

Game semantics for constructive modal logic

Matteo Acclavio, Davide Catta & Lutz Straßburger

LATD & MOSAIC

Game semantics for constructive modal logic

イロト イボト イヨト イヨト

Background

э

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

$$\mathcal{A} = \{1, a, b, c, d \ldots\}$$

$$\mathcal{F} := \mathcal{A} | \mathcal{F} \land \mathcal{F} | \mathcal{F} \supset \mathcal{F} | \Diamond \mathcal{F} | \Box \mathcal{F}$$

The modal logic CK is the smallest set of formulas containing:

- any instance of an intuitionistic theorem ;
- any instance of the axiom $\Box(A \supset B) \supset (\Box A) \supset (\Box B)$;
- any instance of the axiom $\Box(A \supset B) \supset (\diamond A) \supset (\diamond B)$

and closed for :

- modus ponens: if A and $A \supset B$ are in CK so is B;
- **necessitation**: if A is in CK so is $\Box A$.
- **substitution**: if A is in CK so is $A[B_1/a_1, \ldots, B_n/a_n]$

$$\frac{\overline{A} + \overline{A} \quad AX}{\overline{A} + \overline{A} \quad \overline{C} \quad$$

Theorem

There is a derivation \mathscr{D} of the sequent $\vdash A$ iff $A \in CK$.

Theorem

There is a procedure P that turns every derivation \mathcal{D} in which the cut rule is used in a derivation \mathcal{D}' of the same sequent in which the cut rule is never used.

2

Proof Semantics

 $\{\!\{-\}\!\}: \{ \text{ derivations } \} \rightarrow \{ \text{mathematical objects } \}$

 $\mathscr{D} \longrightarrow \{\!\{\mathcal{D}\}\!\}$

Denotational Semantics

 $\mathscr{D} \rightsquigarrow \mathscr{D}' \quad \Rightarrow \quad \{\!\!\{\mathscr{D}\}\!\!\} = \{\!\!\{\mathscr{D}'\}\!\!\}$

Game semantics for constructive modal logic

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Denotational Semantics for Constructives Modal Logics (Bellin-De Paiva-Ritter)

 $\{\lambda \text{-termes}\}\$ $\beta \text{-reduction}$

Morally

{Proofs} Cut elimination

Game semantics for constructive modal logic

3

くロト (行) () () () ()

Game Semantics

3

ヘロト ヘ部ト ヘミト ヘミト

 $\{\text{Derivations}\} \rightarrow \{\text{Winning Strategies}\}$

 $\mathscr{D}_{F} \longrightarrow \text{Winning Strategy over}[[F]]$

- [[F]] is a finite graph representing F;
- A strategy is a particular set of plays over [[F]];
- A play is a particular sequence of nodes of [[F]].

イロト 不得 とくき とくき とうせい

Arenas

Let \mathcal{G} and \mathcal{H} two bi-colored DAGS and let \emptyset be the empty DAG.

 $[[a]] = a \qquad [[1]] = \emptyset \qquad [[A \land B]] = [[A]] + [[B]] \qquad [[A \supset B]] = [[A]] \rightarrow [[B]]$

 $\llbracket \Box A \rrbracket = \Box \rightsquigarrow \llbracket A \rrbracket \qquad \llbracket \Diamond A \rrbracket = \Diamond \rightsquigarrow \llbracket A \rrbracket$

・ロト ・四ト ・ヨト ・ヨト

Arenas

Each vertex v of an arena has a polarity. Such a polarity, positive (\circ) or negative (\bullet) , is the same as that of the occurrence of the atomic formula (or modality) of A that labels v.

An **intuitionistic move** in $\llbracket F \rrbracket$ is a node v of $\llbracket F \rrbracket$ labeled by a propositional variable. It is a **P**-move if v is of negative polarity and an **O**-move otherwise

An **intuitionistic play** for F is a finite alternate sequence of moves of $\llbracket F \rrbracket$ such that:

- O-starts : the first node of the sequence is an arena-root.
- any move w of the play, but the first, is justified by a preceding move made by the other player : w→v in the arena ;
- each **O**-move is justified by the immediately preceding **P**-move.
- each P-move w has the same label as the immediately preceding
 O-move: if v is labeled by a so is w.

イロト イポト イヨト イヨト 三日

э

イロト イロト イヨト イヨト

12/30

э

イロト イロト イヨト イヨト

э

< ---> < --->

A strategy is a plan of action.

For any move that my Opponent can make, there is a move I can make that will eventually led me to victory.

Winning Strategy

If σ and ρ are two plays over $\llbracket A \rrbracket$, we say that ρ is a **successor** of σ iff $\rho = \sigma v$ for some $v \in \llbracket A \rrbracket$.

A **Winning Strategy** S for F is a non-empty finite prefix-closed set of plays over $\llbracket F \rrbracket$ such that :

O-completeness: if $p \in S$ has even length, then **any** successor of p belongs to S;

P-determinism and totality: if $p \in S$ has odd length, then **exactly one** successor of p belongs to S.

イロト イポト イヨト イヨト 三日

A strategy for
$$((a \land a) \supset b) \supset a \supset b$$

ヘロア 人間 アメヨアメヨア

consider the following strategy over $\llbracket \Box a \supset a \rrbracket$

... this formula is not a theorem of CK !

Well batched strategies

the address of a vertex $v \in [[A]]$ is the sequence of modalities $add_v = m_1, \ldots m_k$ in the path in the formula tree of *F* connecting the node *v* to the root of *F*.

A play p is **well batched** whenever it respects the following:

- every move of p is either a ◊-modality or a propositional variable.
- if $p = \sigma v^{O} w^{P}$ then $|add_{w}| = |add_{v}|$;

A winning strategy is well batched iff any of its plays is well batched.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

... it is not enough, consider $\llbracket (\Box a \supset \Box b) \supset \Box (a \supset b) \rrbracket$

э

イロト イロト イヨト イヨト

... it is not enough, consider $\llbracket (\Box a \supset \Box b) \supset \Box (a \supset b) \rrbracket$

this is a well batched winning strategy

э

イロト イロト イヨト イヨト

$$-\frac{A_1^{\bullet},\ldots,A_n^{\bullet} \vdash C^{\circ}}{(\Box_1 A_1)^{\bullet},\ldots,(\Box_n A_n)^{\bullet} \vdash (\Box C)^{\circ}} \mathsf{K}^{\Box} - \frac{B_1^{\bullet},\ldots,B_m^{\bullet},D^{\bullet} \vdash F^{\circ}}{(\Box_1 B_1)^{\bullet},\ldots,(\Box_n B_m)^{\bullet},(\diamond D)^{\bullet} \vdash (\diamond F)^{\circ}} \mathsf{K}^{\diamond}$$

Game semantics for constructive modal logic

$$\frac{A_1^{\mathbf{P}}, \dots, A_n^{\mathbf{P}} \vdash C^{\mathbf{O}}}{(\Box_1 A_1)^{\mathbf{P}}, \dots (\Box_n A_n)^{\mathbf{P}} \vdash (\Box C)^{\mathbf{O}}} \mathsf{K}^{\Box} \qquad \frac{B_1^{\mathbf{P}}, \dots, B_m^{\mathbf{P}}, D^{\mathbf{P}} \vdash F^{\mathbf{O}}}{(\Box_1 B_1)^{\mathbf{P}}, \dots, (\Box_n B_m)^{\mathbf{P}}, (\diamondsuit D)^{\mathbf{P}} \vdash (\diamondsuit F)^{\mathbf{O}}} \mathsf{K}^{\diamondsuit}$$

Game semantics for constructive modal logic

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

... again on $\llbracket (\Box a \supset \Box b) \supset \Box (a \supset b) \rrbracket$

문어 문

given two modalities *m* and *m'* and a play p, we write $m \stackrel{p}{\sim} m'$ whenever $m = \operatorname{add}_{k}^{v}$, $m' = \operatorname{add}_{k}^{v'}$ where *v* and *v'* are two consecutive moves in p and *v'* is a **P**-move.

□□		□□	
b_0	<i>b</i> ₁	a_0	a ₁
0	Р	ο	Р

the reflexive, transitive and symmetric closure of the relation $\stackrel{p}{\sim}$ contains two positive modalities .

Winning modal strategies

Let S be a winning, well batched strategy. We say that S is **well framed** iff for any $p \in S$, any $\stackrel{p}{\sim}$ -class is of the form $\{m_1^P, \dots, m_n^P, m^O\}$

A winning well framed strategy S is a **modal** strategy iff for any $\sigma \in S$ for any modal node m^0 appearing in the address of some move v of σ

• if
$$m = \Box$$
 then $m' = \Box$ for any $m' \stackrel{p}{\sim} m$;

2 if $m = \diamond$ then there is a unique $m'^{\mathbf{P}} = \diamond$ such that $m \stackrel{\mathsf{p}}{\sim} m'$.

Results

Game semantics for constructive modal logic

Theorem

Given two modal strategies S for $A \supset B$ and \mathcal{T} for $B \supset C$ we can define their composition S; \mathcal{T} which is a modal strategy for $B \supset C$. Moreover $(S; \mathcal{T})$; $\mathcal{R} = S$; $(\mathcal{T}; \mathcal{R})$.

Theorem

There is a function $\{\!\{-\}\!\}$ mapping any derivation \mathcal{D} of $\vdash A$ to a winning strategy $\{\!\{\mathcal{D}\}\!\}$ for A dubbed its interpretation. Moreover:

- If D reduces to D' in 0 or more steps of cut elimination, then {{D}} = {{D'}}.
- 2 for any winning strategy S, there is a proof \mathcal{D} such that $S = \{ \mathcal{D} \}$.

イロト 不得 トイヨト イヨト 二日

Perspectives

Déduction naturelle pour CK

27/30

æ

 $\mathsf{CT} = \mathsf{CK} \cup \{ (\Box A \supset A) \land (A \supset \Diamond A) | \text{ for any } A \in \mathcal{F} \}$

 $\mathsf{CS4} = \mathsf{CT} \cup \{ (\Box A \supset \Box \Box A) \land (\Diamond \Diamond A \supset \Diamond A) | \text{ for any } A \in \mathcal{F} \}$

Game semantics for constructive modal logic

 Matteo Acclavio, Davide Catta et Lutz Straßburger (2021), Game Semantics for Constructive Modal Logics. In: Das A., Negri S. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021. Lecture Notes in Computer Science, vol 12842. Springer,

Cham.https://doi.org/10.1007/978-3-030-86059-2_25

• My PhD thesis. Proofs as games and games as proofs: dialogical semantics for logic and natural language.

< ロ > < 同 > < 回 > < 回 > 、 回 > 、 回

Thank You !