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@ Metric Boolean algebras

Objectives

© Embedding isometrically the space of atoms of a metric Boolean
algebra in R

@ Study the topology of the probability measures for which there is an
isometric embedding in RY.
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Finitely additive probability measures

Definition

Let A be a Boolean algebra. A map m: A — [0,1] is a finitely-additive
probability measure if:

O m(T)=1,
@ m(aVb) =m(a) + m(b), for every a,b € A such that a Ab=_1.

Moreover, m is positive if:
© m(a) >0, for every a #1.

@ Every Boolean algebra carries a finitely-additive probability measure.
Not a positive onel!l

e If A is atomic then it carries at least a positive measure (Horn-Tarski).
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Metric Boolean algebras

Let A be a Boolean algebra with a positive finitely-additive probability
measure m. For every a,b € A let:

dm(a,b) :=m(a A b) =m((a A=b)V (ma AD)),

Metric Boolean algebras

(A,d,,) is a metric space, called metric Boolean algebra (Kolmogorov), or,
sometimes, normed Boolean algebra.

@ to show triangle inequality: m(a Vv b) < m(a) + m(b)
(4+ monotonicity of m);

e for d,(a,b) =0 = a = b: use that m is positive.

e If m is not positive, then (A, d,,) is a pseudo-metric space.
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Can (A, d,,) be isometrically embedded into RY (for some V) with the
Euclidean metric? NO! (for |A| > 2, for any N € N).

Suppose, by contradiction, that .: A — R is an isometric embedding.
d(L, T) = 1.

dm(a, L) =m(a), for any a € A.

dpm(a, T) =m(—a) =1—m(a)

By triangle inequality, (L), ¢(T),t(a) stand on the same line!

dm(a,—a) =1, thus t(a) = ¢(L) and ¢(—a) = ¢(T). Contradiction!
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Embeddings in RV

From now on A is a finite algebra, with atoms At(A).

s there any m such that (At(A), d,,) embeds isometrically into RY (for
some N) with the Euclidean metric?

@ We focus on atoms due to their relevance for probability.

Embeddings of generic metric spaces into R are ruled by the following

Theorem (Morgan [6])

A metric space (X, d) embeds isometrically in R if and only if it is flat
and has dimension equal to N.
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Morgan's theorem introduces two notions: flatness and dimension.

Flat space

A metric space (X, d) is flat if the determinant of the n x n matrix
M(xq,...,x,), whose generic ij-entry is

1
(z;, x5, x0) = §(d($o,$i)2 + d(zo, ;) — d(z;,25)?)

is non-negative for every n-simplex (zg,...,x,) in X.

The dimension of a space (X, d) is the greatest IV (if exists) such that
there exists a N-simplex with positive determinant.
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M(zg,...,xy), 2 <n <k, the matrix in Morgan's theorem. Then
det(M(zo,...,zy)) =

n 2 n
on—1 (Zxowa ..... xn> _(n_1)(zx3 ..... ximi) ,
a=0

a=0

where &, means that z,, has to be omitted.

Crucial: a,b € At(A), dpn(a,b) = m(a) + m(b) (since a < =b and b < —a).
Moreover:

e z; € Ry (not necessarily in (0,1)).
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A positive answer to Question 2

By previous lemma we are able to find m on A such that
(At(A),dy,) — RV,

Let A be a finite metric Boolean algebra with k + 1 atoms m a

finitely-additive probability measure such that m(a;) = +1 for every

ai € At(A). Then (At(A),d,,) embeds isometrically in R¥ (with the
Euclidean metric).

det(M(l’o, x1, IL'Q)) > 0.

o Not for all m, (At(A),dp) — RN
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An example: the binomial distribution

@ a sequence of n independent experiments (Bernoulli process), asking a
“yes-no" question, each with a two-valued outcome.

@ success has probability p, failure ¢ =1 — p.

The binomial distribution assigns a probability to the number of successes
in the sequence. Thus:

o 0 ={1,...,n}. P(Q) is the Boolean algebra of events.

@ Atoms are all the sequences (regardless of the order) of successes and
failures.

@ The probability of an atom a,, is:

o (tare

Setting p = ¢ = 1/2 and using the previous Lemma, one gets
M(xo,...,x3), M(xg,...,24) >0, M(z0,...,25) < 0.
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The main problem

Due to Morgan's theorem:

Mgiat(A m Cr N 11,

n=3

Cn = {7 € RE™ | det(M(xo,...,x,)) > 0}, with 3 <n <k and II, the
simplex of probability measures.

Problem

Study the topology of M ;44 (A) and of its complement
(with the topology induced by (0,1)%+! ¢ RE).
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The main result

Start from the topology of C),.

Foreach3 <n <k, C, = H, x Ri‘" where H,, is a solid half-hypercone
in R+

o We are still working in R (not in (0, 1)**1).

Let k > 3. Then:

QO My (At(A)) is contractible.
Q@ M(At(A)) \ My1a:(At(A)) is simply-connected (not contractible).
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Conclusion and future work

H(A)

)1n*rrv .

© Extend the study to the infinite (atomic) case.
@ Applications in probability theory.

© Embeddings of metric MV-algebras (MV algebra + faithful state).
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Thanks!

Euclidean walks (1955), René Magritte
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1) Mpa(A) = ﬂ Cp, NTIg = s( ﬂ Cy,), via the (open) retraction
n=3 n=3

5 Rﬁ_ﬂ — IIj, € (0, 1)1,
Tz
k
>
a=0

k k

f:(xo,...,xk)l—)

ﬂ C,, is contractible (homeomorphic to a convex), so is s( ﬂ Ch).
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Proof of the main theorem (2)

k
2) Work in Riﬂ (then retract on Il;). Set H = ﬂ H,, (the hypercones!)
n=3

andX:Hﬂﬁ. H =X x(0,400).

—~—

by
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|dea of the proof (continued)

X is compact, has non-empty interior (p € Int(X)) and is geodesically
convex.
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|dea of the proof (continued)

X is compact, has non-empty interior (p € Int(X)) and is geodesically
convex.

@ Prove that every geodesic (from p) intersects X exactly in one point.

:SK
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|dea of the proof (continued)

Use stereographic projection 7 from S* \ {—p} to the tangent space T,S*.

T

(&)

o .

Ky =7(X), Ky = 7(Sk). Int(Ky) \ K1 =S¥\ X 22§51 % (0,1).
o REFI\ H 2 8%\ X x (0,400) =2 S%1 x (0,1) x (0, +00)
homotopically equivalent to S¥~': simply connected (k > 3), not

contractible.
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