On Equational Completeness Theorems

Tommaso Moraschini

Department of Philosophy, University of Barcelona

LATD 2022 & MOSAIC Kick Off Meeting

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \iff$$
 for every $\mathbf{A} \in \mathsf{BA}$ and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\gamma) = 1^{\mathbf{A}}$ for all $\gamma \in \Gamma$, then $f(\varphi) = 1^{\mathbf{A}}$.

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \iff$$
 for every $\mathbf{A} \in \mathsf{BA}$ and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\gamma) = 1^{\mathbf{A}}$ for all $\gamma \in \Gamma$, then $f(\varphi) = 1^{\mathbf{A}}$.

• Given a class of similar algebras K and a set of equations $\Theta \cup \{\varphi \approx \psi\}$, we write $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$ when

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi & \Longleftrightarrow \text{ for every } \mathbf{A} \in \mathsf{BA} \text{ and every hom } f \colon \mathbf{Fm} \to \mathbf{A}, \\ & \text{ if } f(\gamma) = 1^{\mathbf{A}} \text{ for all } \gamma \in \mathbf{\Gamma}, \text{ then } f(\varphi) = 1^{\mathbf{A}}. \end{split}$$

• Given a class of similar algebras K and a set of equations $\Theta \cup \{\varphi \approx \psi\}$, we write $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$ when

for every $\mathbf{A} \in \mathsf{K}$ and every hom $f : \mathbf{Fm} \to \mathbf{A}$, if $f(\epsilon) = f(\delta)$ for all $\epsilon \approx \delta \in \Theta$, then $f(\varphi) = f(\psi)$.

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \iff$$
 for every $\mathbf{A} \in \mathsf{BA}$ and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\gamma) = 1^{\mathbf{A}}$ for all $\gamma \in \Gamma$, then $f(\varphi) = 1^{\mathbf{A}}$.

• Given a class of similar algebras K and a set of equations $\Theta \cup \{\varphi \approx \psi\}$, we write $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$ when

for every
$$\mathbf{A} \in K$$
 and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\epsilon) = f(\delta)$ for all $\epsilon \approx \delta \in \Theta$, then $f(\varphi) = f(\psi)$.

When viewed as a relation, \vDash_{K} is called the equational consequence relative to K.

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \iff$$
 for every $\mathbf{A} \in \mathsf{BA}$ and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\gamma) = 1^{\mathbf{A}}$ for all $\gamma \in \Gamma$, then $f(\varphi) = 1^{\mathbf{A}}$.

• Given a class of similar algebras K and a set of equations $\Theta \cup \{\varphi \approx \psi\}$, we write $\Theta \vDash_{\mathsf{K}} \varphi \approx \psi$ when

for every
$$\mathbf{A} \in \mathsf{K}$$
 and every hom $f : \mathbf{Fm} \to \mathbf{A}$,
if $f(\epsilon) = f(\delta)$ for all $\epsilon \approx \delta \in \Theta$, then $f(\varphi) = f(\psi)$.

When viewed as a relation, \vDash_{K} is called the

equational consequence relative to K.

In this terminology, the equational completeness theorem of CPC can be written, more concisely, as

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{ \gamma \approx 1 : \gamma \in \Gamma \} \vDash_{\mathsf{BA}} \varphi \approx 1.$$

$$\begin{split} \boldsymbol{\tau}(\varphi) &\coloneqq \{ \boldsymbol{\epsilon}(\varphi) \approx \delta(\varphi) : \boldsymbol{\epsilon} \approx \delta \in \boldsymbol{\tau} \} \\ \boldsymbol{\tau}[\Gamma] &\coloneqq \bigcup_{\gamma \in \Gamma} \boldsymbol{\tau}(\gamma). \end{split}$$

$$\begin{split} \boldsymbol{\tau}(\boldsymbol{\varphi}) &\coloneqq \{ \boldsymbol{\epsilon}(\boldsymbol{\varphi}) \approx \delta(\boldsymbol{\varphi}) : \boldsymbol{\epsilon} \approx \delta \in \boldsymbol{\tau} \} \\ \boldsymbol{\tau}[\boldsymbol{\Gamma}] &\coloneqq \bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Gamma}} \boldsymbol{\tau}(\boldsymbol{\gamma}). \end{split}$$

• Taking
$$\boldsymbol{\tau}(x) \coloneqq \{x pprox 1\}$$
, we get

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

Observation.

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

Observation. The essence of the equational completeness theorem of **CPC** w.r.t. BA consists in that

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

Observation. The essence of the equational completeness theorem of **CPC** w.r.t. BA consists in that

CPC can be **interpreted** into \models_{BA} .

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

Observation. The essence of the equational completeness theorem of **CPC** w.r.t. BA consists in that

CPC can be **interpreted** into \models_{BA} .

This is made possible by translating formulas into equations by means of the set of equations $\tau(x)$ as follows:

$$oldsymbol{ au}(arphi) \coloneqq \{ \epsilon(arphi) pprox \delta(arphi) : \epsilon pprox \delta \in au \} \ oldsymbol{ au}[\Gamma] \coloneqq igcup_{\gamma \in \Gamma} oldsymbol{ au}(\gamma).$$

► Taking
$$\tau(x) := \{x \approx 1\}$$
, we get
 $\Gamma \vdash_{\mathsf{CPC}} \varphi \iff \{\gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{BA}} \varphi \approx 1$
 $\iff \tau[\Gamma] \vDash_{\mathsf{BA}} \tau(\varphi).$

Observation. The essence of the equational completeness theorem of **CPC** w.r.t. BA consists in that

CPC can be **interpreted** into \models_{BA} .

This is made possible by translating formulas into equations by means of the set of equations $\tau(x)$ as follows:

 $\psi \longmapsto \tau(\psi)$, i.e., $\{\psi \approx 1\}$.

A (propositional) logic ⊢ is a consequence relation on the set of formulas *Fm* of an arbitrary algebraic language

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

Definition

A logic \vdash admits an equational completeness theorem if there are a class of algebras K and a set of equations $\tau(x)$ such that

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

Definition

A logic \vdash admits an equational completeness theorem if there are a class of algebras K and a set of equations $\tau(x)$ such that

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi),$$

for every set of formulas $\Gamma \cup \{\varphi\}$.

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi),
```

for every set of formulas $\Gamma \cup \{\varphi\}$ and every substitution σ .

Definition

A logic \vdash admits an equational completeness theorem if there are a class of algebras K and a set of equations $\tau(x)$ such that

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi),$$

for every set of formulas $\Gamma \cup \{\varphi\}$.

Example. CPC admits an equational completeness theorem w.r.t. Boolean algebras.

Pandora's box

Glivenko's Theorem connects CPC and IPC as follows:

Glivenko's Theorem connects CPC and IPC as follows:

 $\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$

Glivenko's Theorem connects CPC and IPC as follows:

 $\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

Glivenko's Theorem connects CPC and IPC as follows:

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi &\iff \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi \\ &\iff \{\neg \neg \gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{HA}} \neg \neg \varphi \approx 1 \\ &\iff \pmb{\tau}[\Gamma] \vDash_{\mathsf{HA}} \pmb{\tau}(\varphi), \end{split}$$

where HA is the variety of Heyting algebras.

Glivenko's Theorem connects CPC and IPC as follows:

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi &\iff \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi \\ &\iff \{\neg \neg \gamma \approx 1 : \gamma \in \Gamma\} \vDash_{\mathsf{HA}} \neg \neg \varphi \approx 1 \\ &\iff \mathbf{\tau}[\Gamma] \vDash_{\mathsf{HA}} \mathbf{\tau}(\varphi), \end{split}$$

where HA is the variety of Heyting algebras.

Observation

 $\ensuremath{\mathsf{CPC}}$ admits an equational completeness theorem w.r.t. the variety of $\ensuremath{\mathsf{Heyting}}$ algebras

Glivenko's Theorem connects CPC and IPC as follows:

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi &\iff \{ \neg \neg \gamma : \gamma \in \Gamma \} \vdash_{\mathsf{IPC}} \neg \neg \varphi \\ &\iff \{ \neg \neg \gamma \approx 1 : \gamma \in \Gamma \} \vDash_{\mathsf{HA}} \neg \neg \varphi \approx 1 \\ &\iff \mathbf{\tau}[\Gamma] \vDash_{\mathsf{HA}} \mathbf{\tau}(\varphi), \end{split}$$

where HA is the variety of Heyting algebras.

Observation

CPC admits an equational completeness theorem w.r.t. the variety of **Heyting** algebras (although certainly not the intended one).

Glivenko's Theorem connects CPC and IPC as follows:

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi &\iff \{ \neg \neg \gamma : \gamma \in \Gamma \} \vdash_{\mathsf{IPC}} \neg \neg \varphi \\ &\iff \{ \neg \neg \gamma \approx 1 : \gamma \in \Gamma \} \vDash_{\mathsf{HA}} \neg \neg \varphi \approx 1 \\ &\iff \mathbf{\tau}[\Gamma] \vDash_{\mathsf{HA}} \mathbf{\tau}(\varphi), \end{split}$$

where HA is the variety of Heyting algebras.

Observation

CPC admits an equational completeness theorem w.r.t. the variety of **Heyting** algebras (although certainly not the intended one).

Notably, the situation does not improve if we restrict to the case where \(\tau(x)) = \{x ≈ 1\\}.\)

Glivenko's Theorem connects CPC and IPC as follows:

$$\Gamma \vdash_{\mathsf{CPC}} \varphi \Longleftrightarrow \{\neg \neg \gamma : \gamma \in \Gamma\} \vdash_{\mathsf{IPC}} \neg \neg \varphi.$$

Thus, taking $\mathbf{\tau}(x) \coloneqq \{\neg \neg x \approx 1\}$, we get

$$\begin{split} \Gamma \vdash_{\mathsf{CPC}} \varphi &\iff \{ \neg \neg \gamma : \gamma \in \Gamma \} \vdash_{\mathsf{IPC}} \neg \neg \varphi \\ &\iff \{ \neg \neg \gamma \approx 1 : \gamma \in \Gamma \} \vDash_{\mathsf{HA}} \neg \neg \varphi \approx 1 \\ &\iff \mathbf{\tau}[\Gamma] \vDash_{\mathsf{HA}} \mathbf{\tau}(\varphi), \end{split}$$

where HA is the variety of Heyting algebras.

Observation

CPC admits an equational completeness theorem w.r.t. the variety of **Heyting** algebras (although certainly not the intended one).

Notably, the situation does not improve if we restrict to the case where τ(x) = {x ≈ 1}. Actually, there is no escape from nonstandard equational completeness theorems.

Sometimes **nonstandard** equational completeness theorems are the sole possible ones.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Proof.

Observation

 $\text{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Proof.

Suppose the contrary.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Proof.

Suppose the contrary. Then there exists a set of equations τ(x) witnessing an equational completeness theorem of CPC_{∧∨} w.r.t. the variety DL of distributive lattices.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

- Suppose the contrary. Then there exists a set of equations τ(x) witnessing an equational completeness theorem of CPC_{∧∨} w.r.t. the variety DL of distributive lattices.
- ► As all equations in a single variable are valid in DL, we get

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

- Suppose the contrary. Then there exists a set of equations τ(x) witnessing an equational completeness theorem of CPC_{∧∨} w.r.t. the variety DL of distributive lattices.
- ► As all equations in a single variable are valid in DL, we get

$$\mathsf{DL} \vDash \boldsymbol{\tau}(x)$$
, that is, $\emptyset \vDash_{\mathsf{DL}} \boldsymbol{\tau}(x)$.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Proof.

- Suppose the contrary. Then there exists a set of equations τ(x) witnessing an equational completeness theorem of CPC_{∧∨} w.r.t. the variety DL of distributive lattices.
- As all equations in a single variable are valid in DL, we get

$$\mathsf{DL} \vDash \boldsymbol{\tau}(x)$$
, that is, $\emptyset \vDash_{\mathsf{DL}} \boldsymbol{\tau}(x)$.

By the equational completeness theorem, Ø ⊨_{DL} τ(x) implies Ø ⊢_{CPC∧∨} x, which is of course false.

Observation

 $\mbox{CPC}_{\wedge\vee}$ does not admit any equational completeness theorem w.r.t. the variety of distributive lattices.

Proof.

- Suppose the contrary. Then there exists a set of equations τ(x) witnessing an equational completeness theorem of CPC_{∧∨} w.r.t. the variety DL of distributive lattices.
- As all equations in a single variable are valid in DL, we get

$$\mathsf{DL} \vDash \boldsymbol{\tau}(x)$$
, that is, $\emptyset \vDash_{\mathsf{DL}} \boldsymbol{\tau}(x)$.

By the equational completeness theorem, Ø ⊨_{DL} τ(x) implies Ø ⊢_{CPC∧∨} x, which is of course false. QED

 $CPC_{\wedge\vee}$ admits a (nonstandard) equational completeness theorem.

 $CPC_{\wedge\vee}$ admits a (nonstandard) equational completeness theorem.

Proof sketch.

 $CPC_{\wedge\vee}$ admits a (nonstandard) equational completeness theorem.

Proof sketch.

Consider the three-element algebra

$$oldsymbol{A}=ig\langle\{1,0^+,0^-\};\wedge,eeig
angle$$

 $CPC_{\wedge\vee}$ admits a (nonstandard) equational completeness theorem.

Proof sketch.

Consider the three-element algebra

$$oldsymbol{A}=\langle\{1,0^+,0^-\};\wedge,ee
angle
angle$$

with commutative operations defined by the tables

\wedge	0-	0+	1	\vee	0-	0+	1
0-	0+	0+	0+	0-	0+	0+	1
0+		0-	0+	0+		0-	1
1			1	1			1

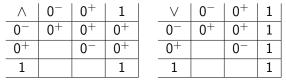
 $CPC_{\wedge\vee}$ admits a (nonstandard) equational completeness theorem.

Proof sketch.

Consider the three-element algebra

$$\boldsymbol{A} = \big\langle \{1, 0^+, 0^-\}; \wedge, \vee \big\rangle$$

with commutative operations defined by the tables



► Then CPC_{∧∨} admits an equational completeness theorem w.r.t. K := {A} witnessed by the set of equations

$$\boldsymbol{\tau}(\boldsymbol{x}) = \{ \boldsymbol{x} \approx \boldsymbol{x} \wedge \boldsymbol{x} \}.$$

A sufficient condition

Let \vdash be a logic.

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if

 $\delta(\boldsymbol{\varphi}, \vec{y}) \dashv \vdash \delta(\boldsymbol{\psi}, \vec{y}),$

for every formula $\delta(x, \vec{y})$.

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if

 $\delta(\boldsymbol{\varphi}, \vec{y}) \dashv \vdash \delta(\boldsymbol{\psi}, \vec{y}),$

for every formula $\delta(x, \vec{y})$. In this case, we write $\varphi \equiv_{\vdash} \psi$.

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if $\delta(\varphi, \vec{y}) \dashv \vdash \delta(\psi, \vec{y}),$

for every formula $\delta(x, \vec{y})$. In this case, we write $\varphi \equiv_{\vdash} \psi$.

► More concretely, in CPC we have

$$\begin{split} \varphi \equiv_{\mathsf{CPC}} \psi & \Longleftrightarrow \oslash \vdash_{\mathsf{CPC}} (\varphi \to \psi) \land (\psi \to \varphi) \\ & \Longleftrightarrow \varphi \dashv \vdash_{\mathsf{CPC}} \psi. \end{split}$$

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if $\delta(\varphi, \vec{y}) \dashv \vdash \delta(\psi, \vec{y}),$

for every formula $\delta(x, \vec{y})$. In this case, we write $\varphi \equiv_{\vdash} \psi$.

More concretely, in CPC we have

$$\begin{split} \varphi \equiv_{\mathsf{CPC}} \psi & \Longleftrightarrow \varnothing \vdash_{\mathsf{CPC}} (\varphi \to \psi) \land (\psi \to \varphi) \\ & \Longleftrightarrow \varphi \dashv \vdash_{\mathsf{CPC}} \psi. \end{split}$$

Definition

A logic \vdash is said to be **graph-based** if the arity of its connective is bounded above by **one** and, moreover, \vdash has at most one **unary** connective.

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if $\delta(\varphi, \vec{y}) \dashv \vdash \delta(\psi, \vec{y}),$

for every formula $\delta(x, \vec{y})$. In this case, we write $\varphi \equiv_{\vdash} \psi$.

More concretely, in CPC we have

$$\begin{split} \varphi \equiv_{\mathsf{CPC}} \psi & \Longleftrightarrow \varnothing \vdash_{\mathsf{CPC}} (\varphi \to \psi) \land (\psi \to \varphi) \\ & \Longleftrightarrow \varphi \dashv \vdash_{\mathsf{CPC}} \psi. \end{split}$$

Definition

A logic \vdash is said to be **graph-based** if the arity of its connective is bounded above by **one** and, moreover, \vdash has at most one **unary** connective.

Example. The $\langle \diamondsuit, 0, 1 \rangle$ -fragment of any modal logic is graph-based,

Let \vdash be a logic. Two formulas φ and ψ are logically equivalent if $\delta(\varphi, \vec{y}) \dashv \vdash \delta(\psi, \vec{y}),$

for every formula $\delta(x, \vec{y})$. In this case, we write $\varphi \equiv_{\vdash} \psi$.

More concretely, in CPC we have

$$\begin{split} \varphi \equiv_{\mathsf{CPC}} \psi & \Longleftrightarrow \varnothing \vdash_{\mathsf{CPC}} (\varphi \to \psi) \land (\psi \to \varphi) \\ & \Longleftrightarrow \varphi \dashv \vdash_{\mathsf{CPC}} \psi. \end{split}$$

Definition

A logic \vdash is said to be **graph-based** if the arity of its connective is bounded above by **one** and, moreover, \vdash has at most one **unary** connective.

Example. The $\langle \diamondsuit, 0, 1 \rangle$ -fragment of any modal logic is graph-based, while the $\langle \diamondsuit, \Box, 0, 1 \rangle$ -one is not.

Let \vdash a logic that is not graph-based.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $Var(\varphi) \cup Var(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

Proof.

Expand ⊢ with unary operations □ and ◇ behaving as the identity map.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

Proof.

Expand ⊢ with unary operations □ and ◇ behaving as the identity map. ⊢ and the new logic ⊢⁺ are term-equivalent.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

- Expand ⊢ with unary operations □ and ◇ behaving as the identity map. ⊢ and the new logic ⊢⁺ are term-equivalent.
- Furthermore, $\Box x \equiv_{\vdash^+} x \equiv_{\vdash^+} \Diamond x$.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

- Expand ⊢ with unary operations □ and ◇ behaving as the identity map. ⊢ and the new logic ⊢⁺ are term-equivalent.
- Furthermore, $\Box x \equiv_{\vdash^+} x \equiv_{\vdash^+} \Diamond x$.
- Hence, \vdash^+ admits an equational completeness theorem.

Let \vdash a logic that is not graph-based. If there are two distinct formulas φ and ψ such that

$$\varphi \equiv_{\vdash} \psi$$
 and $\operatorname{Var}(\varphi) \cup \operatorname{Var}(\psi) = \{x\}$,

then \vdash admits an equational completeness theorem.

 Ingredients: Combinatorics on subformulas trees and Maltsev Lemma on congruence generation.

Corollary

Every logic \vdash is **term-equivalent** to one admitting an equational completeness theorem.

- Expand ⊢ with unary operations □ and ◇ behaving as the identity map. ⊢ and the new logic ⊢⁺ are term-equivalent.
- Furthermore, $\Box x \equiv_{\vdash^+} x \equiv_{\vdash^+} \Diamond x$.
- Hence, \vdash^+ admits an equational completeness theorem. QED

The case of logics with theorems

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

 $\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi)$

where $\tau(x) \coloneqq \{x \approx \top\}$.

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi)$$

where $\boldsymbol{\tau}(x) \coloneqq \{x \approx \top\}$.

Theorem

Let \vdash a logic with a theorem ϵ such that $Var(\epsilon) \neq \emptyset$.

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi)$$

where $\boldsymbol{\tau}(x) \coloneqq \{x \approx \top\}$.

Theorem

Let \vdash a logic with a theorem ϵ such that $Var(\epsilon) \neq \emptyset$. Then \vdash admits an equational completeness theorem iff one of the following conditions holds:

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi)$$

where $\boldsymbol{\tau}(x) \coloneqq \{x \approx \top\}$.

Theorem

Let \vdash a logic with a theorem ϵ such that $Var(\epsilon) \neq \emptyset$. Then \vdash admits an equational completeness theorem iff one of the following conditions holds:

1. \vdash is graph-based and assertional; or

Definition

A logic \vdash is assertional if there is a class of algebras K with a term-definable element \top s.t. for all set of formulas $\Gamma \cup \{\varphi\}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \boldsymbol{\tau}[\Gamma] \vDash_{\mathsf{K}} \boldsymbol{\tau}(\varphi)$$

where $\tau(x) \coloneqq \{x \approx \top\}$.

Theorem

Let \vdash a logic with a theorem ϵ such that $Var(\epsilon) \neq \emptyset$. Then \vdash admits an equational completeness theorem iff one of the following conditions holds:

- 1. \vdash is graph-based and assertional; or
- 2. \vdash is not graph-based and there are distinct φ and ψ s.t.

 $\mathsf{Var}(\varphi) \cup \mathsf{Var}(\psi) = \{x\} \text{ and } \varphi \equiv_{\vdash} \psi.$

A logic \vdash is **protoalgebraic** if there is a set of formulas $\Delta(x, y)$ s.t.

 $\emptyset \vdash \Delta(x, x) \text{ and } x, \Delta(x, y) \vdash y.$

A logic \vdash is **protoalgebraic** if there is a set of formulas $\Delta(x, y)$ s.t.

 $\emptyset \vdash \Delta(x, x)$ and $x, \Delta(x, y) \vdash y$.

Example. Almost every logic with a respectable implication connective $x \to y$. To see this, take $\Delta := \{x \to y\}$.

A logic \vdash is **protoalgebraic** if there is a set of formulas $\Delta(x, y)$ s.t.

 $\emptyset \vdash \Delta(x, x) \text{ and } x, \Delta(x, y) \vdash y.$

Example. Almost every logic with a respectable implication connective $x \to y$. To see this, take $\Delta := \{x \to y\}$.

Theorem

A nontrivial protoalgebraic logic \vdash admits an equational completeness theorem iff

syntactic equality \neq logical equivalence in \vdash .

A logic \vdash is **protoalgebraic** if there is a set of formulas $\Delta(x, y)$ s.t.

 $\emptyset \vdash \Delta(x, x) \text{ and } x, \Delta(x, y) \vdash y.$

Example. Almost every logic with a respectable implication connective $x \to y$. To see this, take $\Delta := \{x \to y\}$.

Theorem

A nontrivial protoalgebraic logic \vdash admits an equational completeness theorem iff

syntactic equality \neq logical equivalence in \vdash .

While most protoalgebraic logics admit an equational completeness theorem, this might be necessarily nonstandard:

A logic \vdash is **protoalgebraic** if there is a set of formulas $\Delta(x, y)$ s.t.

 $\emptyset \vdash \Delta(x, x) \text{ and } x, \Delta(x, y) \vdash y.$

Example. Almost every logic with a respectable implication connective $x \to y$. To see this, take $\Delta := \{x \to y\}$.

Theorem

A nontrivial protoalgebraic logic \vdash admits an equational completeness theorem iff

syntactic equality \neq logical equivalence in \vdash .

While most protoalgebraic logics admit an equational completeness theorem, this might be necessarily nonstandard:

Observation

The local consequence of the modal system K (resp. K4, S4) does not admit an equational completeness theorem w.r.t. the variety of modal algebras (resp. of K4-algebras, resp. of interior algebras).

▶ The local consequence of the modal system K is defined as

 \blacktriangleright The local consequence of the modal system K is defined as

 $\Gamma \vdash_{\mathbf{K}}^{\mathscr{L}} \varphi \iff \text{for every Kripke frame } \langle W, R \rangle,$ valuation $v \colon \text{Var} \to W$, and world $w \in W$, if $w, v \Vdash \Gamma$, then $w, v \Vdash \varphi$.

Suppose, by contradiction, that $\vdash_{\mathbf{K}}^{\mathscr{L}}$ admits an equational completeness theorem w.r.t. the variety of modal algebras MA.

- Suppose, by contradiction, that $\vdash_{\mathbf{K}}^{\mathscr{L}}$ admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.

- Suppose, by contradiction, that $\vdash_{\mathbf{K}}^{\mathscr{L}}$ admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w, $v \Vdash \epsilon$ and w, $v \nvDash \delta$.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w, $v \Vdash \epsilon$ and w, $v \nvDash \delta$.

• Attach to $\langle W, R \rangle$ a new point w^+ that access everything.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w, $v \Vdash \epsilon$ and w, $v \nvDash \delta$.

► Attach to (W, R) a new point w⁺ that access everything. Call the new frame (W⁺, R⁺).

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w,
$$v \Vdash \epsilon$$
 and w, $v \nvDash \delta$.

- ► Attach to (W, R) a new point w⁺ that access everything. Call the new frame (W⁺, R⁺).
- Extend the valuation v to v^+ into $\langle W^+, R^+ \rangle$, stipulating that x holds at w^+ .

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w,
$$v \Vdash \epsilon$$
 and w, $v \nvDash \delta$.

- ► Attach to (W, R) a new point w⁺ that access everything. Call the new frame (W⁺, R⁺).
- Extend the valuation v to v^+ into $\langle W^+, R^+ \rangle$, stipulating that x holds at w^+ . Then

$$w^+$$
, $v^+ \Vdash x$ and w^+ , $v^+ \nvDash \Box(\epsilon \to \delta)$.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w,
$$v \Vdash \epsilon$$
 and w, $v \nvDash \delta$.

- Attach to ⟨W, R⟩ a new point w⁺ that access everything. Call the new frame ⟨W⁺, R⁺⟩.
- Extend the valuation v to v⁺ into (W⁺, R⁺), stipulating that x holds at w⁺. Then

$$w^+$$
, $v^+ \Vdash x$ and w^+ , $v^+ \nvDash \Box(\epsilon \to \delta)$.

▶ Thus, x, $\Box(\delta \to \delta) \nvDash_{\mathbf{K}}^{\mathscr{L}} \Box(\epsilon \to \delta)$.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w,
$$v \Vdash \epsilon$$
 and w, $v \nvDash \delta$.

- Attach to ⟨W, R⟩ a new point w⁺ that access everything. Call the new frame ⟨W⁺, R⁺⟩.
- Extend the valuation v to v⁺ into (W⁺, R⁺), stipulating that x holds at w⁺. Then

$$w^+$$
, $v^+ \Vdash x$ and w^+ , $v^+ \nvDash \Box(\epsilon \to \delta)$.

- Thus, $x, \Box(\delta \to \delta) \nvDash_{\mathbf{K}}^{\mathscr{L}} \Box(\epsilon \to \delta)$.
- On the other hand, since $\epsilon pprox \delta \in au$, we get

$$x, \Box(\delta \to \delta) \vdash^{\mathscr{L}}_{\mathbf{K}} \Box(\epsilon \to \delta),$$

a contradiction.

- Suppose, by contradiction, that ⊢^𝔅_K admits an equational completeness theorem w.r.t. the variety of modal algebras MA.
- ► This must be witnessed by some $\tau(x)$ containing an equation $\epsilon \approx \delta$ that fails in MA. Thus, w.l.o.g. $\epsilon \nvDash_{\mathbf{K}}^{\mathscr{L}} \delta$.
- ► Then there are a Kripke frame (W, R), a valuation v, and a world w ∈ W such that

w,
$$v \Vdash \epsilon$$
 and w, $v \nvDash \delta$.

- Attach to ⟨W, R⟩ a new point w⁺ that access everything. Call the new frame ⟨W⁺, R⁺⟩.
- Extend the valuation v to v⁺ into (W⁺, R⁺), stipulating that x holds at w⁺. Then

$$w^+$$
, $v^+ \Vdash x$ and w^+ , $v^+ \nvDash \Box(\epsilon \to \delta)$.

- Thus, $x, \Box(\delta \to \delta) \nvDash_{\mathbf{K}}^{\mathscr{L}} \Box(\epsilon \to \delta)$.
- On the other hand, since $\epsilon pprox \delta \in au$, we get

$$x, \Box(\delta \to \delta) \vdash^{\mathscr{L}}_{\mathbf{K}} \Box(\epsilon \to \delta),$$

a contradiction. **QED**

Computational aspects

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

Proof.

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

Proof.

• Take a basic connective $f(x_1, \ldots, x_k)$ and define

 $\Box x \coloneqq f(x,\ldots,x).$

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

Proof.

• Take a basic connective $f(x_1, \ldots, x_k)$ and define

$$\Box x \coloneqq f(x,\ldots,x).$$

▶ By local tabularity, there are nonnegative integers $m \leq n$ s.t.

$$\Box^m x \equiv_{\vdash} \Box^{n+1} x.$$

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

Proof.

• Take a basic connective $f(x_1, \ldots, x_k)$ and define

$$\Box x \coloneqq f(x,\ldots,x).$$

▶ By local tabularity, there are nonnegative integers $m \leq n$ s.t.

$$\Box^m x \equiv_{\vdash} \Box^{n+1} x.$$

By the sufficient condition, we are done.

A logic \vdash is **locally tabular** if for every $1 \leq n \in \omega$ there are only finitely many non-logically equivalent formulas in variables x_1, \ldots, x_n .

Example. Any logic induced by a class of matrices whose algebraic reducts belong to a locally finite variety.

Corollary

Every locally tabular logic \vdash that is not graph-based admits an equational completeness theorem.

Proof.

• Take a basic connective $f(x_1, \ldots, x_k)$ and define

$$\Box x \coloneqq f(x,\ldots,x).$$

▶ By local tabularity, there are nonnegative integers $m \leq n$ s.t.

$$\Box^m x \equiv_{\vdash} \Box^{n+1} x.$$

By the sufficient condition, we are done. QED

What about locally tabular graph-based logics?

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

The problem of determining whether a **locally tabular** logic admits an equational completeness theorem is decidable.

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

The problem of determining whether a **locally tabular** logic admits an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by a finite set of finite matrices or by a **finite Hilbert calculus**.

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

The problem of determining whether a **locally tabular** logic admits an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by a finite set of finite matrices or by a **finite Hilbert calculus**.

On the other hand, by coding the Halting Problem into equational completeness theorems we get:

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

The problem of determining whether a **locally tabular** logic admits an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by a finite set of finite matrices or by a **finite Hilbert calculus**.

On the other hand, by coding the Halting Problem into equational completeness theorems we get:

Theorem

The problem of determining whether a logic presented by a finite Hilbert calculus admits an equational completeness theorem is **undecidable**

- What about locally tabular graph-based logics?
- We have a (complicated) constructive description of those that admit an equational completeness theorem.

The problem of determining whether a **locally tabular** logic admits an equational completeness theorem is decidable.

Observation. In the above result logics can be presented either by a finite set of finite matrices or by a **finite Hilbert calculus**.

On the other hand, by coding the Halting Problem into equational completeness theorems we get:

Theorem

The problem of determining whether a logic presented by a finite Hilbert calculus admits an equational completeness theorem is **undecidable** (even for protoalgebraic logics).

Summary.

We characterized logics admitting an equational completeness theorem in the following settings:

We characterized logics admitting an equational completeness theorem in the following settings:

Locally tabular logics,

We characterized logics admitting an equational completeness theorem in the following settings:

Locally tabular logics, logics with theorems,

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

 Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

- Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;
- Undecidable for arbitrary (protoalgebraic) logics presented by a finite Hilbert calculus.

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

- Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;
- Undecidable for arbitrary (protoalgebraic) logics presented by a finite Hilbert calculus.

Open problems.

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

- Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;
- Undecidable for arbitrary (protoalgebraic) logics presented by a finite Hilbert calculus.

Open problems. Standard equational completeness theorem,

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

- Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;
- Undecidable for arbitrary (protoalgebraic) logics presented by a finite Hilbert calculus.

Open problems. Standard equational completeness theorem, complexity issues,

We characterized logics admitting an equational completeness theorem in the following settings:

 Locally tabular logics, logics with theorems, protoalgebraic logics.

The problem of determining whether a logic admits an equational completeness theorem is:

- Decidable for logics presented by a finite set of finite matrices and locally tabular logics presented by a finite Hilbert calculus;
- Undecidable for arbitrary (protoalgebraic) logics presented by a finite Hilbert calculus.

Open problems. Standard equational completeness theorem, complexity issues, logics lacking theorems etc.

Thank you very much for your attention!