Embeddings of metric Boolean algebras in \mathbb{R}^{N}

Stefano Bonzio

(joint work with A. Loi)

Università di Cagliari

雨

LATD 2022 \& MOSAIC Kick-off, Paestum, 10 September 2022

Outline and Objectives

- Metric Boolean algebras

Outline and Objectives

- Metric Boolean algebras

Objectives
(1) Embedding isometrically the space of atoms of a metric Boolean algebra in \mathbb{R}^{N}

Outline and Objectives

- Metric Boolean algebras

Objectives

(1) Embedding isometrically the space of atoms of a metric Boolean algebra in \mathbb{R}^{N}
(2) Study the topology of the probability measures for which there is an isometric embedding in \mathbb{R}^{N}.

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;
(2) $m(a \vee b)=m(a)+m(b)$, for every $a, b \in A$ such that $a \wedge b=\perp$.

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;
(2) $m(a \vee b)=m(a)+m(b)$, for every $a, b \in A$ such that $a \wedge b=\perp$.

Moreover, m is positive if:
(3) $m(a)>0$, for every $a \neq \perp$.

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;
(2) $m(a \vee b)=m(a)+m(b)$, for every $a, b \in A$ such that $a \wedge b=\perp$.

Moreover, m is positive if:
(3) $m(a)>0$, for every $a \neq \perp$.

- Every Boolean algebra carries a finitely-additive probability measure.

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;
(2) $m(a \vee b)=m(a)+m(b)$, for every $a, b \in A$ such that $a \wedge b=\perp$.

Moreover, m is positive if:
(3) $m(a)>0$, for every $a \neq \perp$.

- Every Boolean algebra carries a finitely-additive probability measure. Not a positive one!!

Finitely additive probability measures

Definition

Let \mathbf{A} be a Boolean algebra. A map $m: A \rightarrow[0,1]$ is a finitely-additive probability measure if:
(1) $m(T)=1$;
(2) $m(a \vee b)=m(a)+m(b)$, for every $a, b \in A$ such that $a \wedge b=\perp$.

Moreover, m is positive if:
(3) $m(a)>0$, for every $a \neq \perp$.

- Every Boolean algebra carries a finitely-additive probability measure. Not a positive one!!
- If \mathbf{A} is atomic then it carries at least a positive measure (Horn-Tarski).

Metric Boolean algebras

Let \mathbf{A} be a Boolean algebra with a positive finitely-additive probability measure m. For every $a, b \in A$ let:

$$
d_{m}(a, b):=m(a \triangle b)=m((a \wedge \neg b) \vee(\neg a \wedge b)),
$$

Metric Boolean algebras

Let \mathbf{A} be a Boolean algebra with a positive finitely-additive probability measure m. For every $a, b \in A$ let:

$$
d_{m}(a, b):=m(a \Delta b)=m((a \wedge \neg b) \vee(\neg a \wedge b)),
$$

Metric Boolean algebras

(\mathbf{A}, d_{m}) is a metric space, called metric Boolean algebra (Kolmogorov), or, sometimes, normed Boolean algebra.

Metric Boolean algebras

Let \mathbf{A} be a Boolean algebra with a positive finitely-additive probability measure m. For every $a, b \in A$ let:

$$
d_{m}(a, b):=m(a \Delta b)=m((a \wedge \neg b) \vee(\neg a \wedge b))
$$

Metric Boolean algebras

$\left(\mathbf{A}, d_{m}\right)$ is a metric space, called metric Boolean algebra (Kolmogorov), or, sometimes, normed Boolean algebra.

- to show triangle inequality: $m(a \vee b) \leq m(a)+m(b)$
(+ monotonicity of m);

Metric Boolean algebras

Let \mathbf{A} be a Boolean algebra with a positive finitely-additive probability measure m. For every $a, b \in A$ let:

$$
d_{m}(a, b):=m(a \triangle b)=m((a \wedge \neg b) \vee(\neg a \wedge b)),
$$

Metric Boolean algebras

(\mathbf{A}, d_{m}) is a metric space, called metric Boolean algebra (Kolmogorov), or, sometimes, normed Boolean algebra.

- to show triangle inequality: $m(a \vee b) \leq m(a)+m(b)$
(+ monotonicity of m);
- for $d_{m}(a, b)=0 \Rightarrow a=b$: use that m is positive.

Metric Boolean algebras

Let \mathbf{A} be a Boolean algebra with a positive finitely-additive probability measure m. For every $a, b \in A$ let:

$$
d_{m}(a, b):=m(a \Delta b)=m((a \wedge \neg b) \vee(\neg a \wedge b)),
$$

Metric Boolean algebras

(\mathbf{A}, d_{m}) is a metric space, called metric Boolean algebra (Kolmogorov), or, sometimes, normed Boolean algebra.

- to show triangle inequality: $m(a \vee b) \leq m(a)+m(b)$
(+ monotonicity of m);
- for $d_{m}(a, b)=0 \Rightarrow a=b$: use that m is positive.
- If m is not positive, then $\left(\mathbf{A}, d_{m}\right)$ is a pseudo-metric space.

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric?

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding.

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding. $d_{m}(\perp, \top)=1$.

$$
\iota(\perp)^{\bullet}
$$

$$
{ }^{\bullet} \iota(T)
$$

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding.
$d_{m}(\perp, \top)=1$.
$d_{m}(a, \perp)=m(a)$, for any $a \in A$.

$$
\iota(\perp)^{\bullet}
$$

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding.
$d_{m}(\perp, \top)=1$.
$d_{m}(a, \perp)=m(a)$, for any $a \in A$.
$d_{m}(a, \top)=m(\neg a)=1-m(a)$

$$
\iota(\perp)^{\bullet}
$$

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding.
$d_{m}(\perp, \top)=1$.
$d_{m}(a, \perp)=m(a)$, for any $a \in A$.
$d_{m}(a, \top)=m(\neg a)=1-m(a)$
By triangle inequality, $\iota(\perp), \iota(T), \iota(a)$ stand on the same line!

(Non) embeddability in \mathbb{R}^{N}

Question

Can $\left(\mathbf{A}, d_{m}\right)$ be isometrically embedded into \mathbb{R}^{N} (for some N) with the Euclidean metric? NO! (for $|A|>2$, for any $N \in \mathbb{N}$).

Suppose, by contradiction, that $\iota: \mathbf{A} \rightarrow \mathbb{R}^{N}$ is an isometric embedding.
$d_{m}(\perp, \top)=1$.
$d_{m}(a, \perp)=m(a)$, for any $a \in A$.
$d_{m}(a, \top)=m(\neg a)=1-m(a)$
By triangle inequality, $\iota(\perp), \iota(\top), \iota(a)$ stand on the same line!

$d_{m}(a, \neg a)=1$, thus $\iota(a)=\iota(\perp)$ and $\iota(\neg a)=\iota(\top)$. Contradiction!

Embeddings in \mathbb{R}^{N}

From now on \mathbf{A} is a finite algebra, with atoms $\operatorname{At}(\mathbf{A})$.

Embeddings in \mathbb{R}^{N}

From now on \mathbf{A} is a finite algebra, with atoms $\operatorname{At}(\mathbf{A})$.

Question 2

Is there any m such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically into \mathbb{R}^{N} (for some N) with the Euclidean metric?

Embeddings in \mathbb{R}^{N}

From now on \mathbf{A} is a finite algebra, with atoms $\operatorname{At}(\mathbf{A})$.

Question 2

Is there any m such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically into \mathbb{R}^{N} (for some N) with the Euclidean metric?

- We focus on atoms due to their relevance for probability.

Embeddings in \mathbb{R}^{N}

From now on \mathbf{A} is a finite algebra, with atoms $\operatorname{At}(\mathbf{A})$.

Question 2

Is there any m such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically into \mathbb{R}^{N} (for some N) with the Euclidean metric?

- We focus on atoms due to their relevance for probability.

Embeddings of generic metric spaces into \mathbb{R}^{N} are ruled by the following

Theorem (Morgan [6])

A metric space (X, d) embeds isometrically in \mathbb{R}^{N} if and only if it is flat and has dimension equal to N.

About Morgan's theorem

Morgan's theorem introduces two notions: flatness and dimension.

About Morgan's theorem

Morgan's theorem introduces two notions: flatness and dimension.

Flat space

A metric space (X, d) is flat if the determinant of the $n \times n$ matrix $M\left(x_{0}, \ldots, x_{n}\right)$, whose generic $i j$-entry is

$$
\left\langle x_{i}, x_{j}, x_{0}\right\rangle=\frac{1}{2}\left(d\left(x_{0}, x_{i}\right)^{2}+d\left(x_{0}, x_{j}\right)^{2}-d\left(x_{i}, x_{j}\right)^{2}\right)
$$

is non-negative for every n-simplex $\left(x_{0}, \ldots, x_{n}\right)$ in X.

About Morgan's theorem

Morgan's theorem introduces two notions: flatness and dimension.

Flat space

A metric space (X, d) is flat if the determinant of the $n \times n$ matrix $M\left(x_{0}, \ldots, x_{n}\right)$, whose generic $i j$-entry is

$$
\left\langle x_{i}, x_{j}, x_{0}\right\rangle=\frac{1}{2}\left(d\left(x_{0}, x_{i}\right)^{2}+d\left(x_{0}, x_{j}\right)^{2}-d\left(x_{i}, x_{j}\right)^{2}\right)
$$

is non-negative for every n-simplex $\left(x_{0}, \ldots, x_{n}\right)$ in X.

Dimension

The dimension of a space (X, d) is the greatest N (if exists) such that there exists a N-simplex with positive determinant.

Simplifying Morgan's determinant

Let $\operatorname{At}(\mathbf{A})=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$; set $x_{i}=m\left(a_{i}\right)($ for $i \in\{0,1, \ldots, k\})$.

Simplifying Morgan's determinant

$$
\text { Let } \operatorname{At}(\mathbf{A})=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\} \text {; set } x_{i}=m\left(a_{i}\right)(\text { for } i \in\{0,1, \ldots, k\})
$$

Lemma

Let A be a finite metric atomic Boolean algebra with $k+1$ atoms and $M\left(x_{0}, \ldots, x_{n}\right), 2 \leq n \leq k$, the matrix in Morgan's theorem. Then $\operatorname{det}\left(M\left(x_{0}, \ldots, x_{n}\right)\right)=$
$2^{n-1}\left[\left(\sum_{\alpha=0}^{n} x_{0} \cdots \hat{x}_{\alpha} \cdots x_{n}\right)^{2}-(n-1)\left(\sum_{\alpha=0}^{n} x_{0}^{2} \cdots \hat{x}_{\alpha}^{2} \cdots x_{n}^{2}\right)\right]$,
where \hat{x}_{α} means that x_{α} has to be omitted.

Simplifying Morgan's determinant

$$
\text { Let } \operatorname{At}(\mathbf{A})=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\} \text {; set } x_{i}=m\left(a_{i}\right)(\text { for } i \in\{0,1, \ldots, k\}) \text {. }
$$

Lemma

Let A be a finite metric atomic Boolean algebra with $k+1$ atoms and $M\left(x_{0}, \ldots, x_{n}\right), 2 \leq n \leq k$, the matrix in Morgan's theorem. Then $\operatorname{det}\left(M\left(x_{0}, \ldots, x_{n}\right)\right)=$
$2^{n-1}\left[\left(\sum_{\alpha=0}^{n} x_{0} \cdots \hat{x}_{\alpha} \cdots x_{n}\right)^{2}-(n-1)\left(\sum_{\alpha=0}^{n} x_{0}^{2} \cdots \hat{x}_{\alpha}^{2} \cdots x_{n}^{2}\right)\right]$,
where \hat{x}_{α} means that x_{α} has to be omitted.

Crucial: $a, b \in \operatorname{At}(\mathbf{A}), d_{m}(a, b)=m(a)+m(b)($ since $a \leq \neg b$ and $b \leq \neg a)$.

Simplifying Morgan's determinant

$$
\text { Let } \operatorname{At}(\mathbf{A})=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\} \text {; set } x_{i}=m\left(a_{i}\right)(\text { for } i \in\{0,1, \ldots, k\}) \text {. }
$$

Lemma

Let A be a finite metric atomic Boolean algebra with $k+1$ atoms and $M\left(x_{0}, \ldots, x_{n}\right), 2 \leq n \leq k$, the matrix in Morgan's theorem. Then $\operatorname{det}\left(M\left(x_{0}, \ldots, x_{n}\right)\right)=$
$2^{n-1}\left[\left(\sum_{\alpha=0}^{n} x_{0} \cdots \hat{x}_{\alpha} \cdots x_{n}\right)^{2}-(n-1)\left(\sum_{\alpha=0}^{n} x_{0}^{2} \cdots \hat{x}_{\alpha}^{2} \cdots x_{n}^{2}\right)\right]$, where \hat{x}_{α} means that x_{α} has to be omitted.

Crucial: $a, b \in \operatorname{At}(\mathbf{A}), d_{m}(a, b)=m(a)+m(b)($ since $a \leq \neg b$ and $b \leq \neg a)$. Moreover:

- $x_{i} \in \mathbb{R}_{+}$(not necessarily in $(0,1)$).

A positive answer to Question 2

By previous lemma we are able to find m on \mathbf{A} such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}$.

A positive answer to Question 2

By previous lemma we are able to find m on \mathbf{A} such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}$.

Corollary

Let A be a finite metric Boolean algebra with $k+1$ atoms, m a finitely-additive probability measure such that $m\left(a_{i}\right)=\frac{1}{k+1}$, for every $a_{i} \in \operatorname{At}(\mathbf{A})$. Then $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically in \mathbb{R}^{k} (with the Euclidean metric).

A positive answer to Question 2

By previous lemma we are able to find m on \mathbf{A} such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}$.

Corollary

Let \mathbf{A} be a finite metric Boolean algebra with $k+1$ atoms, m a finitely-additive probability measure such that $m\left(a_{i}\right)=\frac{1}{k+1}$, for every $a_{i} \in \operatorname{At}(\mathbf{A})$. Then $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically in \mathbb{R}^{k} (with the Euclidean metric).

Corollary 2

$\operatorname{det}\left(M\left(x_{0}, x_{1}, x_{2}\right)\right)>0$.

A positive answer to Question 2

By previous lemma we are able to find m on \mathbf{A} such that $\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}$.

Corollary

Let A be a finite metric Boolean algebra with $k+1$ atoms, m a finitely-additive probability measure such that $m\left(a_{i}\right)=\frac{1}{k+1}$, for every $a_{i} \in \operatorname{At}(\mathbf{A})$. Then $\left(\operatorname{At}(\mathbf{A}), d_{m}\right)$ embeds isometrically in \mathbb{R}^{k} (with the Euclidean metric).

Corollary 2

$\operatorname{det}\left(M\left(x_{0}, x_{1}, x_{2}\right)\right)>0$.

- Not for all $m,\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}$!!

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

The binomial distribution assigns a probability to the number of successes in the sequence. Thus:

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

The binomial distribution assigns a probability to the number of successes in the sequence. Thus:

- $\Omega=\{1, \ldots, n\} . \mathcal{P}(\Omega)$ is the Boolean algebra of events.

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

The binomial distribution assigns a probability to the number of successes in the sequence. Thus:

- $\Omega=\{1, \ldots, n\} . \mathcal{P}(\Omega)$ is the Boolean algebra of events.
- Atoms are all the sequences (regardless of the order) of successes and failures.

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

The binomial distribution assigns a probability to the number of successes in the sequence. Thus:

- $\Omega=\{1, \ldots, n\} . \mathcal{P}(\Omega)$ is the Boolean algebra of events.
- Atoms are all the sequences (regardless of the order) of successes and failures.
- The probability of an atom a_{α} is:

$$
x_{\alpha}=\binom{n}{\alpha} p^{\alpha}(q)^{n-\alpha}
$$

An example: the binomial distribution

- a sequence of n independent experiments (Bernoulli process), asking a "yes-no" question, each with a two-valued outcome.
- success has probability p, failure $q=1-p$.

The binomial distribution assigns a probability to the number of successes in the sequence. Thus:

- $\Omega=\{1, \ldots, n\} . \mathcal{P}(\Omega)$ is the Boolean algebra of events.
- Atoms are all the sequences (regardless of the order) of successes and failures.
- The probability of an atom a_{α} is:

$$
x_{\alpha}=\binom{n}{\alpha} p^{\alpha}(q)^{n-\alpha} .
$$

Setting $p=q=1 / 2$ and using the previous Lemma, one gets $M\left(x_{0}, \ldots, x_{3}\right), M\left(x_{0}, \ldots, x_{4}\right)>0, M\left(x_{0}, \ldots, x_{5}\right)<0$.

Splitting the space of probability measures

The space $\mathcal{M}(\mathbf{A})$ of positive probability measures over a finite Boolean algebra $\mathbf{A}(|A|=r)$ is a convex (open) subset of $(0,1)^{r}$.

Splitting the space of probability measures

The space $\mathcal{M}(\mathbf{A})$ of positive probability measures over a finite Boolean algebra $\mathbf{A}(|A|=r)$ is a convex (open) subset of $(0,1)^{r}$.

Idea

Split $\mathcal{M}(\mathbf{A})$ into

$$
\mathcal{M}_{\text {flat }}(\mathbf{A})=\left\{m: A \rightarrow[0,1] \mid\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}, \text { for some } N \in \mathbb{N}\right\}
$$

and its complement.

Splitting the space of probability measures

The space $\mathcal{M}(\mathbf{A})$ of positive probability measures over a finite Boolean algebra $\mathbf{A}(|A|=r)$ is a convex (open) subset of $(0,1)^{r}$.

Idea

Split $\mathcal{M}(\mathbf{A})$ into

$$
\mathcal{M}_{\text {flat }}(\mathbf{A})=\left\{m: A \rightarrow[0,1] \mid\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}, \text { for some } N \in \mathbb{N}\right\}
$$

and its complement.

Splitting the space of probability measures

The space $\mathcal{M}(\mathbf{A})$ of positive probability measures over a finite Boolean algebra $\mathbf{A}(|A|=r)$ is a convex (open) subset of $(0,1)^{r}$.

Idea

Split $\mathcal{M}(\mathbf{A})$ into

$$
\mathcal{M}_{\text {flat }}(\mathbf{A})=\left\{m: A \rightarrow[0,1] \mid\left(\operatorname{At}(\mathbf{A}), d_{m}\right) \hookrightarrow \mathbb{R}^{N}, \text { for some } N \in \mathbb{N}\right\}
$$

and its complement.

The main problem

Due to Morgan's theorem:

$$
\mathcal{M}_{\text {flat }}(\mathbf{A})=\bigcap_{n=3}^{k} C_{n} \cap \Pi_{k},
$$

$C_{n}=\left\{\vec{x} \in \mathbb{R}_{+}^{k+1} \mid \operatorname{det}\left(M\left(x_{0}, \ldots, x_{n}\right)\right) \geqslant 0\right\}$, with $3 \leq n \leq k$ and Π_{k} the simplex of probability measures.

The main problem

Due to Morgan's theorem:

$$
\mathcal{M}_{\text {flat }}(\mathbf{A})=\bigcap_{n=3}^{k} C_{n} \cap \Pi_{k}
$$

$C_{n}=\left\{\vec{x} \in \mathbb{R}_{+}^{k+1} \mid \operatorname{det}\left(M\left(x_{0}, \ldots, x_{n}\right)\right) \geqslant 0\right\}$, with $3 \leq n \leq k$ and Π_{k} the simplex of probability measures.

Problem

Study the topology of $\mathcal{M}_{\text {flat }}(\mathbf{A})$ and of its complement (with the topology induced by $(0,1)^{k+1} \subset \mathbb{R}_{+}^{k+1}$).

The main result

Start from the topology of C_{n}.

The main result

Start from the topology of C_{n}.

Lemma

For each $3 \leq n \leq k, C_{n} \cong H_{n} \times \mathbb{R}_{+}^{k-n}$ where H_{n} is a solid half-hypercone in \mathbb{R}_{+}^{n+1}.

The main result

Start from the topology of C_{n}.

Lemma

For each $3 \leq n \leq k, C_{n} \cong H_{n} \times \mathbb{R}_{+}^{k-n}$ where H_{n} is a solid half-hypercone in \mathbb{R}_{+}^{n+1}.

- We are still working in \mathbb{R}_{+}^{k+1} (not in $(0,1)^{k+1}$).

The main result

Start from the topology of C_{n}.

Lemma

For each $3 \leq n \leq k, C_{n} \cong H_{n} \times \mathbb{R}_{+}^{k-n}$ where H_{n} is a solid half-hypercone in \mathbb{R}_{+}^{n+1}.

- We are still working in \mathbb{R}_{+}^{k+1} (not in $(0,1)^{k+1}$).

Theorem

Let $k \geqslant 3$. Then:
(1) $\mathcal{M}_{\text {flat }}(\operatorname{At}(\mathbf{A}))$ is contractible.
(2) $\mathcal{M}(\operatorname{At}(\mathbf{A})) \backslash \mathcal{M}_{\text {flat }}(\operatorname{At}(\mathbf{A}))$ is simply-connected (not contractible).

Conclusion and future work

Conclusion and future work

(1) Extend the study to the infinite (atomic) case.

Conclusion and future work

(1) Extend the study to the infinite (atomic) case.
(2) Applications in probability theory.

Conclusion and future work

(1) Extend the study to the infinite (atomic) case.
(2) Applications in probability theory.
(3) Embeddings of metric MV-algebras (MV algebra + faithful state).

References

(D. Harville.
Matrix Algebra From a Statistician's Perspective.
Springer New York, 2008.
圊 A. Horn and A. Tarski.
Measures in Boolean algebras.
Transactions of the American Mathematical Society, 64:467-497, 1948.
圊 J. L. Kelley.
Measures on Boolean algebras.
Pacific Journal of Mathematics, 9(4):1165-1177, 1959.
R A. N. Kolmogorov.
Complete metric Boolean Algebras.
Philosophical Studies, 77(1), 1995.
(1. Leustean.

Metric Completions of MV-algebras with States: An Approach to Stochastic Independence.
Journal of Logic and Computation, 21(3):493-508, 2009.
(C. L. Morgan.
Embedding metric spaces in Euclidean space.
Journal of Geometry, 5(1):101-107, 1974.
D D. Vladimirov.
Boolean Algebras in Analysis.
Springer Dordrecht, 2002.

Thanks!

Euclidean walks (1955), René Magritte

Proof of the main theorem

1) $\mathcal{M}_{\text {flat }}(\mathbf{A})=\bigcap_{n=3}^{k} C_{n} \cap \Pi_{k}$

Proof of the main theorem

1) $\mathcal{M}_{\text {flat }}(\mathbf{A})=\bigcap_{n=3}^{k} C_{n} \cap \Pi_{k}=s\left(\bigcap_{n=3}^{k} C_{n}\right)$, via the (open) retraction

$$
\begin{aligned}
& s: \mathbb{R}_{+}^{k+1} \rightarrow \Pi_{k} \subset(0,1)^{k+1} \\
& \vec{x}=\left(x_{0}, \ldots, x_{k}\right) \mapsto \frac{\vec{x}}{\sum_{\alpha=0}^{k} x_{\alpha}}
\end{aligned}
$$

Proof of the main theorem

$$
\text { 1) } \begin{gathered}
\mathcal{M}_{f l a t}(\mathbf{A})=\bigcap_{n=3}^{k} C_{n} \cap \Pi_{k}=s\left(\bigcap_{n=3}^{k} C_{n}\right) \text {, via the (open) retraction } \\
s: \mathbb{R}_{+}^{k+1} \rightarrow \Pi_{k} \subset(0,1)^{k+1}, \\
\vec{x}=\left(x_{0}, \ldots, x_{k}\right) \mapsto \frac{\vec{x}}{\sum_{\alpha=0}^{k} x_{\alpha}}
\end{gathered}
$$

$\bigcap_{n=3}^{k} C_{n}$ is contractible (homeomorphic to a convex), so is $s\left(\bigcap_{n=3}^{k} C_{n}\right)$.

Proof of the main theorem (2)

2) Work in \mathbb{R}_{+}^{k+1} (then retract on Π_{k}).

Proof of the main theorem (2)

2) Work in \mathbb{R}_{+}^{k+1} (then retract on Π_{k}). Set $H=\bigcap_{n=3}^{k} H_{n}$ (the hypercones!)

Proof of the main theorem (2)

2) Work in \mathbb{R}_{+}^{k+1} (then retract on Π_{k}). Set $H=\bigcap_{n=3}^{k} H_{n}$ (the hypercones!) and $X=H \cap \overline{S_{+}^{k}}$.

Proof of the main theorem (2)

2) Work in \mathbb{R}_{+}^{k+1} (then retract on Π_{k}). Set $H=\bigcap_{n=3}^{k} H_{n}$ (the hypercones!) and $X=H \cap \overline{S_{+}^{k}} . \quad H \cong X \times(0,+\infty)$.

Idea of the proof (continued)

X is compact, has non-empty interior $(p \in \operatorname{Int}(X))$ and is geodesically convex.

Idea of the proof (continued)

X is compact, has non-empty interior $(p \in \operatorname{Int}(X))$ and is geodesically convex.

- Prove that every geodesic (from p) intersects ∂X exactly in one point.

Idea of the proof (continued)

Use stereographic projection π from $S^{k} \backslash\{-p\}$ to the tangent space $T_{p} S^{k}$.

Idea of the proof (continued)

Use stereographic projection π from $S^{k} \backslash\{-p\}$ to the tangent space $T_{p} S^{k}$.

$K_{1}=\pi(X), K_{2}=\pi\left(\overline{S_{+}^{k}}\right)$.

Idea of the proof (continued)

Use stereographic projection π from $S^{k} \backslash\{-p\}$ to the tangent space $T_{p} S^{k}$.

$K_{1}=\pi(X), K_{2}=\pi\left(\overline{S_{+}^{k}}\right) . \operatorname{Int}\left(K_{2}\right) \backslash K_{1} \cong S_{+}^{k} \backslash X \cong S^{k-1} \times(0,1)$.

Idea of the proof (continued)

Use stereographic projection π from $S^{k} \backslash\{-p\}$ to the tangent space $T_{p} S^{k}$.

$$
\begin{gathered}
K_{1}=\pi(X), K_{2}=\pi\left(\overline{S_{+}^{k}}\right) . \operatorname{Int}\left(K_{2}\right) \backslash K_{1} \cong S_{+}^{k} \backslash X \cong S^{k-1} \times(0,1) . \\
\quad \text { • } \mathbb{R}_{+}^{k+1} \backslash H \cong S_{+}^{k} \backslash X \times(0,+\infty) \cong S^{k-1} \times(0,1) \times(0,+\infty)
\end{gathered}
$$

homotopically equivalent to S^{k-1} : simply connected ($k \geqslant 3$), not contractible.

