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» In this terminology, the equational completeness theorem of
CPC can be written, more concisely, as

Fl—cpc§0<:>{’y%13'y€F}':BA§Dzl.
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> A (propositional) logic I is a consequence relation on the set
of formulas Fm of an arbitrary algebraic language that,
moreover, is substitution invariant, i.e.,

if ' ¢, then o[I'] - o(¢),
for every set of formulas I' U {¢} and every substitution ¢.
Definition
A logic F admits an equational completeness theorem if there
are a class of algebras K and a set of equations 7(x) such that
I't ¢ <<= 7'l Fx T(9),

for every set of formulas I' U {¢}.

Example. CPC admits an equational completeness theorem w.r.t.
Boolean algebras.
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where HA is the variety of Heyting algebras.

Observation

CPC admits an equational completeness theorem w.r.t. the variety
of Heyting algebras (although certainly not the intended one).

» Notably, the situation does not improve if we restrict to the
case where T(x) = {x = 1}. Actually, there is no escape from
nonstandard equational completeness theorems.
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Proof sketch.

» Consider the three-element algebra
A= ({107,001 A,V)

with commutative operations defined by the tables

Ao ot ] 1 v |om ot |1
0~ | 0T [ 0T | 0T o- ot |0t |1
0" 0~ | ot of 0~ |1
1 1 1 1

» Then CPC,, admits an equational completeness theorem
w.r.t. K= {A} witnessed by the set of equations

T(x) = {x = x A x}.
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Definition

A logic I is said to be graph-based if the arity of its connective is
bounded above by one and, moreover, - has at most one unary
connective.

Example. The (<, 0, 1)-fragment of any modal logic is
graph-based, while the (<, 0,0, 1)-one is not.
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Definition
A logic |- is assertional if there is a class of algebras K with a
term-definable element T s.t. for all set of formulas I' U {¢},

I' ¢ <= 7'l Ex t(9)

where T(x) = {x = T}.

Theorem

Let I a logic with a theorem € such that Var(e) # @. Then I
admits an equational completeness theorem iff one of the following
conditions holds:

1. k- is graph-based and assertional; or

2. I is not graph-based and there are distinct ¢ and ¥ s.t.

Var(¢) U Var(yp) = {x} and ¢ = ¢.
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Definition
A logic | is protoalgebraic if there is a set of formulas A(x, y) s.t.

@ A(x,x) and x, A(x,y) F y.

Example. Almost every logic with a respectable implication
connective x — y. To see this, take A :== {x — y}.
Theorem

A nontrivial protoalgebraic logic - admits an equational
completeness theorem iff

syntactic equality # logical equivalence in |-.

» While most protoalgebraic logics admit an equational
completeness theorem, this might be necessarily nonstandard:

Observation

The local consequence of the modal system K (resp. K4, S4) does
not admit an equational completeness theorem w.r.t. the variety of
modal algebras (resp. of K4-algebras, resp. of interior algebras).
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» The local consequence of the modal system K is defined as

I'FZ @ <= for every Kripke frame (W, R),
valuation v: Var — W, and world w € W,
if w,vIFTI, then w,v I ¢.
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Theorem

The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.

» On the other hand, by coding the Halting Problem into
equational completeness theorems we get:
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The problem of determining whether a logic admits an equational
completeness theorem is:
» Decidable for logics presented by a finite set of finite matrices
and locally tabular logics presented by a finite Hilbert calculus;
» Undecidable for arbitrary (protoalgebraic) logics presented by a
finite Hilbert calculus.
Open problems. Standard equational completeness theorem,
complexity issues, logics lacking theorems etc.



Thank you very much for your attention!



