Preliminaries 000000 Modal Extentions

Conclusions and future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Modal Nelson lattices and their associated twist structures

Paula Menchón¹ and Ricardo O. Rodriguez²

¹Nicolaus Copernicus University in Toruń, Poland

²FCEyN - ICC CONICET - UBA

LATD2022, September 04-11, 2022. Paestum (Salerno, Italy).

Menchón and Rodriguez

ntext	Preliminaries 000000	Modal Extentions	Conclusions and future works
Context			

- Possibilistic logic is one of the best-known logical systems proposed for handling uncertainty in Approximated Reasoning.
- We are interested in studying Possibilistic Logic by means modal Nilpotent Minimum (NM) logic using an algebraic approach.
- Modal NML can be considered as an involutive version of modal Gödel logic.
- In this work, we explode the fact that the class of NMAs is a subvariety of Nelson lattices.
- It is very well known that every Nelson lattice (N3) can be generated from a Heyting algebra using a twist-construction. The same construction works for NMAs from a Gödel algebra.
- We will expand this construction for N3 with modal operators.
- We will attempt to obtain the most general possible charactarization.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Preliminaries: Nelson lattices

Nelson lattices

A bounded integral commutative residuated lattice is a Nelson lattice $\mathbf{A} = \langle A, *, \rightarrow, \wedge, \vee, \bot, \top \rangle$ of type (2, 2, 2, 2, 0, 0) such that

- $\langle A, *, \top \rangle$ is a commutative monoid.
- $\langle A, \wedge, \vee, \bot, \top \rangle$ is a bounded lattice.
- The following residuated property holds:

 $a * b \leq c$ iff $a \leq b \rightarrow c$.

- The negation $\neg a = a \rightarrow \bot$ is involutive, i.e. $a = \neg \neg a$.
- The following property holds:

$$((a^2 \to b) \land ((\neg b)^2 \to \neg a)) \to (a \to b) = \top.$$

Conclusions and future works

Preliminaries: Twist construction

Let $\mathbf{H}=\langle H,\wedge,\vee,\rightarrow,\perp,\top\rangle$ be a Heyting algebra.

Definition

A filter F of ${\bf H}$ is said to be Boolean provided the quotient ${\bf H}/F$ is a Boolean algebra.

- It is well known and easy to check that a filter F of the Heyting algebra H is Boolean if and only if
 D(H) = {a ∈ H : ¬a = ⊥} ⊆ F. (dense elements of H)
- Boolean filters of H, ordered by inclusion, form a lattice, having the improper filter H as the greatest element and D(H) as the smallest element.

Preliminaries: Twist construction

Theorem (Sendlewski + Busaniche&Cignoli)

Given a Heyting algebra \mathbf{H} and a Boolean filter F of \mathbf{H} let

$$R(\mathbf{H}, F) := \{ (x, y) \in H \times H : x \land y = \bot \text{ and } x \lor y \in F \}.$$

Then

9
$$\mathbf{R}(\mathbf{H}, F) = (R(\mathbf{H}, F), \land, \lor, *, \Rightarrow, \bot, \top)$$
 is a Nelson lattice, where

•
$$(x, y) \lor (s, t) = (x \lor s, y \land t),$$

• $(x, y) \land (s, t) = (x \land s, y \lor t),$

•
$$(x,y)*(s,t) = (x \land s, (x \to t) \land (s \to y)),$$

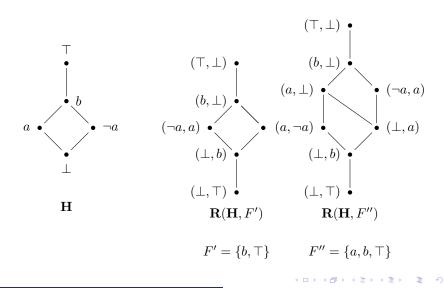
•
$$(x, y) \Rightarrow (s, t) = ((x \rightarrow s) \land (t \rightarrow y), x \land t),$$

• $\top = (\top, \top), \downarrow = (\downarrow, \top).$

$$(x,y) = (y,x),$$

Given a Nelson lattice A, there is a (unique up to isomorphisms) Heyting algebra H_A and a unique Boolean filter F_A of H_A such that A is isomorphic to R(H_A, F_A).

Examples



From Nelson lattices to Heyting algebras

Important: Nelson lattice A satisfies 3-potency, i.e, $\forall a \in A : a^3 = a^2$.

On each Nelson lattice ${\bf A},$ we can define a congruence \equiv on ${\bf A}$ by

$$x \equiv y$$
 if and only if $x^2 = y^2$.

Let $H=\{a^2:a\in {\bf A}\}$ and operations $a\star^*b=(a\star b)^2$ for every binary operation $\star\in {\bf A}.$ Then

$$\mathbf{H}^* = (H, \vee^*, \wedge^*, \rightarrow^*, 0, 1)$$

is a Heyting algebra and $F = \{(a \lor \neg a)^2 : a \in A\}$ is a Boolean filter.

Menchón and Rodriguez

Conclusions and future works

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

From Nelson lattices to Heyting algebras

Theorem

Let N be a Nelson lattice. Then N is isomorphic to

$$R(\mathbf{H}^*,F) := \{(x,y) \in H \times H : x \land y = \bot \text{ and } x \lor y \in F\}$$

where $F = \{(a \lor \neg a)^2 : a \in N\}.$

 $i: N \to R(\mathbf{H}^*, F)$ $i(a) = (a^2, (\neg a)^2)$

Preliminaries

Modal Extentions

Conclusions and future works

イロン 不同 とくほう イヨン しほう

Modal N3-lattices

A modal N3-lattices is an algebra $\langle \mathbf{A}, \blacksquare, \blacklozenge \rangle$ such that the reduct \mathbf{A} is an N3-lattice and, for all $a, b \in A$, (1) $\blacklozenge a = \neg \blacksquare \neg a$,

(2) if
$$a^2 = b^2$$
 then $(\blacksquare a)^2 = (\blacksquare b)^2$ and $(\blacklozenge a)^2 = (\blacklozenge b)^2$,

(3) If
$$(a \wedge b)^2 = \bot$$
 then $(\blacksquare a \wedge \blacklozenge b)^2 = \bot$.

 ${\bf A}$ is said to be regular if it further satisfies

(4)
$$\blacksquare (a \land b) = \blacksquare a \land \blacksquare b.$$

Moreover, by using (1) and (4), we can conclude:

$$(4') \ \blacklozenge(a \lor b) = \blacklozenge a \lor \blacklozenge b.$$

 ${\bf A}$ is normal if it is regular and

(5)
$$\blacksquare \top = \top$$
.

イロト 不得 トイヨト イヨト 二日

Comparison with existing work

U. Rivieccio. Paraconsistent modal logics. Electronic Notes in Theoretical Computer Science, 278:173–186, 2011.

Rivieccio studied Modal N4-lattices and since Nelson algebras conform a subclass of N4-lattices, we can compare the results in the N3 context because Nelson algebras and Nelson residuated lattices are term equivalent.

Nelson algebras = N4-lattices +
$$x \land \neg x \preceq y$$

Conclusions and future works

イロト 不得 トイヨト イヨト 二日

Comparison with existing work

Definition (Rivieccio)

A monotone modal N4-lattice is an algebra $\mathbf{B} = \langle B, \wedge, \vee, \Rightarrow, \neg, \blacksquare \rangle$ such that the reduct $\langle B, \wedge, \vee, \Rightarrow, \neg \rangle$ is an N4-lattice and, for all $a, b \in B$,

• if
$$a \preceq b$$
, then $\blacksquare a \preceq \blacksquare b$,

• if
$$\neg a \preceq \neg b$$
, then $\neg \blacksquare a \preceq \neg \blacksquare b$.

Conclusions and future works

Comparison with existing work

In the N3 context, we have

Monotone modal N4-lattice

$$+ (x \land \neg x) \preceq y$$

Monotone N3-lattice

$$\begin{array}{c} a^2 \leq b \rightarrow (\blacksquare a)^2 \leq \blacksquare b \\ (\neg a)^2 \leq \neg b \rightarrow (\neg \blacksquare a)^2 \leq \neg \blacksquare b \end{array}$$

which is subclass of

Modal N3-lattices

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

イロト イポト イヨト イヨト

Modal Heyting algebras

A modal Heyting algebra $M{\bf A}$ is an algebra $\langle {\bf A},\Box,\diamondsuit\rangle$ such that the reduct ${\bf A}$ is an Heyting algebra and

```
If a \wedge b = \bot then \Box a \wedge \Diamond b = \bot.
```

 \mathbb{MH} denotes the quasi-variety of modal Heyting algebras.

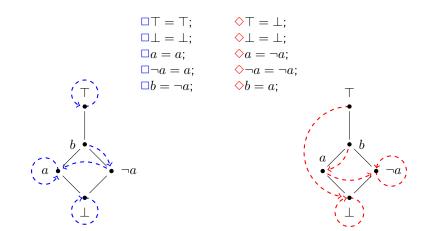
For example, an extension of this quasi-variety is the variety of *normal* modal Heyting algebras which is obtained by further considering

●
$$\neg \diamondsuit a = \Box \neg a$$
,
● $\Box(a \rightarrow b) \rightarrow (\Box a \rightarrow \Box b) = \top$ and
● $\Box \top = \top$.

Modal Extentions

Conclusions and future works

Modal Heyting example



Modal Extentions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

First result

Theorem

Let H be a modal Heyting algebra and let F be a Boolean filter such that

if
$$a \wedge b = \bot$$
 and $a \vee b \in F$ then $\Box a \vee \Diamond b \in F$.

Then $\mathbf{R}(\mathbf{H}, F) = (R(\mathbf{H}, F), \land, \lor, *, \Rightarrow, \bot, \top, \blacksquare, \blacklozenge)$ is a Modal Nelson lattice, where the operators $\blacksquare, \blacklozenge$ are defined as follows:

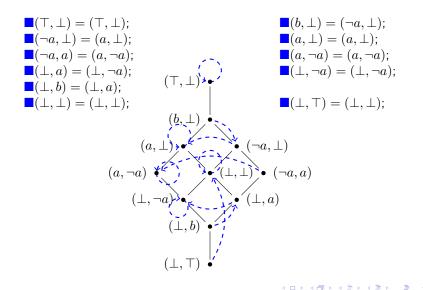
$$\blacksquare(x,y) = (\Box x, \Diamond y), \qquad \qquad \blacklozenge(x,y) = (\Diamond x, \Box y).$$

$$i: N \to R(H^*, F)$$
$$i(\blacksquare a) = ((\blacksquare a)^2, (\neg \blacksquare a)^2)$$
$$= ((\blacksquare a)^2, (\blacklozenge \neg a)^2)$$
$$= (\square^* a^2, \diamondsuit^* (\neg a)^2)$$

Modal Extentions

Conclusions and future works

Example



Preliminaries

Modal Extentions

Conclusions and future works

Next results

Lemma

Let N be a modal N3 lattice. Then $\mathbf{H}^* = (H, \vee^*, \wedge^*, \rightarrow^*, \neg^*, 0, 1, \square^*, \diamond^*) \text{ with } H = \{a^2 : a \in N\},$ $F = \{(a \vee \neg a)^2 : a \in N\} \text{ and modal operators}$ $\square^* a^2 = (\blacksquare a)^2, \qquad \diamond^* a^2 = (\blacklozenge a)^2,$

is a modal Heyting algebra. In addition, if $a^2 \vee^* b^2 \in F$ and $a^2 \wedge^* b^2 = 0$ then $\Box^* a^2 \vee^* \diamond^* b^2 \in F$.

Theorem

whe

Let N be a modal N3 lattice. Then N is isomorphic to

$$R(\mathbf{H}^*, F) := \{(x, y) \in H \times H : x \land y = \bot \text{ and } x \lor y \in F\}$$

re $F = \{(a \lor \neg a)^2 : a \in N\}.$

Final comments

Modal Nilpotent Minimum algebras

They are modal Nelson lattices which further satisfy

$$({\sf Prelinearity}) \hspace{0.1in} (x \rightarrow y) \lor (y \rightarrow x) = \top$$

$$(a\ast b\rightarrow \bot)\vee (a\wedge b\rightarrow a\ast b)=\top$$

Modal Gödel algebras

They are modal Heyting algebras which further satisfy

(Prelinearity)
$$(x \to y) \lor (y \to x) = \top$$

All mentioned connections between modal N3 lattices and modal Heyting algebras can be established between Modal Nilpotent Minimum algebras and Modal Gödel algebras.

Conclusions and future works

- Our results generalize the existing conditions regarding modal operators on twist-structures in the $N3\mathchar`-context.$
- We want to provide a topological duality for these structures by means of Esakia spaces endowed with (non-monotonic) neighborhood functions.
- We would like to explore the notions of N3-neighborhood frame and N3.Kripke frame as alternative semantics, and their connections with the algebraic semantics introduced before.
- We plan to study more deeply the connection between to Modal NM-algebras and modal Gödel algebras when more axioms are added.

Preliminaries

Modal Extentions

Conclusions and future works

Thank you for your attention

イロン 不得 とくほ とくほ とうほう

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

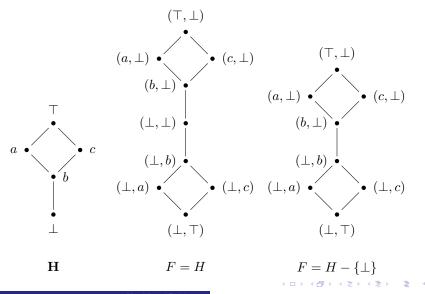
Regular Nelson lattices

- A Nelson lattice is Regular if and only if the Heyting algebra \mathbf{H}^* satisfies the Stone identity $\neg x \lor \neg \neg x = 1$.
- \mathcal{NR} is a subvariety of the variety of Nelson residuated lattices generated by the connected rotations of generalized Heyting algebras.
- Let $A \in \mathcal{NR}$ be directly indecomposable. Then either $A \cong DR(A_{\mathbf{H}})$ or $A \cong CR(A_{\mathbf{H}})$. (disconnected or connected rotations of generalized H.A., respectively).

Modal Extentions

Conclusions and future works

Bonus track: Regular Nelson lattices d.i.



Menchón and Rodriguez

Conclusions and future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Regular Nelson lattices d.i.

With negation fixed point:

If there exist $x,y\in H$ such that $\Box x>\bot$ and $\Diamond y>\bot$ then the operators are defined:

$$\blacksquare(x,y) = \begin{cases} \text{if } y = \bot & \text{then } (\Box x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \diamondsuit y) \end{cases}$$

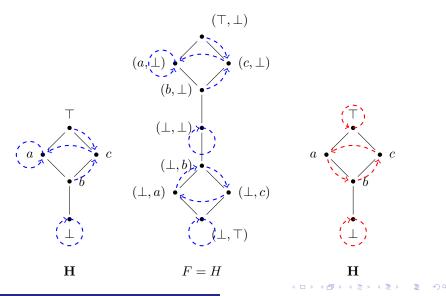
$$\blacklozenge(x,y) \quad = \quad \begin{cases} \text{if } y = \bot & \text{then } (\diamondsuit x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \Box y) \end{cases}$$

 $\blacklozenge(\bot,\bot) = \blacksquare(\bot,\bot) = (\bot,\bot)$

Modal Extentions

Conclusions and future works

Regular Nelson lattices d.i.

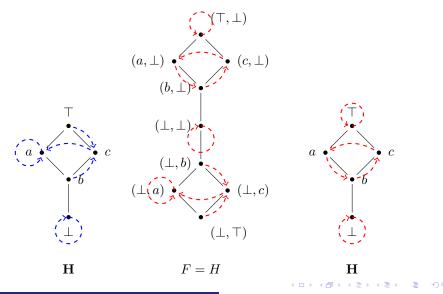


Menchón and Rodriguez

Modal Extentions

Conclusions and future works

Regular Nelson lattices d.i.



Menchón and Rodriguez

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Regular Nelson lattices d.i.

Without negation fixed point:

If there exist $x,y\in H$ such that $\Box x>\bot$ and $\Diamond x>\bot.$ The operators are defined:

$$\begin{split} \blacksquare(x,y) &= \begin{cases} \text{if } y = \bot & \text{then } (\Box x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \Diamond y) \end{cases} \\ \blacklozenge(x,y) &= \begin{cases} \text{if } y = \bot & \text{then } (\Diamond x, \bot) \\ \text{if } x = \bot & \text{then } (\bot, \Box y) \end{cases} \end{aligned}$$

If $x \in H$ such that $x > \bot$ then $\Box x > \bot$ and $\Diamond x > \bot$.

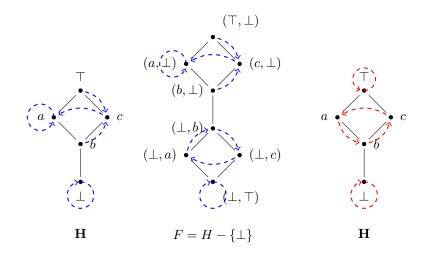
Preliminaries 000000 Modal Extentions

Conclusions and future works

イロト イロト イヨト イヨト

э

Regular Nelson lattices d.i.



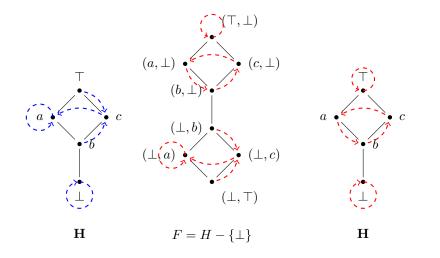
Preliminaries 000000 Modal Extentions

Conclusions and future works

イロト イヨト イヨト イヨト

э

Regular Nelson lattices d.i.



Conclusions and future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Regular Nelson lattices d.i.

With negation fixed point: If $\Box[H] = \{\bot\}$, then the operators are defined: $\blacksquare(x,y) = (\bot, \diamondsuit y)$

$$\blacklozenge(x,y) = (\diamondsuit x,\bot)$$

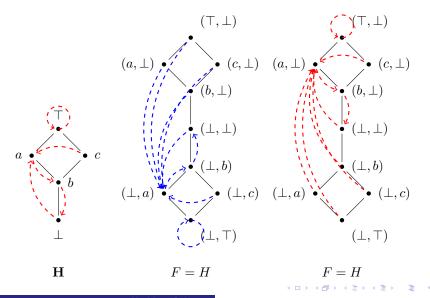
In particular

 $\blacklozenge(\bot,\bot) \ = \ (\diamondsuit\bot,\bot) \ \text{ and } \ \blacksquare(\bot,\bot) \ = \ (\bot,\diamondsuit\bot)$

Modal Extentions

Conclusions and future works

Regular Nelson lattices d.i.



Menchón and Rodriguez

Conclusions and future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Regular Nelson lattices d.i.

Without negation fixed point: If $\Box[H] = \{\bot\}$, then the operators are defined: $\blacksquare(x,y) = (\bot, \diamondsuit y)$

$$\blacklozenge(x,y) = (\diamondsuit x, \bot)$$

 $\Diamond x > \bot$ for all $x \in H$.

Modal Extentions

Conclusions and future works

イロト イボト イヨト イヨト

э

Regular Nelson lattices d.i.

