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Introduction

• Many normal (classical) modal logics: finite model property + finite

axiomatizability ) decidability

• many-valued cases: ? no (immediate) FMP or (known) R.E

axiomatization...
• Validity in the expansion of Gödel logic with modal operators does

not enjoy FMP with the usual Kripke semantics, but it is decidable

[Caicedo et.al., 2017]

• Validity and > 0-sat in FDL (multi-modal variation) over Product

logic are decidable [Cerami et. al, 2021]

• Global entailment in modal [0,1]-valued  Lukasiewicz and Product

logics is not even R.E [V. 2022]

• No known (explicit) R.E. axiomatization of local entailment in modal

[0,1]-valued  Lukasiewicz, but it is decidable.

• local entailment in modal [0,1]-valued Product?

Theorem

Local modal [0,1]-valued Product logic is decidable
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Modal product logics

Language: &,!, 0 plus two unary (modal) symbols (2,3)

Definition

A (standard crisp) product Kripke model M is a tripla hW ,R , ei where:

• R ✓ W ⇥W (Rus stands for hu, si 2 R)

• e : W ⇥ Var ! [0, 1] uniquelly extended by:

e(u,'& ) :=e(u,') · e(u, )

e(u,'!  ) :=

(
1 if e(u,')  e(u, psi)

e(u, )/e(u,') otherwise

e(u,2') :=inf {e(s,') : Rus}
e(u,3') :=sup{e(s,') : Rus}

Local deduction: � �K⇧ ' i↵

8u 2 W [e(u, [�]) ✓ {1} implies e(u,') = 1] for all product Kripke

models M.
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Relation to FO

The previous logic can be translated into a fragment of the corresponding

FO logic.

hx , vi] :=Px(v) h' ?  , vi] :=h', vi] ? h , vi]

h2', vi] :=8w R(v ,w) ! h',wi] h3', vi] :=9w R(v ,w)� h',wi]

Observation

� �K⇧ '() 8v ,w R(v ,w) _ ¬R(v ,w), 8v h�, vi] |=8⇧ 8v h', vi]

where 8⇧ is the F.O. logic over [0, 1]⇧.

Definition

A Quasi-witnessed (FO) model M over an algebra A is s.t:

|9x'(x)|M =|'(x)|M,x 7!p for some p 2 W

|8x'(x)|M =

(
0 or

|'(x)|M,x 7!p for some p 2 W
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About 8⇧ and K⇧

• (Laskowski-Malekpour, ’07) proved 8⇧ is complete w.r.t

quasi-witnessed models over B(RQ), for RQ being the

Lexicographic sum group: the ordered abelian group of functions

f : Q! R whose support is well ordered (i.e., {q 2 Q : f (q) 6= 0} is

a well ordered subset of Q). + is defined component-wise and the

ordering is lexicographic.

• The analogous is inherited in K⇧, getting completeness w.r.t.

quasi-witnessed trees over B(RQ).

For an element a 2 B(RQ) we let:

• For q 2 Q, a [q is ? if a =? and, otherwise

a [q(p) =

(
a(p) if p  q

0 otherwise

• m(a) = min{q 2 Q : a[q] < 0}, for a >?.

5
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Some notation

Let ⌥ be a finite set of (modal) formulas with maximum modal depth

n � 1. For 0  i  n let:

⌥0 := PropSFm(⌥) ⌥i+1 :=
[

~ 2⌥i

PropSFm( )

Consider sequences � = h0,'0, . . . ,'ki for 'i 2 ⌥i beginning with a

modality for encoding the ”witness” worlds in a model.

For modeling the information about the unwitnessed formulas, consider

also the sequences of the form h'1, . . . ,'0
ki (the primed elements will be

2 formulas).

⌃ are all these sequences (and ⌃i the corresponding i-long sequences).

� ⌘ the sequence where we remove from � the prime from all the primed

formulas,

�� ⌘ the sequence where the prime is removed from the first appearing

primed formula.
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Unwitnessed formulas in B(RQ)-models?

Lemma

Let M be a (quasi-witnessed) B(RQ)-Kripke model and ⌥ ✓! Fm. For

any v 2 W and 2' 2 Fm such that 2' 2 UWM(v ,Fm), then there is

some world v
⌥

2' 2 W with Rvv
⌥

2' for which

m(e(v⌥

2',')) < m(e(v⌥

2',�)) for any 2� 2 ⌥ s.t. e(v ,2�) > ?.

We can build M+ extending M, with (certain) worlds labeled by

elements in ⌃ s.t:

1. if a formula ~ was witnessed in �, then

e
+(�,~ ) = e

+(�a~ , ),
2. if a formula 2 was unwitnessed in �, then all necessary �a2 a�1

AND �a2 0a�1 belong to M+, and...

7
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Unwitnessed formulas in B(RQ)-models?

3. Proposition

For each � 2 W with � 6= � and for each � 2 ⌥|�|�1 there is an

element ↵�,� 2 B(RQ) such that:

1. e
+(�,�) = e

+(��,�) + ↵�,�;

2. ↵�,� = ? if and only if e+(�,�) = ?;

3. For  2 ⌥|�|�1 , if e+(�,�)  e
+(�, ), then ↵�,�  ↵�, ;

4. If � = �a
1
2'0 then

4.1 ? < ↵�,' < > and,

4.2 for any 2� 2 ⌥|�1|�1 with e+(�1,2�) > ?, ↵�,� = >.

8



A picture is worth a thousand words
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Syntactic translation of formulas

We will use the sequences ⌃ to generate a propositional language with

variables V�, ~'� and, for � 2 ⌃i with some primed element, and

� 2 ⌥i , new variables ↵�,�.

For each � 2 ⌃i fix some set uWit� ✓ ⌥2
i .

Definition

• 2V ('�) := '� $ '�� � ↵�,',

• Imp('�, �) := �('!  )� ! (↵',� ! ↵ ,�),

• Neg('�) := ¬↵',� ! ¬'�,
• WV (⌥) :=

V
{¬¬(2')� ! ↵',�2� : ↵',�2� 2 V,2' 2 ⌥i},

• uWV (⌥) :=
W
{↵�,�2� : ↵�,�2� 2 V,2� 2 uWit�},

• W3((3 )�) := ((3 )� $ ( )�3 ) ^ (
W
��2⌃( )�� ! (3 )�),

• W2((2 )�) := ((2 )� $ ( )�2 ) ^ ((2 )� !
V
��2⌃( )��),

• uW ((2 )�) := ¬(2 )�

10
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Moving to propositional logic

Selecting only the sequences in ⌃ arising from the chosen uWit� sets,

and the previous definitions over the formulas of the corresponding level

(for |�| = i , formulas in ⌥i ), we let

M(⌥) := 2V (⌥)[Imp(⌥)[Neg(⌥)[WV (⌥)[W3(⌥)[W2(⌥)[uW (⌥).

Theorem

Let ⌥ = � [ {'} be such that � 6�K⇧ '. Then, for each sequence

� 2 ⌃i there exists a set uWit� ✓ ⌥2
i such that

�h0i,M(⌥) 6`⇧�
'h0i _ uWV (⌥)

11
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Information in the propositional entailment

Proposition

Let � be a closed set of propositional formulas, and

h1, h2 2 Hom(Fm, [0, 1]⇧) such that

1. For each formula ' 2 �, there is some ↵' such that

h2(') = h1(') · ↵',
2. For each pair of formulas ', 2 � such that h1(')  h1(( ) it holds

that ↵'  ↵ ,

3. ↵' = 0 implies that h1(') = 0.

Consider the family of homomorphisms hk for k 2 N where

hk(x) = h(x) · ↵k
x for each variable x in �.
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Back to an standard Kripke model

Lemma

Let ⌥ = � [ {'} ⇢ Fm, and assume that for each sequence � 2 ⌃i

there exists a set uWit� ✓ ⌥2
k+1

such that

�h0i,M(⌥) 6`⇧�
'h0i _ uWV (⌥)

Then, � 6�l
K⇧

'.

`⇧�
is decidable:

Theorem

�l
K⇧

is decidable.
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Grazie mille!
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