

Local Modal Product Logic is decidable

Amanda Vidal Artificial Inteligence Research Institute IIIA - CSIC LATD 2022, Paestum, 6 September

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101027914.

• Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]

- Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
 - Validity and > 0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
 - Validity and > 0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
 - Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
 - Validity and > 0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
 - Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
 - No known (explicit) R.E. axiomatization of local entailment in modal [0,1]-valued Łukasiewicz, but it is decidable.

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
 - Validity and > 0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
 - Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
 - No known (explicit) R.E. axiomatization of local entailment in modal [0,1]-valued Łukasiewicz, but it is decidable.
 - local entailment in modal [0,1]-valued Product?

- Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
 - Validity and > 0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
 - Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
 - No known (explicit) R.E. axiomatization of local entailment in modal [0,1]-valued Łukasiewicz, but it is decidable.
 - local entailment in modal [0,1]-valued Product?

Theorem

Local modal [0,1]-valued Product logic is decidable

Modal product logics

Language: &, \rightarrow , 0 plus two unary (modal) symbols (\Box , \diamondsuit)

Modal product logics

Language: &, \rightarrow , 0 plus two unary (modal) symbols (\Box , \diamondsuit)

Definition

A (standard crisp) product Kripke model \mathfrak{M} is a tripla $\langle W, R, e \rangle$ where:

- $R \subseteq W imes W$ (*Rus* stands for $\langle u, s \rangle \in R$)
- $e: W \times Var \rightarrow [0,1]$ uniquelly extended by:

$$e(u, \varphi \& \psi) := e(u, \varphi) \cdot e(u, \psi)$$

$$e(u, \varphi \to \psi) := \begin{cases} 1 & \text{if } e(u, \varphi) \le e(u, psi) \\ e(u, \psi)/e(u, \varphi) & \text{otherwise} \end{cases}$$

$$e(u, \Box \varphi) := inf \{e(s, \varphi) : Rus\}$$

$$e(u, \Diamond \varphi) := sup \{e(s, \varphi) : Rus\}$$

Local deduction: $\Gamma \Vdash_{\kappa \Pi} \varphi$ iff $\forall u \in W \ [e(u, [\Gamma]) \subseteq \{1\} \text{ implies } e(u, \varphi) = 1] \text{ for all product Kripke models } \mathfrak{M}.$

The previous logic can be translated into a fragment of the corresponding FO logic.

$$\begin{array}{l} \langle x, v \rangle^{\sharp} \coloneqq P_{x}(v) & \langle \varphi \star \psi, v \rangle^{\sharp} \coloneqq \langle \varphi, v \rangle^{\sharp} \star \langle \psi, v \rangle^{\sharp} \\ \langle \Box \varphi, v \rangle^{\sharp} \coloneqq \forall w \; R(v, w) \to \langle \varphi, w \rangle^{\sharp} & \langle \Diamond \varphi, v \rangle^{\sharp} \coloneqq \exists w \; R(v, w) \odot \langle \varphi, w \rangle^{\sharp} \end{array}$$

The previous logic can be translated into a fragment of the corresponding FO logic.

$$\begin{array}{l} \langle x, v \rangle^{\sharp} \coloneqq P_{x}(v) & \langle \varphi \star \psi, v \rangle^{\sharp} \coloneqq \langle \varphi, v \rangle^{\sharp} \star \langle \psi, v \rangle^{\sharp} \\ \langle \Box \varphi, v \rangle^{\sharp} \coloneqq \forall w \; R(v, w) \to \langle \varphi, w \rangle^{\sharp} & \langle \Diamond \varphi, v \rangle^{\sharp} \coloneqq \exists w \; R(v, w) \odot \langle \varphi, w \rangle^{\sharp} \end{array}$$

Observation

$$\label{eq:rescaled} \begin{split} \Gamma \Vdash_{\mathsf{K}\Pi} \varphi & \Longleftrightarrow \ \forall v, w \ R(v, w) \lor \neg R(v, w), \forall v \ \langle \Gamma, v \rangle^{\sharp} \models_{\forall \Pi} \forall v \ \langle \varphi, v \rangle^{\sharp} \\ \text{where } \forall \Pi \text{ is the F.O. logic over } [0, 1]_{\Pi}. \end{split}$$

The previous logic can be translated into a fragment of the corresponding FO logic.

$$\begin{array}{l} \langle x, v \rangle^{\sharp} \coloneqq P_{x}(v) & \langle \varphi \star \psi, v \rangle^{\sharp} \coloneqq \langle \varphi, v \rangle^{\sharp} \star \langle \psi, v \rangle^{\sharp} \\ \langle \Box \varphi, v \rangle^{\sharp} \coloneqq \forall w \; R(v, w) \to \langle \varphi, w \rangle^{\sharp} & \langle \Diamond \varphi, v \rangle^{\sharp} \coloneqq \exists w \; R(v, w) \odot \langle \varphi, w \rangle^{\sharp} \end{array}$$

Observation

 $\label{eq:rescaled_rescaled$

Definition

A Quasi-witnessed (FO) model \mathfrak{M} over an algebra A is s.t:

$$\begin{split} |\exists x \varphi(x)|_{\mathfrak{M}} = & |\varphi(x)|_{\mathfrak{M}, x \mapsto p} \text{ for some } p \in W \\ |\forall x \varphi(x)|_{\mathfrak{M}} = \begin{cases} 0 & \text{or} \\ |\varphi(x)|_{\mathfrak{M}, x \mapsto p} \text{ for some } p \in W \end{cases} \end{split}$$

The previous logic can be translated into a fragment of the corresponding FO logic.

$$\begin{array}{l} \langle x, v \rangle^{\sharp} \coloneqq P_{x}(v) & \langle \varphi \star \psi, v \rangle^{\sharp} \coloneqq \langle \varphi, v \rangle^{\sharp} \star \langle \psi, v \rangle^{\sharp} \\ \langle \Box \varphi, v \rangle^{\sharp} \coloneqq \forall w \; R(v, w) \to \langle \varphi, w \rangle^{\sharp} & \langle \Diamond \varphi, v \rangle^{\sharp} \coloneqq \exists w \; R(v, w) \odot \langle \varphi, w \rangle^{\sharp} \end{array}$$

Observation

$$\label{eq:rescaled} \begin{split} & \Gamma \Vdash_{\mathsf{K}\Pi} \varphi \Longleftrightarrow \ \forall v, w \ R(v, w) \lor \neg R(v, w), \forall v \ \langle \Gamma, v \rangle^{\sharp} \models_{\forall \Pi} \forall v \ \langle \varphi, v \rangle^{\sharp} \\ & \text{where } \forall \Pi \text{ is the F.O. logic over } [0, 1]_{\Pi}. \end{split}$$

Definition

A Quasi-witnessed (Kripke) model \mathfrak{M} over an algebra **A** is s.t:

$$e(v, \Diamond \varphi) = e(w, \varphi)$$
 for some $w \in W$ with Rvw
 $e(v, \Box \varphi) = \begin{cases} 0 & \text{or} \\ e(w, \varphi) \text{ for some } w \in W \text{ with } Rvw \end{cases}$

About $\forall \Pi$ and $K \Pi$

- (Laskowski-Malekpour, '07) proved ∀П is complete w.r.t quasi-witnessed models over 𝔅(ℝ^ℚ), for ℝ^ℚ being the Lexicographic sum group: the ordered abelian group of functions f: ℚ → ℝ whose support is well ordered (i.e., {q ∈ ℚ: f(q) ≠ 0} is a well ordered subset of ℚ). + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in KΠ, getting completeness w.r.t. quasi-witnessed trees over 𝔅(ℝ^Q).

About $\forall \Pi$ and $K \Pi$

- (Laskowski-Malekpour, '07) proved ∀П is complete w.r.t quasi-witnessed models over 𝔅(ℝ^ℚ), for ℝ^ℚ being the Lexicographic sum group: the ordered abelian group of functions f: ℚ → ℝ whose support is well ordered (i.e., {q ∈ ℚ: f(q) ≠ 0} is a well ordered subset of ℚ). + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in KΠ, getting completeness w.r.t. quasi-witnessed trees over B(R^Q).

T= a[g]=0 ¥g

About $\forall \Pi$ and $K \Pi$

- (Laskowski-Malekpour, '07) proved ∀П is complete w.r.t quasi-witnessed models over 𝔅(ℝ^Q), for ℝ^Q being the Lexicographic sum group: the ordered abelian group of functions f: Q → ℝ whose support is well ordered (i.e., {q ∈ Q: f(q) ≠ 0} is a well ordered subset of Q). + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in KΠ, getting completeness w.r.t. quasi-witnessed trees over 𝔅(ℝ^Q).

For an element $a \in \mathfrak{B}(\mathbb{R}^{\mathbb{Q}})$ we let:

• For $q \in \mathbb{Q}$, $a_{\leftarrow q}$ is \perp if $a = \perp$ and, otherwise

$$a_{\leftarrow q}(p) = egin{cases} a(p) & ext{ if } p \leq q \ 0 & ext{ otherwise} \end{cases}$$

• $m(a) = min\{q \in \mathbb{Q} \colon a[q] < 0\}$, for $a > \perp$.

Let Υ be a finite set of (modal) formulas with maximum modal depth $n \ge 1$. For $0 \le i \le n$ let:

$$\begin{split} &\Upsilon_{0} := \operatorname{PropSFm}(\Upsilon) \qquad \Upsilon_{i+1} := \bigcup_{\substack{\heartsuit \psi \in \Upsilon_{i}}} \operatorname{PropSFm}(\psi) \\ & \underbrace{\textup{Tx}: \ \Upsilon = \left\{ \Pr(x \rightarrow \Diamond y) \right\}}_{\longrightarrow} \qquad \underbrace{\Upsilon_{0} = \Upsilon, \qquad \Upsilon_{1} = \left\{ \times, \Diamond y \right\}, \ \Upsilon_{2} = \left\{ y \right\}}_{\xrightarrow{\frown}} \end{split}$$

Let Υ be a finite set of (modal) formulas with maximum modal depth $n\geq 1.$ For $0\leq i\leq n$ let:

$$\Upsilon_0 \coloneqq PropSFm(\Upsilon) \qquad \Upsilon_{i+1} \coloneqq \bigcup_{\heartsuit \psi \in \Upsilon_i} PropSFm(\psi)$$

Consider sequences $\sigma = \langle 0, \varphi_0, \dots, \varphi_k \rangle$ for $\varphi_i \in \Upsilon_i$ beginning with a modality for encoding the "witness" worlds in a model.

Let Υ be a finite set of (modal) formulas with maximum modal depth $n\geq 1.$ For $0\leq i\leq n$ let:

$$\Upsilon_0 \coloneqq PropSFm(\Upsilon) \qquad \Upsilon_{i+1} \coloneqq \bigcup_{\heartsuit \psi \in \Upsilon_i} PropSFm(\psi)$$

Consider sequences $\sigma = \langle 0, \varphi_0, \dots, \varphi_k \rangle$ for $\varphi_i \in \Upsilon_i$ beginning with a modality for encoding the "witness" worlds in a model.

For modeling the information about the unwitnessed formulas, consider also the sequences of the form $\langle \varphi_1, \ldots, \varphi'_k \rangle$ (the primed elements will be \Box formulas).

 Σ are all these sequences (and Σ_i the corresponding i-long sequences).

Let Υ be a finite set of (modal) formulas with maximum modal depth $n\geq 1.$ For $0\leq i\leq n$ let:

$$\Upsilon_0 \coloneqq \mathsf{PropSFm}(\Upsilon) \qquad \Upsilon_{i+1} \coloneqq \bigcup_{\heartsuit \psi \in \Upsilon_i} \mathsf{PropSFm}(\psi)$$

Consider sequences $\sigma = \langle 0, \varphi_0, \dots, \varphi_k \rangle$ for $\varphi_i \in \Upsilon_i$ beginning with a modality for encoding the "witness" worlds in a model.

For modeling the information about the unwitnessed formulas, consider also the sequences of the form $\langle \varphi_1, \ldots, \varphi'_k \rangle$ (the primed elements will be \Box formulas).

 Σ are all these sequences (and Σ_i the corresponding i-long sequences).

 $\underline{\sigma}\equiv$ the sequence where we remove from σ the prime from all the primed formulas,

 $\sigma_{-}\equiv$ the sequence where the prime is removed from the first appearing primed formula.

Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}(\mathbb{R}^{\mathbb{Q}})$ -Kripke model and $\Upsilon \subseteq_{\omega} Fm$. For any $v \in W$ and $\Box \varphi \in Fm$ such that $\Box \varphi \in UW_{\mathfrak{M}}(v, Fm)$, then there is some world $v_{\Box \varphi}^{\Upsilon} \in W$ with $Rvv_{\Box \varphi}^{\Upsilon}$ for which

 $m(e(v_{\Box\varphi}^{\Upsilon},\varphi)) < m(e(v_{\Box\varphi}^{\Upsilon},\chi)) \qquad \text{for any } \Box\chi\in\Upsilon \text{ s.t. } e(v,\Box\chi) > \bot.$

Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}(\mathbb{R}^{\mathbb{Q}})$ -Kripke model and $\Upsilon \subseteq_{\omega} Fm$. For any $v \in W$ and $\Box \varphi \in Fm$ such that $\Box \varphi \in UW_{\mathfrak{M}}(v, Fm)$, then there is some world $v_{\Box \varphi}^{\Upsilon} \in W$ with $Rvv_{\Box \varphi}^{\Upsilon}$ for which

 $m(e(v_{\Box\varphi}^{\Upsilon},\varphi)) < m(e(v_{\Box\varphi}^{\Upsilon},\chi)) \qquad \text{for any } \Box\chi\in\Upsilon \text{ s.t. } e(v,\Box\chi) > \bot.$

Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}(\mathbb{R}^{\mathbb{Q}})$ -Kripke model and $\Upsilon \subseteq_{\omega} Fm$. For any $v \in W$ and $\Box \varphi \in Fm$ such that $\Box \varphi \in UW_{\mathfrak{M}}(v, Fm)$, then there is some world $v_{\Box \varphi}^{\Upsilon} \in W$ with $Rvv_{\Box \varphi}^{\Upsilon}$ for which

 $m(e(v_{\Box\varphi}^{\Upsilon},\varphi)) < m(e(v_{\Box\varphi}^{\Upsilon},\chi)) \qquad \text{for any } \Box\chi\in\Upsilon \text{ s.t. } e(v,\Box\chi) > \bot.$

We can build \mathfrak{M}^+ extending $\mathfrak{M},$ with (certain) worlds labeled by elements in Σ s.t:

- 1. if a formula $\heartsuit \psi$ was witnessed in $\underline{\sigma}$, then $e^+(\sigma, \heartsuit \psi) = e^+(\sigma^{\frown} \heartsuit \psi, \psi)$,
- 2. if a formula $\Box \psi$ was unwitnessed in $\underline{\sigma}$, then all necessary $\sigma^{\frown} \Box \psi^{\frown} \sigma_1$ AND $\sigma^{\frown} \Box \psi'^{\frown} \sigma_1$ belong to \mathfrak{M}^+ , and...

3. Proposition

For each $\sigma \in W$ with $\underline{\sigma} \neq \sigma$ and for each $\chi \in \Upsilon_{|\sigma|-1}$ there is an element $\alpha_{\sigma,\chi} \in \mathfrak{B}(\mathbb{R}^{\mathbb{Q}})$ such that:

1.
$$e^+(\sigma, \chi) = e^+(\sigma_-, \chi) + \alpha_{\sigma,\chi};$$

2. $\alpha_{\sigma,\chi} = \bot$ if and only if $e^+(\underline{\sigma}, \chi) = \bot;$
3. For $\psi \in \Upsilon_{|\sigma|-1}$, if $e^+(\underline{\sigma}, \chi) \le e^+(\underline{\sigma}, \psi)$, then $\alpha_{\sigma,\chi} \le \alpha_{\sigma,\psi};$
4. If $\sigma = \sigma_1^\frown \Box \varphi'$ then
4.1 $\bot < \alpha_{\sigma,\varphi} < \top$ and,
4.2 for any $\Box \chi \in \Upsilon_{|\sigma_1|-1}$ with $e^+(\sigma_1, \Box \chi) > \bot$, $\alpha_{\sigma,\chi} = \top$.

A picture is worth a thousand words

$$(a) = (c, py) = (bx \rightarrow py)$$

$$(bx \rightarrow py) = (bx \rightarrow py)$$

$$(bx \rightarrow py) = (bx \rightarrow py)$$

$$(c, py) =$$

We will use the sequences Σ to generate a propositional language with variables \mathcal{V}_{σ} , $\heartsuit \varphi_{\sigma}$ and, for $\sigma \in \Sigma_i$ with some primed element, and $\chi \in \Upsilon_i$, new variables $\alpha_{\chi,\sigma}$.

Syntactic translation of formulas

We will use the sequences Σ to generate a propositional language with variables \mathcal{V}_{σ} , $\heartsuit \varphi_{\sigma}$ and, for $\sigma \in \Sigma_i$ with some primed element, and $\chi \in \Upsilon_i$, new variables $\alpha_{\chi,\sigma}$.

For each $\sigma \in \Sigma_i$ fix some set $uWit_{\sigma} \subseteq \Upsilon_i^{\Box}$.

Syntactic translation of formulas

We will use the sequences Σ to generate a propositional language with variables \mathcal{V}_{σ} , $\heartsuit \varphi_{\sigma}$ and, for $\sigma \in \Sigma_i$ with some primed element, and $\chi \in \Upsilon_i$, new variables $\alpha_{\chi,\sigma}$.

For each $\sigma \in \Sigma_i$ fix some set $uWit_{\sigma} \subseteq \Upsilon_i^{\Box}$.

Definition

•
$$2V(\varphi_{\sigma}) \coloneqq \varphi_{\sigma} \leftrightarrow \varphi_{\sigma_{-}} \odot \alpha_{\sigma,\varphi}$$
,

•
$$Imp(\varphi_{\sigma},\psi_{\sigma}) \coloneqq \Delta(\varphi \to \psi)_{\sigma} \to (\alpha_{\varphi,\sigma} \to \alpha_{\psi,\sigma}),$$

•
$$Neg(\varphi_{\sigma}) \coloneqq \neg \alpha_{\varphi,\sigma} \to \neg \varphi_{\sigma}$$

•
$$WV(\Upsilon) \coloneqq \bigwedge \{ \neg \neg (\Box \varphi)_{\sigma} \to \alpha_{\varphi, \sigma \Box \chi} \colon \alpha_{\varphi, \sigma \Box \chi} \in \mathcal{V}, \Box \varphi \in \Upsilon_i \},$$

• $uWV(\Upsilon) \coloneqq \bigvee \{ \alpha_{\chi,\sigma \Box \chi} \colon \alpha_{\chi,\sigma \Box \chi} \in \mathcal{V}, \Box \chi \in uWit_{\sigma} \},$

•
$$W_{\diamond}((\diamond\psi)_{\sigma}) \coloneqq ((\diamond\psi)_{\sigma} \leftrightarrow (\psi)_{\sigma\diamond\psi}) \land (\bigvee_{\sigma\chi\in\Sigma}(\psi)_{\sigma\chi} \rightarrow (\diamond\psi)_{\sigma}),$$

• $W_{\Box}((\Box\psi)_{\sigma}) := ((\Box\psi)_{\sigma} \leftrightarrow (\psi)_{\sigma\Box\psi}) \land ((\Box\psi)_{\sigma} \rightarrow \bigwedge_{\sigma\chi\in\Sigma}(\psi)_{\sigma\chi}),$

•
$$uW((\Box\psi)_{\sigma}) \coloneqq \neg(\Box\psi)_{\sigma}$$

Selecting only the sequences in Σ arising from the chosen $uWit_{\sigma}$ sets, and the previous definitions over the formulas of the corresponding level (for $|\sigma| = i$, formulas in Υ_i), we let

 $M(\Upsilon) := 2V(\Upsilon) \cup Imp(\Upsilon) \cup Neg(\Upsilon) \cup WV(\Upsilon) \cup W_{\Diamond}(\Upsilon) \cup W_{\Box}(\Upsilon) \cup uW(\Upsilon).$

Selecting only the sequences in Σ arising from the chosen $uWit_{\sigma}$ sets, and the previous definitions over the formulas of the corresponding level (for $|\sigma| = i$, formulas in Υ_i), we let

 $M(\Upsilon) \coloneqq 2V(\Upsilon) \cup Imp(\Upsilon) \cup Neg(\Upsilon) \cup WV(\Upsilon) \cup W_{\Diamond}(\Upsilon) \cup W_{\Box}(\Upsilon) \cup uW(\Upsilon).$

Theorem

Let $\Upsilon = \Gamma \cup \{\varphi\}$ be such that $\Gamma \not\Vdash_{K\Pi} \varphi$. Then, for each sequence $\sigma \in \Sigma_i$ there exists a set $uWit_{\sigma} \subseteq \Upsilon_i^{\Box}$ such that

 $\Gamma_{\langle 0 \rangle}, M(\Upsilon) \not\vdash_{\Pi_{\Delta}} \varphi_{\langle 0 \rangle} \lor uWV(\Upsilon)$

Information in the propositional entailment

Proposition

Let Γ be a closed set of propositional formulas, and $h_1, h_2 \in Hom(Fm, [0, 1]_{\Pi})$ such that

- 1. For each formula $\varphi \in \Gamma$, there is some α_{φ} such that $h_2(\varphi) = h_1(\varphi) \cdot \alpha_{\varphi}$,
- 2. For each pair of formulas $\varphi, \psi \in \Gamma$ such that $h_1(\varphi) \leq h_1((\psi)$ it holds that $\alpha_{\varphi} \leq \alpha_{\psi}$,

3.
$$\alpha_{\varphi} = 0$$
 implies that $h_1(\varphi) = 0$.

Consider the family of homomorphisms h_k for $k \in \mathbb{N}$ where $h_k(x) = h(x) \cdot \alpha_x^k$ for each variable x in Γ . Then, for each $\varphi \in \Gamma$, it holds that $h_k(\varphi) = h(\varphi) \cdot \alpha_{\varphi}^k$.

Information in the propositional entailment

Proposition

Let Γ be a closed set of propositional formulas, and $h_1, h_2 \in Hom(Fm, [0, 1]_{\Pi})$ such that

- 1. For each formula $\varphi \in \Gamma$, there is some α_{φ} such that $h_2(\varphi) = h_1(\varphi) \cdot \alpha_{\varphi}$,
- 2. For each pair of formulas $\varphi, \psi \in \Gamma$ such that $h_1(\varphi) \leq h_1((\psi)$ it holds that $\alpha_{\varphi} \leq \alpha_{\psi}$,

3.
$$\alpha_{\varphi} = 0$$
 implies that $h_1(\varphi) = 0$.

Consider the family of homomorphisms h_k for $k \in \mathbb{N}$ where $h_k(x) = h(x) \cdot \alpha_x^k$ for each variable x in Γ . Then, for each $\varphi \in \Gamma$, it holds that $h_k(\varphi) = h(\varphi) \cdot \alpha_{\varphi}^k$.

(C1)
$$\alpha_{\varphi \odot \psi} = \alpha_{\varphi} \cdot \alpha_{\psi}$$
 and (C2) $\alpha_{\varphi \to \psi} = \alpha_{\varphi} \to_{[0,1]_{\Pi}} \alpha_{\psi}$.

Let $\Upsilon = \Gamma \cup \{\varphi\} \subset Fm$, and assume that for each sequence $\sigma \in \Sigma_i$ there exists a set $uWit_{\sigma} \subseteq \Upsilon_{k+1}^{\Box}$ such that

 $\Gamma_{\langle 0 \rangle}, M(\Upsilon) \not\vdash_{\Pi_{\Delta}} \varphi_{\langle 0 \rangle} \lor uWV(\Upsilon)$

Then, $\Gamma \not\Vdash_{K\Pi}^{I} \varphi$.

Let $\Upsilon = \Gamma \cup \{\varphi\} \subset Fm$, and assume that for each sequence $\sigma \in \Sigma_i$ there exists a set $uWit_{\sigma} \subseteq \Upsilon_{k+1}^{\Box}$ such that

 $\mathsf{F}_{\langle 0 \rangle}, M(\Upsilon) \not\vdash_{\mathsf{\Pi}_{\Delta}} \varphi_{\langle 0 \rangle} \lor uWV(\Upsilon)$

Then, $\Gamma \not\Vdash_{K\Pi}^{I} \varphi$.

 $\vdash_{\Pi_{\Delta}}$ is decidable:

Theorem

 $\Vdash_{K\Pi}^{I}$ is decidable.

Grazie mille!

References

- Caicedo, X., Metcalfe, G., Rodríguez, R., and Rogger, J. (2017). Decidability of order-based modal logics. *Journal of Computer and System Sciences*, 88:53-74.
- Cerami, M. and Esteva, F. (2021) On decidability of concept satisfiability in Description Logic with product semantics. *Fuzzy Sets and Systems*, (In press)
- Hansoul, G. and Teheux, B. (2013). Extending Łukasiewicz logics with a modality: Algebraic approach to relational semantics. *Studia Logica*, 101(3):505–545.
- M. C. Laskowski and S. Malekpour (2007) Provability in predicate product logic. Archive for Mathematical Logic, 46(5): 365–378.
 Vidal, A. (2022) Undecidability and non-axiomatizability of modal many-valued logics. The Journal of Symbolic Logic, (In press)