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Degree of incompleteness

Let L be a (modal or superintuionistic) logic. Let Fr(L) be the
class of Kripke frames validating L.

Definition (Fine, 1974). We say that the degree of
incompleteness of L is the cardinal κ if there are exactly κ logics
L′ such that Fr(L′) = Fr(L).

All but one of these L′ are Kripke incomplete.

This notion quantifies the phenomenon of incompleteness.

Problem (Fine, 1974). What is the degree of incompleteness in
extensions of the basic modal logic K?
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Degree of incompleteness

Blok (1978) gave a very unexpected solution to this problem.

Blok’s dichotomy theorem. A normal modal logic L has the
degree of incompleteness either 1 or 2ℵ0; it is 1 iff L is a
join-splitting logic; otherwise it is 2ℵ0 .

A characterization of degrees of incompleteness in extensions of
K4, S4 and IPC remains an outstanding open problem.
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Degrees of fmp

For a logic L, let Fin(L) be the class of finite Kripke frames
validating L.

Then L has the finite model property (fmp for short) if L is
complete with respect to Fin(L).

Definition. We say that the degree of fmp of a logic L is κ
(deg(L) = κ) if there exist exactly κ logics L′ such that
Fin(L′) = Fin(L).

As with the degree of incompleteness, all but one of such L′ lack
the fmp.
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Degrees of fmp

Our main result establishes a complete opposite of Blok’s
dichotomy theorem for superintuitionistic logics (si-logics) and
transitive (normal) modal logics.

Antidichotomy theorem for the degrees of fmp. For each
nonzero cardinal κ such that κ ≤ ℵ0 or κ = 2ℵ0 there is an
si-logic L such that deg(L) = κ.

Under the Continuum Hypothesis (CH) this implies that each
nonzero κ ≤ 2ℵ0 is realized as the degree of fmp of some
superintuitionistic logic (or some transitive modal logic).

For this reason, we refer to this result as the Antidichotomy
theorem for degrees of fmp.

Using the Blok-Esakia isomorphism this result generalizes to
extensions of S4.Grz and with further work to extensions of K4
and S4.
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Recall that a pair of elements (a, b) of a lattice L splits L if L is
the disjoint union of ↑a and ↓b.

An si-logic L is a splitting logic if there is an si-logic M such that
the pair (L,M) splits the lattice Ext IPC.

An si-logic is join-splitting if it is a join in Ext IPC of a set of
splitting si-logics.
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Jankov (1963) provided an axiomatization of join-splitting
si-logics.

With each finite SI Heyting algebra A we can associate the
formula (the Jankov formula of A denoted J (A)) that
axiomatizes the least si-logic L such that A 6|= L.

Jankov’s Lemma. Let A and B be Heyting algebras with A
finite and SI. Then B 2 J (A) iff A is a subalgebra of a
homomorphic image of B.
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Definition. For an si-logic L, define

1 L+ = Log(Fin(L));
2 L− = IPC+ {J (A) : A∗ /∈ Fin(L)}.

Let [L−, L+] be the interval in the lattice Ext IPC.

Theorem. For an si-logic L we have:
1 fmp(L) = [L−, L+].
2 L+ is the only member of fmp(L) that has the fmp.
3 L− is the only member of fmp(L) that is axiomatizable by

Jankov formulas.

Corollary. If an si-logic L has the fmp and is axiomatizable by
Jankov formulas, it has the degree of fmp 1.
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Let A and B be Heyting algebras.

The sum A+B is the Heyting algebra obtained by pasting A
below B and gluing the top element of A to the bottom element
of B.

As + is clearly associative, there is no ambiguity in writing
A1 + · · ·+ An for finitely many Heyting algebras A1, . . . ,An,
each glued to the next.

For two Esakia spaces X and Y, we denote by X ⊕ Y the Esakia
space obtained by pasting Y below X.

(A+B)∗ is isomorphic to A∗ ⊕B∗.
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The Kuznetsov-Gerčiu logic KG is the si-logic of all Heyting
algebras of the form A1 + · · ·+ An where A1, . . . ,An are
one-generated.

Theorem (Kracht, 1993). KG is axiomatized by Jankov
formulas.

This implies that if L 6⊆ KG, then Fin(L) 6= Fin(KG).

Thus it is enough to study the degree of fmp in extensions of KG.
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The Rieger-Nishimura lattice and ladder

The free one generated Heyting algebra is the Rieger-Nishimura
lattice.
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Figure: The Rieger-Nishimura lattice.



The Rieger-Nishimura lattice and ladder
Its dual Esakia space is

w0 w1

w2 w3

w4 w5

w6 w7

w8 w9

w10 w11

ω

Figure: The Rieger-Nishimura ladder L.
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Proof sketch of the Antidochotomy theorem for κ < ℵ0
Consider the space

a1

a2

an

Figure: The poset underlying Gn.



The degrees of fmp

Let Rn be the class of rooted members of Fin(Log(Gn)).

We define:

L0 = Log(Rn)

L1 = Log(Rn ∪ {G1})
L2 = Log(Rn ∪ {G2})

...

Ln = Log(Rn ∪ {Gn}) = Log(Gn),

Main theorem 1.

fmp(L0) = {L0, . . . , Ln}.
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The case κ = ℵ0

To construct an extension L of KG with deg(L) = ℵ0 consider

R =
⋃

n<ℵ0

Rn.

For every integer n, consider the extensions of KG

L∗n = Log(R∪ {Gn}) and L∗∞ = Log(R∪ {Gn : n < ℵ0}).

Main Theorem 2.

fmp(L∗0) = {L∗∞} ∪ {L∗n : n < ℵ0}.

Consequently, the logic L∗0 is an extension of KG with the degree
of fmp ℵ0.



The case κ = ℵ0

To construct an extension L of KG with deg(L) = ℵ0 consider

R =
⋃

n<ℵ0

Rn.

For every integer n, consider the extensions of KG

L∗n = Log(R∪ {Gn}) and L∗∞ = Log(R∪ {Gn : n < ℵ0}).

Main Theorem 2.

fmp(L∗0) = {L∗∞} ∪ {L∗n : n < ℵ0}.

Consequently, the logic L∗0 is an extension of KG with the degree
of fmp ℵ0.



The case κ = ℵ0

To construct an extension L of KG with deg(L) = ℵ0 consider

R =
⋃

n<ℵ0

Rn.

For every integer n, consider the extensions of KG

L∗n = Log(R∪ {Gn}) and L∗∞ = Log(R∪ {Gn : n < ℵ0}).

Main Theorem 2.

fmp(L∗0) = {L∗∞} ∪ {L∗n : n < ℵ0}.

Consequently, the logic L∗0 is an extension of KG with the degree
of fmp ℵ0.



Future work

Is it possible to prove the full Antidichotomy theorem
without assuming CH?

How to characterize degress of fmp for other logical
systems and varieties of algebras, e.g., for fixed-point logics
(PDL, modal µ-calculus) or for many valued logics,
substructural logics, etc.

The question about the degrees of incompleteness for IPC,
K4, S4 remains open.
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