariety of the variety of Nelson residuated lattices
generated by the connected rotations of generalized Heyting
algebras.

- Let A ∈ NR be directly indecomposable. Then either
A ∼= DR(AH) or A ∼= CR(AH). (disconnected or connected
rotations of generalized H.A., respectively).
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Bonus track: Regular Nelson lattices d.i.

H

⊥

b

ca

>

F = H

(⊥,>)

(⊥, c)(⊥, a)

(⊥, b)

(⊥,⊥)

(b,⊥)

(c,⊥)(a,⊥)

(>,⊥)

F = H − {⊥}

(⊥,>)

(⊥, c)(⊥, a)

(⊥, b)

(b,⊥)

(c,⊥)(a,⊥)

(>,⊥)
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Regular Nelson lattices d.i.

With negation fixed point:
If there exist x, y ∈ H such that �x > ⊥ and 3y > ⊥ then the operators
are defined:

�(x, y) =

{
if y = ⊥ then (2x,⊥)
if x = ⊥ then (⊥,3y)

�· (x, y) =

{
if y = ⊥ then (3x,⊥)
if x = ⊥ then (⊥,�y)

�· (⊥,⊥) = �· (⊥,⊥) = (⊥,⊥)
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Regular Nelson lattices d.i.
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Regular Nelson lattices d.i.
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Regular Nelson lattices d.i.

Without negation fixed point:
If there exist x, y ∈ H such that �x > ⊥ and 3x > ⊥. The operators
are defined:

�(x, y) =

{
if y = ⊥ then (2x,⊥)
if x = ⊥ then (⊥,3y)

�· (x, y) =

{
if y = ⊥ then (3x,⊥)
if x = ⊥ then (⊥,�y)

If x ∈ H such that x > ⊥ then �x > ⊥ and 3x > ⊥.
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Regular Nelson lattices d.i.
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Regular Nelson lattices d.i.
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Regular Nelson lattices d.i.

With negation fixed point:
If �[H] = {⊥}, then the operators are defined:
�(x, y) = (⊥,3y)

�· (x, y) = (3x,⊥)

In particular
�· (⊥,⊥) = (3⊥,⊥) and �· (⊥,⊥) = (⊥,3⊥)
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Regular Nelson lattices d.i.
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Regular Nelson lattices d.i.

Without negation fixed point:
If �[H] = {⊥}, then the operators are defined:
�(x, y) = (⊥,3y)

�· (x, y) = (3x,⊥)

3x > ⊥ for all x ∈ H.
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Regular Nelson lattices d.i.
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