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Let us fix the languages

commutative residuated lattice: A = 〈𝐴,∧,∨,&,→, t〉

FLe-algebra: B = 〈𝐵,∧,∨,&,→, f, t〉

FL+
e -algebra: C = 〈𝐵,∧,∨,&,→, f, t,⊥, >〉

By B− we denote f-free reduct of an FLe-algebra B

By A𝑎 we denote the FLe-algebra st. A−
𝑎 = A and 𝑎 = fA𝑎
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Łukasiewicz unbound

Consider algebra Lu = 〈R,∧,∨,&,→, 0, 1〉, where

𝑥 & 𝑦 = 𝑥 + 𝑦 − 1 𝑥 → 𝑦 = 1 − 𝑥 + 𝑦

Lu is involutive FLe-chain with the negation defined

¬𝑥 = 1 − 𝑥
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Łukasiewicz unbound vs. Lukasiewicz

Consider algebra  L = 〈[0, 1],∧,∨,&,→, 0, 1〉, where

𝑥 & 𝑦 = max(0, 𝑥 + 𝑦 − 1) 𝑥 → 𝑦 = min(1, 1 − 𝑥 + 𝑦)

 L is involutive integral FL+
e -chain with the negation and bounds defined

¬𝑥 = 1 − 𝑥 ⊥ = 0 > = 1
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Łukasiewicz unbound vs. Abel

Consider algebra R = 〈R,∧,∨,&,→, 0, 0〉, where

𝑥 & 𝑦 = 𝑥 + 𝑦 𝑥 → 𝑦 = −𝑥 + 𝑦

R is involutive FLe-chain with the negation defined

¬𝑥 = −𝑥
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Problem with f

R− and Lu− are isomorphic

BUT

R and Lu are NOT isomorphic

Note that Lu is isomorphic to R−
𝑓 for any 𝑓 < 1:

ℎ(𝑥) = 1 − 𝑥

𝑓
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WHY?
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A sidestep
PC, B. Grimau, C. Noguera, N. Smith: “These Degrees go to Eleven: Fuzzy Logics
and Graded Predicates” Under review or to appear (depending on who you ask)

We are defending there agains one of the usual attacks to “fuzzy” treatment of
vagueness:

Suppose we have associated comparative forms of graded predicates:
‘taller’, ‘heavier’, and ‘more acute’.
Natural proposal: 𝑎 is 𝐹er than 𝑏 iff 𝑎’s degree of 𝐹ness is greater than 𝑏’s
degree of 𝐹ness
Consider the first member in a sorites series for ‘tall’— Adam, who is
definitely tall.
Consider someone, Bob, who is even taller than Adam.
But Adam’s degree of tallness is already 1 on the standard fuzzy approach,
and so there is nowhere to go to make Bob’s degree of tallness greater than
Adam’s: there are no degrees above 1!
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Inspiration from This Is Spın̈al Tap (1984)
Nigel Tufnel: . . . the numbers all go to eleven. Look, right across the board, eleven,
eleven, eleven and
Marty DiBergi: Oh, I see. And most amps go up to ten?

NT: Exactly.
MD: Does that mean it’s louder? Is it any louder?
NT: Well, it’s one louder, isn’t it? It’s not ten. You see, most, most blokes, you know, be

playing at ten, you’re on ten here, all the way up, all the way up, all the way up,
you’re on ten on your guitar, where can you go from there? Where?

MD: I don’t know.
NT: Nowhere. Exactly. What we do is, if we need that extra push over the cliff, you

know what we do?
MD: Put it up to eleven.
NT: Eleven. Exactly. One louder.
MD: Why don’t you just make ten louder and make ten be the top number and make

that a little louder?
NT: [long pause] These go to eleven.
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Why not Abelian logic?

t

f

designated degrees

anti-designated degrees
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Back to math . . .
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Axiomatizing Łukasiewicz unbound logic

First question: which LU logic?

Observation:
�〈Lu, {𝑥 | 𝑥 ≥ 1}〉 is not finitary

So we start with:

FC(�〈Lu, {𝑥 | 𝑥 ≥ 1}〉)
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Recall: axiomatization of Abelian logic

First question: which Abelian logic?

FC(�〈R, {𝑥 | 𝑥 ≥ 0}〉)

((𝜑 → 𝜓) → 𝜓) → 𝜑

Ab = FLe + f → t

t → f

The completeness theorem: For each finite Γ we have:

Γ `Ab 𝜑 iff Γ �〈R, {𝑥 | 𝑥≥0}〉 𝜑
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Axiomatizing Łukasiewicz unbound logic

((𝜑 → 𝜓) → 𝜓) → 𝜑

Ab = FLe + f → t

t → f

((𝜑 → 𝜓) → 𝜓) → 𝜑

Lu = FLe +
𝜑 ∨ f I 𝜑

The completeness theorem: For each finite Γ we have:

Γ `LU 𝜑 iff Γ �〈Lu, {𝑥 | 𝑥≥1}〉 𝜑
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Some facts about the logic pAb = FLe + ((𝜑 → 𝜓) → 𝜓) → 𝜑

Note: Ab = pAb + t ↔ f and Lu = pAb + 𝜑 ∨ f I 𝜑

pAb proves

𝜑 & 𝜓 ↔ ¬(𝜑 → ¬𝜓) 𝜑 ∨ 𝜓 ↔ ((𝜑 → 𝜓) ∧ t → 𝜓)
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For Daniele:

pAb = FLe + [(𝜑 → 𝜓) ∧ t → 𝜓] → [(𝜓 → 𝜑) ∧ t → 𝜑]
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∨ is a disjunction in pAb (i.e., enjoys proof by case property; cf. not in FLe!)

pAb is semilinear logic

Bı́lková, Cintula, and Noguera Łukasiewicz unbound 18 / 21



Some facts about the logic pAb = FLe + ((𝜑 → 𝜓) → 𝜓) → 𝜑

Note: Ab = pAb + t ↔ f and Lu = pAb + 𝜑 ∨ f I 𝜑

pAb proves

𝜑 & 𝜓 ↔ ¬(𝜑 → ¬𝜓) 𝜑 ∨ 𝜓 ↔ ((𝜑 → 𝜓) ∧ t → 𝜓)

∨ is a disjunction in pAb (i.e., enjoys proof by case property; cf. not in FLe!)

pAb is semilinear logic

∨ is a disjunction in LU; due new rule is its own ∨-form

LU is semilinear logic and

`LU f → t 0LU t → f
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How do we prove our “main” result?

We show: Alg∗(pAb) = {A𝑎 | A is Abelian ℓ-group and 𝑎 ∈ 𝐴}

We recall: For each Abelian ℓ-group A we have A ∈ ISPPu(R−)

Therefore we can show:

Alg∗(pAb) = ISPPu({R−
𝑎 | 𝑎 ∈ 𝑅})

= ISPPu(Lu,R,R−
1 )

And thus it is easy to entail that

Alg∗(Lu) = ISPPu(Lu)

the rest is in the book . . .
including infinitary axiomatization by a variant of Hay rule . . .
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Bı́lková, Cintula, and Noguera Łukasiewicz unbound 19 / 21



How do we prove our “main” result?

We show: Alg∗(pAb) = {A𝑎 | A is Abelian ℓ-group and 𝑎 ∈ 𝐴}

We recall: For each Abelian ℓ-group A we have A ∈ ISPPu(R−)

Therefore we can show:

Alg∗(pAb) = ISPPu({R−
𝑎 | 𝑎 ∈ 𝑅}) = ISPPu(Lu,R,R−

1 )

And thus it is easy to entail that

Alg∗(Lu) = ISPPu(Lu)

the rest is in the book . . .
including infinitary axiomatization by a variant of Hay rule . . .
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Bounding Łukasiewicz unbound again (but a bit more loosely)

C = 〈R,∧,∨,&,→, 0, 1,−∞, +∞〉

𝑥 &C 𝑦 𝑦 = −∞ 𝑦 ∈ R 𝑦 = +∞
𝑥 = −∞ −∞ −∞ −∞
𝑥 ∈ R −∞ 𝑥 + 𝑦 − 1 +∞
𝑥 = +∞ −∞ +∞ +∞

𝑥 →C 𝑦 𝑦 = −∞ 𝑦 ∈ R 𝑦 = +∞
𝑥 = −∞ +∞ +∞ +∞
𝑥 ∈ R −∞ 1 − 𝑥 + 𝑦 +∞
𝑥 = +∞ −∞ −∞ +∞

C is a IUL-chain with the negation

¬C𝑥 = 𝑥 →C fC =


1 − 𝑥 for 𝑥 ∈ R
−∞ for 𝑥 = +∞
+∞ for 𝑥 = −∞
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Squeezing C into the real unit interval

Using suitable isomorphism of R and [0, 1] we can transform C into the
UL-algebra CR based on the cross ratio uninorm and its residuum:

𝑎 ◦CR 𝑏 =


𝑎𝑏

𝑎𝑏 + (1 − 𝑎) (1 − 𝑏) , if {𝑎, 𝑏} ≠ {0, 1},

0, otherwise,

Gabbay and Metcalfe in Fuzzy logics based on [0,1)-continuous uninorms (2007)
“almost” axiomatize this logic in a rather complex way . . .

Our conjecture: it is UL plus “restricted Abel axiom”:

(𝜓 → ⊥) ∨ (> → 𝜓) ∨ [((𝜑 → 𝜓) → 𝜓) → 𝜑]
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