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Outline and Objectives

Metric Boolean algebras

Objectives

1 Embedding isometrically the space of atoms of a metric Boolean
algebra in RN

2 Study the topology of the probability measures for which there is an
isometric embedding in RN .
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Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.

Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Finitely additive probability measures

Definition
Let A be a Boolean algebra. A map m : A→ [0, 1] is a finitely-additive
probability measure if:

1 m(>) = 1;

2 m(a ∨ b) = m(a) +m(b), for every a, b ∈ A such that a ∧ b =⊥.

Moreover, m is positive if:
3 m(a) > 0, for every a 6=⊥.

Every Boolean algebra carries a finitely-additive probability measure.
Not a positive one!!

If A is atomic then it carries at least a positive measure (Horn-Tarski).

3 / 20



Metric Boolean algebras

Let A be a Boolean algebra with a positive finitely-additive probability
measure m. For every a, b ∈ A let:

dm(a, b) := m(a M b) = m((a ∧ ¬b) ∨ (¬a ∧ b)),

Metric Boolean algebras
(A, dm) is a metric space, called metric Boolean algebra (Kolmogorov), or,
sometimes, normed Boolean algebra.

to show triangle inequality: m(a ∨ b) ≤ m(a) +m(b)
(+ monotonicity of m);

for dm(a, b) = 0⇒ a = b: use that m is positive.

If m is not positive, then (A, dm) is a pseudo-metric space.
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(Non) embeddability in RN

Question
Can (A, dm) be isometrically embedded into RN (for some N) with the
Euclidean metric?

NO! (for |A| > 2, for any N ∈ N).

Suppose, by contradiction, that ι : A→ RN is an isometric embedding.

dm(⊥,>) = 1.
dm(a,⊥) = m(a), for any a ∈ A.
dm(a,>) = m(¬a) = 1−m(a)
By triangle inequality, ι(⊥), ι(>), ι(a) stand on the same line!

•
ι(⊥)

•
ι(>)

•
ι(a)

•
ι(¬a)

dm(a,¬a) = 1, thus ι(a) = ι(⊥) and ι(¬a) = ι(>). Contradiction!
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Embeddings in RN

From now on A is a finite algebra, with atoms At(A).

Question 2
Is there any m such that (At(A), dm) embeds isometrically into RN (for
some N) with the Euclidean metric?

We focus on atoms due to their relevance for probability.

Embeddings of generic metric spaces into RN are ruled by the following

Theorem (Morgan [6])

A metric space (X, d) embeds isometrically in RN if and only if it is flat
and has dimension equal to N .
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About Morgan’s theorem

Morgan’s theorem introduces two notions: flatness and dimension.

Flat space
A metric space (X, d) is flat if the determinant of the n× n matrix
M(x0, . . . , xn), whose generic ij-entry is

〈xi, xj , x0〉 =
1

2
(d(x0, xi)

2 + d(x0, xj)
2 − d(xi, xj)

2)

is non-negative for every n-simplex (x0, . . . , xn) in X.

Dimension
The dimension of a space (X, d) is the greatest N (if exists) such that
there exists a N -simplex with positive determinant.
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Simplifying Morgan’s determinant

Let At(A) = {a0, a1, . . . , ak}; set xi = m(ai) (for i ∈ {0, 1, . . . , k}).

Lemma

Let A be a finite metric atomic Boolean algebra with k + 1 atoms and
M(x0, . . . , xn), 2 ≤ n ≤ k, the matrix in Morgan’s theorem. Then
det(M(x0, . . . , xn)) =

2n−1

( n∑
α=0

x0 · · · · · x̂α · · · · · xn

)2

− (n− 1)

(
n∑

α=0

x20 · · · · · x̂2α · · · · x2n

),
where x̂α means that xα has to be omitted.

Crucial: a, b ∈ At(A), dm(a, b) = m(a) +m(b) (since a ≤ ¬b and b ≤ ¬a).

Moreover:

xi ∈ R+ (not necessarily in (0, 1)).
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A positive answer to Question 2

By previous lemma we are able to find m on A such that
(At(A), dm) ↪→ RN .

Corollary

Let A be a finite metric Boolean algebra with k + 1 atoms, m a
finitely-additive probability measure such that m(ai) = 1

k+1 , for every
ai ∈ At(A). Then (At(A), dm) embeds isometrically in Rk (with the
Euclidean metric).

Corollary 2
det(M(x0, x1, x2)) > 0.

Not for all m, (At(A), dm) ↪→ RN !!
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An example: the binomial distribution

a sequence of n independent experiments (Bernoulli process), asking a
“yes-no” question, each with a two-valued outcome.

success has probability p, failure q = 1− p.

The binomial distribution assigns a probability to the number of successes
in the sequence. Thus:

Ω = {1, . . . , n}. P(Ω) is the Boolean algebra of events.
Atoms are all the sequences (regardless of the order) of successes and
failures.
The probability of an atom aα is:

xα =

(
n

α

)
pα(q)n−α.

Setting p = q = 1/2 and using the previous Lemma, one gets
M(x0, . . . , x3),M(x0, . . . , x4) > 0,M(x0, . . . , x5) < 0.
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Splitting the space of probability measures

The spaceM(A) of positive probability measures over a finite Boolean
algebra A (|A| = r) is a convex (open) subset of (0, 1)r.

Idea
SplitM(A) into

Mflat(A) = {m : A→ [0, 1]| (At(A), dm) ↪→ RN , for some N ∈ N}

and its complement.
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The main problem

Due to Morgan’s theorem:

Mflat(A) =

k⋂
n=3

Cn ∩Πk,

Cn = {~x ∈ Rk+1
+ | det(M(x0, . . . , xn)) > 0}, with 3 ≤ n ≤ k and Πk the

simplex of probability measures.

Problem
Study the topology ofMflat(A) and of its complement
(with the topology induced by (0, 1)k+1 ⊂ Rk+1

+ ).
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The main result

Start from the topology of Cn.

Lemma

For each 3 ≤ n ≤ k, Cn ∼= Hn × Rk−n+ where Hn is a solid half-hypercone
in Rn+1

+ .

We are still working in Rk+1
+ (not in (0, 1)k+1).

Theorem

Let k > 3. Then:

1 Mflat(At(A)) is contractible.
2 M(At(A)) \Mflat(At(A)) is simply-connected (not contractible).
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Conclusion and future work

1 Extend the study to the infinite (atomic) case.

2 Applications in probability theory.

3 Embeddings of metric MV-algebras (MV algebra + faithful state).

14 / 20



Conclusion and future work

1 Extend the study to the infinite (atomic) case.

2 Applications in probability theory.

3 Embeddings of metric MV-algebras (MV algebra + faithful state).

14 / 20



Conclusion and future work

1 Extend the study to the infinite (atomic) case.

2 Applications in probability theory.

3 Embeddings of metric MV-algebras (MV algebra + faithful state).

14 / 20



Conclusion and future work

1 Extend the study to the infinite (atomic) case.

2 Applications in probability theory.

3 Embeddings of metric MV-algebras (MV algebra + faithful state).

14 / 20



References

D. Harville.
Matrix Algebra From a Statistician’s Perspective.
Springer New York, 2008.

A. Horn and A. Tarski.
Measures in Boolean algebras.
Transactions of the American Mathematical Society, 64:467–497, 1948.

J. L. Kelley.
Measures on Boolean algebras.
Pacific Journal of Mathematics, 9(4):1165–1177, 1959.

A. N. Kolmogorov.
Complete metric Boolean Algebras.
Philosophical Studies, 77(1), 1995.

I. Leustean.
Metric Completions of MV-algebras with States: An Approach to
Stochastic Independence.
Journal of Logic and Computation, 21(3):493–508, 2009.

C. L. Morgan.
Embedding metric spaces in Euclidean space.
Journal of Geometry, 5(1):101–107, 1974.

D. Vladimirov.
Boolean Algebras in Analysis.
Springer Dordrecht, 2002.

15 / 20



Thanks!

Euclidean walks (1955), René Magritte
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Proof of the main theorem

1)Mflat(A) =

k⋂
n=3

Cn ∩Πk

= s(
k⋂

n=3

Cn), via the (open) retraction

s : Rk+1
+ → Πk ⊂ (0, 1)k+1,

~x = (x0, . . . , xk) 7→
~x

k∑
α=0

xα

k⋂
n=3

Cn is contractible (homeomorphic to a convex), so is s(
k⋂

n=3

Cn).
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Proof of the main theorem (2)

2) Work in Rk+1
+ (then retract on Πk).

Set H =
k⋂

n=3

Hn (the hypercones!)

and X = H ∩ Sk+. H ∼= X × (0,+∞).
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Idea of the proof (continued)

X is compact, has non-empty interior (p ∈ Int(X)) and is geodesically
convex.

Prove that every geodesic (from p) intersects ∂X exactly in one point.
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Idea of the proof (continued)

Use stereographic projection π from Sk \ {−p} to the tangent space TpSk.

K1 = π(X), K2 = π(Sk+). Int(K2) \K1
∼= Sk+ \X ∼= Sk−1 × (0, 1).

Rk+1
+ \H ∼= Sk+ \X × (0,+∞) ∼= Sk−1 × (0, 1)× (0,+∞)

homotopically equivalent to Sk−1: simply connected (k > 3), not
contractible.
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