Local Modal Product Logic is decidable

Amanda Vidal

Artificial Inteligence Research Institute IIIA - CSIC
LATD 2022, Paestum, 6 September

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101027914.

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
- Validity and >0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
- Validity and >0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
- Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
- Validity and >0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
- Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
- No known (explicit) R.E. axiomatization of local entailment in modal $[0,1]$-valued Łukasiewicz, but it is decidable.

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
- Validity and >0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
- Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
- No known (explicit) R.E. axiomatization of local entailment in modal $[0,1]$-valued Łukasiewicz, but it is decidable.
- local entailment in modal $[0,1]$-valued Product?

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (immediate) FMP or (known) R.E axiomatization...
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Caicedo et.al., 2017]
- Validity and >0-sat in FDL (multi-modal variation) over Product logic are decidable [Cerami et. al, 2021]
- Global entailment in modal [0,1]-valued Łukasiewicz and Product logics is not even R.E [V. 2022]
- No known (explicit) R.E. axiomatization of local entailment in modal $[0,1]$-valued Łukasiewicz, but it is decidable.
- local entailment in modal $[0,1]$-valued Product?

Theorem

Local modal [0,1]-valued Product logic is decidable

Modal product logics

Language: \& $\rightarrow, 0$ plus two unary (modal) symbols (\square, \diamond)

Modal product logics

Language: $\&, \rightarrow, 0$ plus two unary (modal) symbols (\square, \diamond)

Definition

A (standard crisp) product Kripke model \mathfrak{M} is a tripla $\langle W, R, e\rangle$ where:

- $R \subseteq W \times W$ (Rus stands for $\langle u, s\rangle \in R$)
- e : $W \times \operatorname{Var} \rightarrow[0,1]$ uniquelly extended by:

$$
\begin{aligned}
e(u, \varphi \& \psi) & :=e(u, \varphi) \cdot e(u, \psi) \\
e(u, \varphi \rightarrow \psi) & := \begin{cases}1 & \text { if } e(u, \varphi) \leq e(u, p s i) \\
e(u, \psi) / e(u, \varphi) & \text { otherwise }\end{cases} \\
e(u, \square \varphi) & :=\inf \{e(s, \varphi): \operatorname{Rus}\} \\
e(u, \diamond \varphi) & :=\sup \{e(s, \varphi): \operatorname{Rus}\}
\end{aligned}
$$

Local deduction: $\left\lceil\Vdash_{\kappa п} \varphi\right.$ iff
$\forall u \in W[e(u,[\Gamma]) \subseteq\{1\}$ implies $e(u, \varphi)=1]$ for all product Kripke models \mathfrak{M}.

Relation to FO

The previous logic can be translated into a fragment of the corresponding FO logic.

$$
\begin{array}{rlrl}
\langle x, v\rangle^{\sharp}: & :=P_{x}(v) & \langle\varphi \star \psi, v\rangle^{\sharp}: & :=\langle\varphi, v\rangle^{\sharp} \star\langle\psi, v\rangle^{\sharp} \\
\langle\square \varphi, v\rangle^{\sharp} & :=\forall w R(v, w) \rightarrow\langle\varphi, w\rangle^{\sharp} & \langle\diamond \varphi, v\rangle^{\sharp}:=\exists w R(v, w) \odot\langle\varphi, w\rangle^{\sharp}
\end{array}
$$

Relation to FO

The previous logic can be translated into a fragment of the corresponding FO logic.

$$
\begin{array}{rlrl}
\langle x, v\rangle^{\sharp} & :=P_{x}(v) & \langle\varphi \star \psi, v\rangle^{\sharp}: & :=\langle\varphi, v\rangle^{\sharp} \star\langle\psi, v\rangle^{\sharp} \\
\langle\square \varphi, v\rangle^{\sharp} & :=\forall w R(v, w) \rightarrow\langle\varphi, w\rangle^{\sharp} & \langle\diamond \varphi, v\rangle^{\sharp}:=\exists w R(v, w) \odot\langle\varphi, w\rangle^{\sharp}
\end{array}
$$

Observation

$\Gamma \Vdash_{\text {кп }} \varphi \Longleftrightarrow \forall v, w R(v, w) \vee \neg R(v, w), \forall v\langle\Gamma, v\rangle^{\sharp} \models_{\forall \Pi} \forall v\langle\varphi, v\rangle^{\sharp}$ where $\forall \Pi$ is the F.O. logic over $[0,1]_{\Pi}$.

Relation to FO

The previous logic can be translated into a fragment of the corresponding FO logic.

$$
\begin{array}{rlrl}
\langle x, v\rangle^{\sharp} & :=P_{x}(v) & \langle\varphi \star \psi, v\rangle^{\sharp}: & :=\langle\varphi, v\rangle^{\sharp} \star\langle\psi, v\rangle^{\sharp} \\
\langle\square \varphi, v\rangle^{\sharp} & :=\forall w R(v, w) \rightarrow\langle\varphi, w\rangle^{\sharp} & \langle\diamond \varphi, v\rangle^{\sharp}:=\exists w R(v, w) \odot\langle\varphi, w\rangle^{\sharp}
\end{array}
$$

Observation

$\Gamma \Vdash_{\text {кп }} \varphi \Longleftrightarrow \forall v, w R(v, w) \vee \neg R(v, w), \forall v\langle\Gamma, v\rangle^{\sharp} \models_{\forall \Pi} \forall v\langle\varphi, v\rangle^{\sharp}$ where $\forall \Pi$ is the F.O. logic over $[0,1]_{\Pi}$.

Definition

A Quasi-witnessed (FO) model \mathfrak{M} over an algebra \mathbf{A} is s.t:

$$
\begin{aligned}
& |\exists x \varphi(x)|_{\mathfrak{M}}=|\varphi(x)|_{\mathfrak{M}, x \mapsto p} \text { for some } p \in W \\
& |\forall x \varphi(x)|_{\mathfrak{M}}=\left\{\begin{array}{l}
0 \\
|\varphi(x)|_{\mathfrak{M}, x \mapsto p} \text { for some } p \in W
\end{array}\right.
\end{aligned}
$$

Relation to FO

The previous logic can be translated into a fragment of the corresponding FO logic.

$$
\begin{aligned}
\langle x, v\rangle^{\sharp} & :=P_{x}(v) & \langle\varphi \star \psi, v\rangle^{\sharp}:=\langle\varphi, v\rangle^{\sharp} \star\langle\psi, v\rangle^{\sharp} \\
\langle\square \varphi, v\rangle^{\sharp} & :=\forall w R(v, w) \rightarrow\langle\varphi, w\rangle^{\sharp} & \langle\diamond \varphi, v\rangle^{\sharp}:=\exists w R(v, w) \odot\langle\varphi, w\rangle^{\sharp}
\end{aligned}
$$

Observation

$\Gamma \Vdash_{\text {кп }} \varphi \Longleftrightarrow \forall v, w R(v, w) \vee \neg R(v, w), \forall v\langle\Gamma, v\rangle^{\sharp} \models_{\forall \Pi} \forall v\langle\varphi, v\rangle^{\sharp}$ where $\forall \Pi$ is the F.O. logic over $[0,1]_{\Pi}$.

Definition

A Quasi-witnessed (Kripke) model \mathfrak{M} over an algebra \mathbf{A} is s.t:

$$
\begin{aligned}
& e(v, \diamond \varphi)=e(w, \varphi) \text { for some } w \in W \text { with } R v w \\
& e(v, \square \varphi)=\left\{\begin{array}{l}
0 \\
e(w, \varphi) \text { for some } w \in W \text { with } R v w
\end{array}\right.
\end{aligned}
$$

About $\forall \Pi$ and $К П$

- (Laskowski-Malekpour, '07) proved $\forall \Pi$ is complete w.r.t quasi-witnessed models over $\mathfrak{B}\left(\mathbb{R}^{\mathrm{Q}}\right)$, for \mathbb{R}^{Q} being the Lexicographic sum group: the ordered abelian group of functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ whose support is well ordered (i.e., $\{q \in \mathbb{Q}: f(q) \neq 0\}$ is a well ordered subset of \mathbb{Q}). + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in $K \Pi$, getting completeness w.r.t. quasi-witnessed trees over $\mathfrak{B}\left(\mathbb{R}^{Q}\right)$.

About $\forall \Pi$ and $К П$

- (Laskowski-Malekpour, '07) proved $\forall \Pi$ is complete w.r.t quasi-witnessed models over $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$, for $\mathbb{R}^{\mathbb{Q}}$ being the Lexicographic sum group: the ordered abelian group of functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ whose support is well ordered (ie., $\{q \in \mathbb{Q}: f(q) \neq 0\}$ is a well ordered subset of $\mathbb{Q})$. + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in $К \Pi$, getting completeness w.r.t. quasi-witnessed trees over $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$.

$$
\beta\left(\mathbb{R}^{\mathbb{Q}}\right)
$$

$$
T=a[q]=0 \forall q
$$

About $\forall П$ and КП

- (Laskowski-Malekpour, '07) proved $\forall \Pi$ is complete w.r.t quasi-witnessed models over $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$, for $\mathbb{R}^{\mathbb{Q}}$ being the Lexicographic sum group: the ordered abelian group of functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ whose support is well ordered (i.e., $\{q \in \mathbb{Q}: f(q) \neq 0\}$ is a well ordered subset of $\mathbb{Q})$. + is defined component-wise and the ordering is lexicographic.
- The analogous is inherited in $K \Pi$, getting completeness w.r.t. quasi-witnessed trees over $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$.

For an element $a \in \mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$ we let:

- For $q \in \mathbb{Q}, a_{\leftarrow q}$ is \perp if $a=\perp$ and, otherwise
- $m(a)=\min \{q \in \mathbb{Q}: a[q]<0\}$, for $a>\perp$.

Some notation

Let Υ be a finite set of (modal) formulas with maximum modal depth $n \geq 1$. For $0 \leq i \leq n$ let:

$$
\begin{aligned}
& \Upsilon_{0}:=\operatorname{PropSFm}(\Upsilon) \quad \Upsilon_{i+1}:=\bigcup_{\circlearrowleft \psi \in \Upsilon_{i}} \operatorname{PropSFm}(\psi) \\
& \text { Ex: } r=\{\square(x \rightarrow \Delta y)\} \Rightarrow r_{0}=r, \quad r_{1}=\{x, \Delta y\}, r_{2}=\{y\}
\end{aligned}
$$

Some notation

Let Υ be a finite set of (modal) formulas with maximum modal depth $n \geq 1$. For $0 \leq i \leq n$ let:

$$
\Upsilon_{0}:=\operatorname{PropSFm}(\Upsilon) \quad \Upsilon_{i+1}:=\bigcup_{\varrho \psi \in \Upsilon_{i}} \operatorname{PropSFm}(\psi)
$$

Consider sequences $\sigma=\left\langle 0, \varphi_{0}, \ldots, \varphi_{k}\right\rangle$ for $\varphi_{i} \in \Upsilon_{i}$ beginning with a modality for encoding the "witness" worlds in a model.

Some notation

Let Υ be a finite set of (modal) formulas with maximum modal depth $n \geq 1$. For $0 \leq i \leq n$ let:

$$
\Upsilon_{0}:=\operatorname{PropSFm}(\Upsilon) \quad \Upsilon_{i+1}:=\bigcup_{\varrho \psi \in \Upsilon_{i}} \operatorname{PropSFm}(\psi)
$$

Consider sequences $\sigma=\left\langle 0, \varphi_{0}, \ldots, \varphi_{k}\right\rangle$ for $\varphi_{i} \in \Upsilon_{i}$ beginning with a modality for encoding the "witness" worlds in a model.

For modeling the information about the unwitnessed formulas, consider also the sequences of the form $\left\langle\varphi_{1}, \ldots, \varphi_{k}^{\prime}\right\rangle$ (the primed elements will be \square formulas).
Σ are all these sequences (and Σ_{i} the corresponding i-long sequences).

Some notation

Let Υ be a finite set of (modal) formulas with maximum modal depth $n \geq 1$. For $0 \leq i \leq n$ let:

$$
\Upsilon_{0}:=\operatorname{PropSFm}(\Upsilon) \quad \Upsilon_{i+1}:=\bigcup_{\varrho \psi \in \Upsilon_{i}} \operatorname{PropSFm}(\psi)
$$

Consider sequences $\sigma=\left\langle 0, \varphi_{0}, \ldots, \varphi_{k}\right\rangle$ for $\varphi_{i} \in \Upsilon_{i}$ beginning with a modality for encoding the "witness" worlds in a model.

For modeling the information about the unwitnessed formulas, consider also the sequences of the form $\left\langle\varphi_{1}, \ldots, \varphi_{k}^{\prime}\right\rangle$ (the primed elements will be \square formulas).
Σ are all these sequences (and Σ_{i} the corresponding i-long sequences).
$\underline{\sigma} \equiv$ the sequence where we remove from σ the prime from all the primed formulas,
$\sigma_{-} \equiv$ the sequence where the prime is removed from the first appearing primed formula.

Unwitnessed formulas in $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$-models?

Lemma

Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}\left(\mathbb{R}^{\mathrm{Q}}\right)$-Kripke model and $\Upsilon \subseteq_{\omega} F m$. For any $v \in W$ and $\square \varphi \in F m$ such that $\square \varphi \in U W_{\mathfrak{M}}(v, F m)$, then there is some world $v_{\square \varphi}^{\Upsilon} \in W$ with $R v v_{\square \varphi}^{\Upsilon}$ for which

$$
m\left(e\left(v_{\square \varphi}^{\curlyvee}, \varphi\right)\right)<m\left(e\left(v_{\square \varphi}^{\curlyvee}, \chi\right)\right) \quad \text { for any } \square \chi \in \Upsilon \text { s.t. } e(v, \square \chi)>\perp \text {. }
$$

Unwitnessed formulas in $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$-models?

Lemma
Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}\left(\mathbb{R}^{Q}\right)$-Kripke model and $\Upsilon \subseteq_{\omega} F m$. For any $v \in W$ and $\square \varphi \in F m$ such that $\square \varphi \in U W_{\mathfrak{M}}(v, F m)$, then there is some world $v_{\square \varphi}^{\Upsilon} \in W$ with $R v v_{\square \varphi}^{\Upsilon}$ for which
$m\left(e\left(v_{\square \varphi}^{\Upsilon}, \varphi\right)\right)<m\left(e\left(v_{\square \varphi}^{\Upsilon}, \chi\right)\right) \quad$ for any $\square \chi \in \Upsilon$ s.t. $e(v, \square \chi)>\perp$.
if $\inf e(v, \varphi)=1, \quad \forall q \in \mathbb{Q} \exists v$ sit. $m(e(v, q))<q$.

Unwitnessed formulas in $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$-models?

Lemma

Let \mathfrak{M} be a (quasi-witnessed) $\mathfrak{B}\left(\mathbb{R}^{\mathrm{Q}}\right)$-Kripke model and $\Upsilon \subseteq_{\omega} F m$. For any $v \in W$ and $\square \varphi \in F m$ such that $\square \varphi \in U W_{\mathfrak{M}}(v, F m)$, then there is some world $v_{\square \varphi}^{\Upsilon} \in W$ with $R v v_{\square \varphi}^{\Upsilon}$ for which

$$
m\left(e\left(v_{\square \varphi}^{\curlyvee}, \varphi\right)\right)<m\left(e\left(v_{\square \varphi}^{\curlyvee}, \chi\right)\right) \quad \text { for any } \square \chi \in \Upsilon \text { s.t. } e(v, \square \chi)>\perp \text {. }
$$

We can build \mathfrak{M}^{+}extending \mathfrak{M}, with (certain) worlds labeled by elements in Σ s.t:

1. if a formula $\circlearrowleft \psi$ was witnessed in $\underline{\sigma}$, then

$$
e^{+}(\sigma, \diamond \psi)=e^{+}\left(\sigma^{\sim} \circlearrowleft \psi, \psi\right),
$$

2. if a formula $\square \psi$ was unwitnessed in $\underline{\sigma}$, then all necessary $\sigma^{\wedge} \square \psi^{\wedge} \sigma_{1}$ AND $\sigma^{\wedge} \square \psi^{\prime \wedge} \sigma_{1}$ belong to \mathfrak{M}^{+}, and...

Unwitnessed formulas in $\mathfrak{B}\left(\mathbb{R}^{\mathbb{Q}}\right)$-models?

3. Proposition

For each $\sigma \in W$ with $\underline{\sigma} \neq \sigma$ and for each $\chi \in \Upsilon_{|\sigma|-1}$ there is an element $\alpha_{\sigma, \chi} \in \mathfrak{B}\left(\mathbb{R}^{\mathrm{Q}}\right)$ such that:

1. $e^{+}(\sigma, \chi)=e^{+}\left(\sigma_{-}, \chi\right)+\alpha_{\sigma, \chi}$;
2. $\alpha_{\sigma, \chi}=\perp$ if and only if $e^{+}(\underline{\sigma}, \chi)=\perp$;
3. For $\psi \in \Upsilon_{|\sigma|-1}$, if $e^{+}(\underline{\sigma}, \chi) \leq e^{+}(\underline{\sigma}, \psi)$, then $\alpha_{\sigma, \chi} \leq \alpha_{\sigma, \psi}$;
4. If $\sigma=\sigma_{1}^{\wedge} \square \varphi^{\prime}$ then
$4.1 \perp<\alpha_{\sigma, \varphi}<\mathrm{T}$ and,
4.2 for any $\square \chi \in \Upsilon_{\left|\sigma_{1}\right|-1}$ with $e^{+}\left(\sigma_{1}, \square \chi\right)>\perp, \alpha_{\sigma, \chi}=T$.

A picture is worth a thousand words

for each var. p:

$$
\left\{\begin{array}{l}
e\left(\left\langle 0, \Delta \psi, D y^{\prime}\right\rangle, P\right):= \\
e(\langle 0, \Delta \psi, \Delta y\rangle, p)+ \\
e(\langle 0, D \psi, \Delta y\rangle, p)-m(e(\langle 0, \Delta \psi, \Delta y\rangle, y)
\end{array}\right.
$$

Syntactic translation of formulas

We will use the sequences Σ to generate a propositional language with variables $\mathcal{V}_{\sigma}, ~ \triangle \varphi_{\sigma}$ and, for $\sigma \in \Sigma_{i}$ with some primed element, and $\chi \in \Upsilon_{i}$, new variables $\alpha_{\chi, \sigma}$.

Syntactic translation of formulas

We will use the sequences Σ to generate a propositional language with variables $\mathcal{V}_{\sigma}, ~ \cap \varphi_{\sigma}$ and, for $\sigma \in \Sigma_{i}$ with some primed element, and $\chi \in \Upsilon_{i}$, new variables $\alpha_{\chi, \sigma}$.
For each $\sigma \in \Sigma_{i}$ fix some set $u W_{i t_{\sigma}} \subseteq \Upsilon_{i}$.

Syntactic translation of formulas

We will use the sequences Σ to generate a propositional language with variables $\mathcal{V}_{\sigma}, ~ \triangle \varphi_{\sigma}$ and, for $\sigma \in \Sigma_{i}$ with some primed element, and $\chi \in \Upsilon_{i}$, new variables $\alpha_{\chi, \sigma}$.
For each $\sigma \in \Sigma_{i}$ fix some set u Wit ${ }_{\sigma} \subseteq \Upsilon_{i}$.
Definition

- $2 V\left(\varphi_{\sigma}\right):=\varphi_{\sigma} \leftrightarrow \varphi_{\sigma_{-}} \odot \alpha_{\sigma, \varphi}$,
- $\operatorname{Imp}\left(\varphi_{\sigma}, \psi_{\sigma}\right):=\Delta(\varphi \rightarrow \psi)_{\sigma} \rightarrow\left(\alpha_{\varphi, \sigma} \rightarrow \alpha_{\psi, \sigma}\right)$,
- $\operatorname{Neg}\left(\varphi_{\sigma}\right):=\neg \alpha_{\varphi, \sigma} \rightarrow \neg \varphi_{\sigma}$,
- $W V(\Upsilon):=\bigwedge\left\{\neg \neg(\square \varphi)_{\sigma} \rightarrow \alpha_{\varphi, \sigma \square \chi}: \alpha_{\varphi, \sigma \square \chi} \in \mathcal{V}, \square \varphi \in \Upsilon_{i}\right\}$,
- $u W V(\Upsilon):=\bigvee\left\{\alpha_{\chi, \sigma \square \chi}: \alpha_{\chi, \sigma \square \chi} \in \mathcal{V}, \square \chi \in u\right.$ Wit $\left._{\sigma}\right\}$,
- $W_{\diamond}\left((\diamond \psi)_{\sigma}\right):=\left((\diamond \psi)_{\sigma} \leftrightarrow(\psi)_{\sigma \diamond \psi}\right) \wedge\left(\bigvee_{\sigma \chi \in \Sigma}(\psi)_{\sigma \chi} \rightarrow(\diamond \psi)_{\sigma}\right)$,
- $W_{\square}\left((\square \psi)_{\sigma}\right):=\left((\square \psi)_{\sigma} \leftrightarrow(\psi)_{\sigma \square \psi}\right) \wedge\left((\square \psi)_{\sigma} \rightarrow \bigwedge_{\sigma \chi \in \Sigma}(\psi)_{\sigma \chi}\right)$,
- $u W\left((\square \psi)_{\sigma}\right):=\neg(\square \psi)_{\sigma}$

Moving to propositional logic

Selecting only the sequences in Σ arising from the chosen u Wit $_{\sigma}$ sets, and the previous definitions over the formulas of the corresponding level (for $|\sigma|=i$, formulas in Υ_{i}), we let $M(\Upsilon):=2 V(\Upsilon) \cup \operatorname{Imp}(\Upsilon) \cup N e g(\Upsilon) \cup W V(\Upsilon) \cup W_{\diamond}(\Upsilon) \cup W_{\square}(\Upsilon) \cup u W(\Upsilon)$.

Moving to propositional logic

Selecting only the sequences in Σ arising from the chosen u Wit $_{\sigma}$ sets, and the previous definitions over the formulas of the corresponding level (for $|\sigma|=i$, formulas in Υ_{i}), we let $M(\Upsilon):=2 V(\Upsilon) \cup \operatorname{Imp}(\Upsilon) \cup N e g(\Upsilon) \cup W V(\Upsilon) \cup W_{\diamond}(\Upsilon) \cup W_{\square}(\Upsilon) \cup u W(\Upsilon)$.

Theorem

Let $\Upsilon=\left\lceil\cup\{\varphi\}\right.$ be such that $\Gamma \Vdash_{K} \kappa \varphi$. Then, for each sequence $\sigma \in \Sigma_{i}$ there exists a set u Wit $_{\sigma} \subseteq \Upsilon_{i}^{\square}$ such that

$$
\Gamma_{\langle 0\rangle}, M(\Upsilon) \nvdash \Pi_{\Delta} \varphi_{\langle 0\rangle} \vee u W V(\Upsilon)
$$

Information in the propositional entailment

Proposition

Let Γ be a closed set of propositional formulas, and $h_{1}, h_{2} \in \operatorname{Hom}\left(F m,[0,1]_{п}\right)$ such that

1. For each formula $\varphi \in \Gamma$, there is some α_{φ} such that $h_{2}(\varphi)=h_{1}(\varphi) \cdot \alpha_{\varphi}$,
2. For each pair of formulas $\varphi, \psi \in \Gamma$ such that $h_{1}(\varphi) \leq h_{1}((\psi)$ it holds that $\alpha_{\varphi} \leq \alpha_{\psi}$,
3. $\alpha_{\varphi}=0$ implies that $h_{1}(\varphi)=0$.

Consider the family of homomorphisms h_{k} for $k \in \mathbb{N}$ where $h_{k}(x)=h(x) \cdot \alpha_{x}^{k}$ for each variable x in Γ.
Then, for each $\varphi \in \Gamma$, it holds that $h_{k}(\varphi)=h(\varphi) \cdot \alpha_{\varphi}^{k}$.

Information in the propositional entailment

Proposition

Let Γ be a closed set of propositional formulas, and $h_{1}, h_{2} \in \operatorname{Hom}\left(F m,[0,1]_{\square}\right)$ such that

1. For each formula $\varphi \in \Gamma$, there is some α_{φ} such that

$$
h_{2}(\varphi)=h_{1}(\varphi) \cdot \alpha_{\varphi}
$$

2. For each pair of formulas $\varphi, \psi \in \Gamma$ such that $h_{1}(\varphi) \leq h_{1}((\psi)$ it holds that $\alpha_{\varphi} \leq \alpha_{\psi}$,
3. $\alpha_{\varphi}=0$ implies that $h_{1}(\varphi)=0$.

Consider the family of homomorphisms h_{k} for $k \in \mathbb{N}$ where $h_{k}(x)=h(x) \cdot \alpha_{x}^{k}$ for each variable x in Γ.
Then, for each $\varphi \in \Gamma$, it holds that $h_{k}(\varphi)=h(\varphi) \cdot \alpha_{\varphi}^{k}$.
(C1) $\alpha_{\varphi \odot \psi}=\alpha_{\varphi} \cdot \alpha_{\psi}$ and (C2) $\alpha_{\varphi \rightarrow \psi}=\alpha_{\varphi} \rightarrow_{[0,1]_{\Pi}} \alpha_{\psi}$.

Back to an standard Kripke model

Lemma

Let $\Upsilon=\Gamma \cup\{\varphi\} \subset F m$, and assume that for each sequence $\sigma \in \Sigma_{i}$ there exists a set $u W_{i t} \subseteq \Upsilon_{k+1}^{\square}$ such that

$$
\Gamma_{\langle 0\rangle}, M(\Upsilon) \nvdash \Pi_{\Delta} \varphi_{\langle 0\rangle} \vee u W V(\Upsilon)
$$

Then, $\Gamma \forall_{k п}^{\prime} \varphi$.

Back to an standard Kripke model

Lemma

Let $\Upsilon=\Gamma \cup\{\varphi\} \subset F m$, and assume that for each sequence $\sigma \in \Sigma_{i}$ there exists a set $u W_{i t_{\sigma}} \subseteq \Upsilon_{k+1}^{\square}$ such that

$$
\Gamma_{\langle 0\rangle}, M(\Upsilon) \nvdash \Pi_{\Delta} \varphi_{\langle 0\rangle} \vee u W V(\Upsilon)
$$

Then, $\Gamma \forall_{\kappa п}^{\prime} \varphi$.
$\vdash_{\Pi_{\Delta}}$ is decidable:

Theorem

$\Vdash_{K \Pi}^{\prime}$ is decidable.

Grazie mille!

(very short) Relevant bibliography

References

Caicedo, X., Metcalfe, G., Rodríguez, R., and Rogger, J. (2017). Decidability of order-based modal logics. Journal of Computer and System Sciences, 88:53-74.
Cerami, M. and Esteva, F. (2021) On decidability of concept satisfiability in Description Logic with product semantics. Fuzzy Sets and Systems, (In press)
Hansoul, G. and Teheux, B. (2013). Extending Łukasiewicz logics with a modality: Algebraic approach to relational semantics. Studia Logica, 101(3):505-545.
M. C. Laskowski and S. Malekpour (2007) Provability in predicate product logic. Archive for Mathematical Logic, 46(5): 365-378.
Vidal, A. (2022) Undecidability and non-axiomatizability of modal many-valued logics. The Journal of Symbolic Logic, (In press)

