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I The equational completeness theorem of classical propositional
logic CPC w.r.t. the variety BA of Boolean algebras states that

Γ `CPC ϕ⇐⇒ for every A ∈ BA and every hom f : Fm → A,

if f (γ) = 1A for all γ ∈ Γ, then f (ϕ) = 1A.

I Given a class of similar algebras K and a set of equations
Θ ∪ {ϕ ≈ ψ}, we write Θ �K ϕ ≈ ψ when

for every A ∈ K and every hom f : Fm → A,

if f (ε) = f (δ) for all ε ≈ δ ∈ Θ, then f (ϕ) = f (ψ).

When viewed as a relation, �K is called the
equational consequence relative to K.

I In this terminology, the equational completeness theorem of
CPC can be written, more concisely, as

Γ `CPC ϕ⇐⇒ {γ ≈ 1 : γ ∈ Γ} �BA ϕ ≈ 1.
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I Furthermore, given a set of equations τ(x) and a set of
formulas Γ ∪ {ϕ}, we write

τ(ϕ) := {ε(ϕ) ≈ δ(ϕ) : ε ≈ δ ∈ τ}
τ[Γ] :=

⋃
γ∈Γ

τ(γ).

I Taking τ(x) := {x ≈ 1}, we get

Γ `CPC ϕ⇐⇒{γ ≈ 1 : γ ∈ Γ} �BA ϕ ≈ 1
⇐⇒ τ[Γ] �BA τ(ϕ).

Observation. The essence of the equational completeness theorem
of CPC w.r.t. BA consists in that

CPC can be interpreted into �BA.

This is made possible by translating formulas into equations by
means of the set of equations τ(x) as follows:

ψ 7−→ τ(ψ), i.e., {ψ ≈ 1}.
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I A (propositional) logic ` is a consequence relation on the set
of formulas Fm of an arbitrary algebraic language

that,
moreover, is substitution invariant, i.e.,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ),

for every set of formulas Γ ∪ {ϕ} and every substitution σ.

Definition
A logic ` admits an equational completeness theorem if there
are a class of algebras K and a set of equations τ(x) such that

Γ ` ϕ⇐⇒ τ[Γ] �K τ(ϕ),

for every set of formulas Γ ∪ {ϕ}.

Example. CPC admits an equational completeness theorem w.r.t.
Boolean algebras.
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Pandora’s box



A more unsettling example.

I Glivenko’s Theorem connects CPC and IPC as follows:

Γ `CPC ϕ⇐⇒ {¬¬γ : γ ∈ Γ} `IPC ¬¬ϕ.

Thus, taking τ(x) := {¬¬x ≈ 1}, we get

Γ `CPC ϕ⇐⇒{¬¬γ : γ ∈ Γ} `IPC ¬¬ϕ

⇐⇒{¬¬γ ≈ 1 : γ ∈ Γ} �HA ¬¬ϕ ≈ 1
⇐⇒ τ[Γ] �HA τ(ϕ),

where HA is the variety of Heyting algebras.

Observation
CPC admits an equational completeness theorem w.r.t. the variety
of Heyting algebras (although certainly not the intended one).

I Notably, the situation does not improve if we restrict to the
case where τ(x) = {x ≈ 1}. Actually, there is no escape from
nonstandard equational completeness theorems.
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Sometimes nonstandard equational completeness theorems are the
sole possible ones.

Let CPC∧∨ be the 〈∧,∨〉-fragment of CPC.

Observation
CPC∧∨ does not admit any equational completeness theorem
w.r.t. the variety of distributive lattices.

Proof.
I Suppose the contrary. Then there exists a set of equations

τ(x) witnessing an equational completeness theorem of
CPC∧∨ w.r.t. the variety DL of distributive lattices.

I As all equations in a single variable are valid in DL, we get

DL � τ(x), that is, ∅ �DL τ(x).

I By the equational completeness theorem, ∅ �DL τ(x) implies
∅ `CPC∧∨ x , which is of course false. QED
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I As all equations in a single variable are valid in DL, we get

DL � τ(x), that is, ∅ �DL τ(x).

I By the equational completeness theorem, ∅ �DL τ(x) implies
∅ `CPC∧∨ x , which is of course false. QED
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Observation
CPC∧∨ admits a (nonstandard) equational completeness theorem.

Proof sketch.
I Consider the three-element algebra

A = 〈{1, 0+, 0−};∧,∨〉

with commutative operations defined by the tables
∧ 0− 0+ 1
0− 0+ 0+ 0+

0+ 0− 0+

1 1

∨ 0− 0+ 1
0− 0+ 0+ 1
0+ 0− 1
1 1

I Then CPC∧∨ admits an equational completeness theorem
w.r.t. K := {A} witnessed by the set of equations

τ(x) = {x ≈ x ∧ x}.
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A sufficient condition



Definition
Let ` be a logic.

Two formulas ϕ and ψ are logically equivalent if

δ(ϕ,~y) a` δ(ψ,~y),

for every formula δ(x ,~y). In this case, we write ϕ ≡` ψ.

I More concretely, in CPC we have

ϕ ≡CPC ψ⇐⇒ ∅ `CPC (ϕ→ ψ) ∧ (ψ→ ϕ)

⇐⇒ ϕ a`CPC ψ.

Definition
A logic ` is said to be graph-based if the arity of its connective is
bounded above by one and, moreover, ` has at most one unary
connective.

Example. The 〈3, 0, 1〉-fragment of any modal logic is
graph-based, while the 〈3,2, 0, 1〉-one is not.
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Theorem
Let ` a logic that is not graph-based.

If there are two distinct
formulas ϕ and ψ such that

ϕ ≡` ψ and Var(ϕ) ∪ Var(ψ) = {x},

then ` admits an equational completeness theorem.

I Ingredients: Combinatorics on subformulas trees and Maltsev
Lemma on congruence generation.

Corollary
Every logic ` is term-equivalent to one admitting an equational
completeness theorem.

Proof.
I Expand ` with unary operations 2 and 3 behaving as the

identity map. ` and the new logic `+ are term-equivalent.
I Furthermore, 2x ≡`+ x ≡`+ 3x .
I Hence, `+ admits an equational completeness theorem. QED
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The case of logics with theorems



I A formula ϕ is a theorem of a logic ` if ∅ ` ϕ.

Definition
A logic ` is assertional if there is a class of algebras K with a
term-definable element > s.t. for all set of formulas Γ ∪ {ϕ},

Γ ` ϕ⇐⇒ τ[Γ] �K τ(ϕ)

where τ(x) := {x ≈ >}.

Theorem
Let ` a logic with a theorem ε such that Var(ε) 6= ∅. Then `
admits an equational completeness theorem iff one of the following
conditions holds:
1. ` is graph-based and assertional; or
2. ` is not graph-based and there are distinct ϕ and ψ s.t.

Var(ϕ) ∪ Var(ψ) = {x} and ϕ ≡` ψ.
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Definition
A logic ` is protoalgebraic if there is a set of formulas ∆(x , y) s.t.

∅ ` ∆(x , x) and x ,∆(x , y) ` y .

Example. Almost every logic with a respectable implication
connective x → y . To see this, take ∆ := {x → y}.

Theorem
A nontrivial protoalgebraic logic ` admits an equational
completeness theorem iff

syntactic equality 6= logical equivalence in `.

I While most protoalgebraic logics admit an equational
completeness theorem, this might be necessarily nonstandard:

Observation
The local consequence of the modal system K (resp. K4, S4) does
not admit an equational completeness theorem w.r.t. the variety of
modal algebras (resp. of K4-algebras, resp. of interior algebras).
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Proof sketch.

I The local consequence of the modal system K is defined as

Γ `L
K ϕ⇐⇒ for every Kripke frame 〈W ,R〉,

valuation v : Var→ W , and world w ∈ W ,

if w , v 
 Γ, then w , v 
 ϕ.



Proof sketch.
I The local consequence of the modal system K is defined as

Γ `L
K ϕ⇐⇒ for every Kripke frame 〈W ,R〉,

valuation v : Var→ W , and world w ∈ W ,

if w , v 
 Γ, then w , v 
 ϕ.



Proof sketch.
I The local consequence of the modal system K is defined as

Γ `L
K ϕ⇐⇒ for every Kripke frame 〈W ,R〉,

valuation v : Var→ W , and world w ∈ W ,

if w , v 
 Γ, then w , v 
 ϕ.



Proof sketch.
I Suppose, by contradiction, that `L

K admits an equational
completeness theorem w.r.t. the variety of modal algebras MA.

I This must be witnessed by some τ(x) containing an equation
ε ≈ δ that fails in MA. Thus, w.l.o.g. ε 0L

K δ.
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Computational aspects



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.

I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done.

QED



Definition
A logic ` is locally tabular if for every 1 6 n ∈ ω there are only
finitely many non-logically equivalent formulas in variables
x1, . . . , xn.

Example. Any logic induced by a class of matrices whose algebraic
reducts belong to a locally finite variety.

Corollary
Every locally tabular logic ` that is not graph-based admits an
equational completeness theorem.

Proof.
I Take a basic connective f (x1, . . . , xk) and define

2x := f (x , . . . , x).

I By local tabularity, there are nonnegative integers m 6 n s.t.

2mx ≡` 2n+1x .

I By the sufficient condition, we are done. QED



I What about locally tabular graph-based logics?

I We have a (complicated) constructive description of those that
admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.

I On the other hand, by coding the Halting Problem into
equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable

(even for protoalgebraic logics).



I What about locally tabular graph-based logics?
I We have a (complicated) constructive description of those that

admit an equational completeness theorem.

Theorem
The problem of determining whether a locally tabular logic admits
an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by
a finite set of finite matrices or by a finite Hilbert calculus.
I On the other hand, by coding the Halting Problem into

equational completeness theorems we get:

Theorem
The problem of determining whether a logic presented by a finite
Hilbert calculus admits an equational completeness theorem is
undecidable (even for protoalgebraic logics).



Summary.

We characterized logics admitting an equational completeness
theorem in the following settings:
I Locally tabular logics, logics with theorems, protoalgebraic

logics.
The problem of determining whether a logic admits an equational
completeness theorem is:
I Decidable for logics presented by a finite set of finite matrices

and locally tabular logics presented by a finite Hilbert calculus;
I Undecidable for arbitrary (protoalgebraic) logics presented by a

finite Hilbert calculus.
Open problems. Standard equational completeness theorem,
complexity issues, logics lacking theorems etc.
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Thank you very much for your attention!


