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Overview

1. bi-IPC, bi-Heyting algebras and bi-Esakia spaces

2. The bi-intuitionistic linear calculus bi-LC

3. Jankov formulas for bi-Gödel algebras

4. Locally tabular extensions of bi-LC



Classical and intuitionistic propositional calculus

• CPC := classical propositional calculus.

• IPC := intuitionistic propositional calculus.

• IPC ⊆ L ⊆ CPC is an intermediate logic.

CPC

IPC

L

The lattice Λ(IPC) of
intermediate logics
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Boolean and Heyting algebras

• HA := the class of Heyting algebras.

• BA := the class of Boolean algebras.

HA

BA

The lattice of
non-trivial subvarieties

of HA
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Bi-intuitionistic propositional calculus

bi-IPC

The bi-intuitionistic propositional calculus bi-IPC is obtained by adding the binary connective
← to the language of IPC, eight new axioms, and one additional inference rule.

The negation of a formula φ is defined by ¬φ := φ→ ⊥.

The co-negation of a formula φ is defined by ∼φ := ⊤ ← φ.

New axioms

• p →
(
q ∨ (p ← q)

)
• ¬(p ← q)→ (p → q)

• etc

New inference rule

• Double negation: “from φ infer ¬∼φ”
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Bi-intuitionistic propositional calculus

The Kripke semantics of bi-IPC provides a transparent interpretation of co-implication:

M, x |= p ← q ⇐⇒ ∃y ≤ x (M, y |= p and M, y ̸|= q).

p ← q
x

p
y

4/40



Bi-intermediate logics

• We have bi-IPC ⊊ CPC, since

(p ← q)↔ (p ∧ ¬q) ∈ CPC and p ∨ ¬p ̸∈ bi-IPC.

• bi-IPC ⊆ L ⊆ CPC is a bi-intermediate logic.

CPC

bi-IPC

L

The lattice Λ(bi-IPC)
of bi-intermediate

logics
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Bi-Heyting algebras

Bi-Heyting algebra

A Heyting algebra A = (A,∨,∧,→,←, 0, 1) equipped with an additional binary operation ←,
satisfying, for all a, b, c ∈ A:

a← b ≤ c ⇐⇒ a ≤ b ∨ c .

In other words, a Heyting algebra A whose order-dual is also a Heyting algebra.

• bi-HA := the class of bi-Heyting algebras = {A ∈ bi-HA : A |= bi-IPC}.

• bi-HA |= φ ⇐⇒ bi-IPC ⊢ φ.
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Algebraic completeness of bi-IPC

CPC

bi-IPC

L

The lattice Λ(bi-IPC) of
bi-intermediate logics

∼−−→op

bi-HA

BA

VL

The lattice of non-trivial
subvarieties of bi-HA
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Bi-Esakia spaces

Bi-Esakia space

A topological space X = (X , τ,≤) equipped with a partial order satisfying:

• X is compact;

• PSA: ∀x , y ∈ X
(
x ≰ y =⇒ ∃U ∈ ClopUp(X ) (x ∈ U and y /∈ U)

)
;

• ∀U ∈ Clop(X )
(
↓U ∈ Clop(X )

)
;

• ∀U ∈ Clop(X )
(
↑U ∈ Clop(X )

)
.
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Bi-Esakia morphisms

Bi-p-morphism

A map between posets f : (X ,≤)→ (W ,≤) satisfying the following conditions:

• Order-preserving: ∀x , y ∈ X
(
x ≤ y =⇒ f (x) ≤ f (y)

)
;

• Up: ∀x ∈ X , ∀w ∈ W
(
f (x) ≤ w =⇒ ∃y ∈ ↑x (f (y) = w)

)
;

• Down: ∀x ∈ X , ∀w ∈ W
(
w ≤ f (x) =⇒ ∃y ∈ ↓x (f (y) = w)

)
.

Bi-Esakia morphism

A continuous bi-p-morphism f : X → Y between bi-Esakia spaces.
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Bi-Esakia duality

Theorem (Esakia)

The categories of bi-Heyting algebras and bi-Esakia spaces are dually equivalent.

• Given A ∈ bi-HA, we call A∗ := (Spec(A), τ,⊆) the bi-Esakia dual of A.

• Given a bi-Esakia space X , we call X ∗ := (ClopUp(X ),∪,∩,→,←,∅,X ) ∈ bi-HA the
algebraic dual of X , where

U → V := X \ ↓(U \ V ) and U ← V := ↑(U \ V ).

• For all A ∈ bi-HA and all formulas φ, we have

A |= φ ⇐⇒ A∗ |= φ.
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The lattice Λ(bi-IPC) of bi-intermediate logics

CPC

bi-IPC
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The lattice Λ(bi-IPC) of bi-intermediate logics

CPC

bi-IPC

?
?

?
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Wolter’s translation

CPC

bi-IPC

?
?

?

The lattice Λ(bi-IPC) of
bi-intermediate logics

∼−−→
f

f (CPC)

f (bi-IPC) = Grz.t

The lattice of consistent normal
tense logics containing Grz.t
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The sublattice Λ(L)

CPC

bi-IPC

L

red := Λ(L) = the sublattice of consistent extensions of the bi-intermediate logic L.
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The bi-intuitionistic linear calculus bi-LC



Bi-intuitionistic linear calculus

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by Gödel’s
prelinearity axiom.

bi-LC := bi-IPC+ (p → q) ∨ (q → p).

CPC

bi-IPC

bi-LC
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Bi-intuitionistic linear calculus

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by the Gödel
-Dummett axiom.

bi-LC := bi-IPC+ (p → q) ∨ (q → p).

• LC := IPC+ (p → q) ∨ (q → p) has been thoroughly investigated.

• bi-LC is the (bi-intuitionistic) logic of co-trees.

• If L ∈ Λ(bi-LC), then in the deductive system ⊢L, we can reason by reductio ad
absurdum, since

Γ ⊢L φ ⇐⇒ Γ ∪ {∼¬∼φ} is inconsistent.
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Bi-Gödel algebras

Bi-Gödel algebras

The bi-Heyting algebras axiomatized by bi-LC = bi-IPC+ (p → q) ∨ (q → p).

bi-GA := Vbi-LC = {A ∈ bi-HA : A |= bi-LC}.

bi-GA is a semi-simple discriminator variety with EDPC.
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Algebraic completeness of bi-IPC

CPC

bi-IPC

L

The lattice Λ(bi-IPC) of
bi-intermediate logics

∼−−→op

bi-HA

BA

VL

The lattice of non-trivial
subvarieties of bi-HA
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Algebraic completeness of bi-LC

CPC

bi-LC

L

The lattice Λ(bi-LC) of
consistent extensions of bi-LC

∼−−→op

bi-GA

BA

VL

The lattice of non-trivial
subvarieties of bi-GA
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Co-trees and co-forests

In a poset (W ,≤), sets of the form ↑w := {u ∈ W : w ≤ u} are called principal upsets.

Co-tree

A poset (W ,≤) with a greatest element, called the co-root, and whose principal upsets are
chains.

r

zw

v u

The co-tree F1

a

b

c

The co-tree F2
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Co-trees and co-forests

Co-forest

A disjoint union of co-trees.

r

zw

v u

a

b

c

The co-forest F = F1
⊎
F2
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Bi-Gödel algebras and co-forests

Bi-Gödel algebras

The bi-Heyting algebras axiomatized by bi-LC = bi-IPC+ (p → q) ∨ (q → p).

bi-GA := Vbi-LC = {A ∈ bi-HA : A |= bi-LC}.

Theorem
• A is a bi-Gödel algebra ⇐⇒ A∗ is a bi-Esakia co-forest.

• A is a subdirectly irreducible (SI) bi-Gödel algebra ⇐⇒ A∗ is a bi-Esakia co-tree.
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Finite model property

Theorem

bi-LC has the finite model property, that is, a formula φ is a theorem of bi-LC iff φ is valid in
all finite (bi-Esakia) co-trees.

The proof of this theorem makes crucial use of the fact that the HA-reduct of bi-GA,

GA := {A ∈ HA : A |= IPC+ (p → q) ∨ (q → p)}

is locally finite, i.e., that every finitely generated Gödel algebra is finite.
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Jankov formulas for bi-Gödel algebras



Jankov formulas

If A ∈ bi-GA is finite and SI, then the Jankov formula of A encodes the full bi-Heyting
structure of A.

J (A) := ¬∼Γ→ ¬
∧ {

pa ← pb : a, b ∈ A and a ≰ b
}

Γ :=
∧
{pa∨b ↔ (pa ∨ pb) : (a, b) ∈ A2} ∧

∧
{pa∧b ↔ (pa ∧ pb) : (a, b) ∈ A2}∧∧

{pa→b ↔ (pa → pb) : (a, b) ∈ A2} ∧
∧
{pa←b ↔ (pa ← pb) : (a, b) ∈ A2}∧

∧ {p0 ↔ ⊥} ∧ {p1 ↔ ⊤}.
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Jankov formulas

Jankov Lemma

Let A,B ∈ bi-GA. If A is finite and SI, then

B ̸|= J (A) ⇐⇒ A ∈ SH(B).

Consequently, if V is a variety of bi-Gödel algebras, then

V ̸|= J (A) ⇐⇒ A ∈ V.

In other words, J (A) axiomatizes (relative to bi-LC) the least variety of bi-Gödel algebras
that does not contain A.
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Applications of Jankov formulas

Splitting logics of Λ(bi-LC)

Given L, L′ ∈ Λ(bi-LC), we call (L, L′) a splitting pair for Λ(bi-LC) if Λ(bi-LC) = ↑L⊎ ↓L′.
In this case, we say that L is a splitting logic of Λ(bi-LC).

CPC

bi-LC

L

↑L

↓L′

L′

25/40



Applications of Jankov formulas

Splitting Theorem

L is a splitting logic of Λ(bi-LC) ⇐⇒ L is axiomatized by a single Jankov formula.

CPC

bi-LC

bi-LC+ J (A)

Log(A)
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Applications of Jankov formulas

Theorem

The cardinality of Λ(bi-LC) is 2ℵ0 .

This result can be derived from the existence of a countably infinite ≤-antichain of finite
co-trees, where

F ≤ G ⇐⇒ ∃f : G ↠ F.
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Applications of Jankov formulas

T0 T1
T2 Tn
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Locally tabular extensions of bi-LC



Local tabularity and the finite combs

Locally tabular

A logic L ∈ Λ(bi-LC) is locally tabular iff VL = {A ∈ bi-GA : A |= L} is locally finite, that is,
if every finitely generated algebra of VL is finite.
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Local tabularity and the finite combs

Locally tabular

A logic L ∈ Λ(bi-LC) is locally tabular if VL = {A ∈ bi-GA : A |= L} is locally finite, that is,
if every finitely generated algebra of VL is finite.

Finite combs

For each positive n ∈ ω, we define the n-comb as the co-tree Cn := (Cn,≤n) depicted below.

x ′1

x1
x ′2

x2

xn

x ′n
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A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

Finite combs

For each positive n ∈ ω, we define the n-comb as the co-tree Cn := (Cn,≤n) depicted below.

x ′1

x1
x ′2

x2

xn

x ′n
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Lemma 1

Lemma 1

Let A ∈ bi-GA. For all positive n ∈ ω, we have

A∗ does not admit Cn as a subposet ⇐⇒ A |= J (C∗n).

While the proof of =⇒ is straightforward, the reverse implication requires a very lengthy and
technical proof.
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Lemma 2

Lemma 2

If a variety V ⊆ bi-GA contains all the algebraic duals of the finite combs, then V is not
locally finite.

We proved that for each positive n ∈ ω, C∗n is 1-generated as a bi-Gödel algebra.

Since there are arbitrarily large algebraic duals of finite combs contained in V, the 1-generated
free V-algebra must be infinite, and therefore V cannot be locally finite.
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Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

The first step is finding a bound for the depth of A∗.

As A is an m-generated bi-Gödel algebra, there are distinguished upsets of A∗, B1, . . . ,Bm+1,
such that a bound for the depth of A∗ can be derived from a bound for the depths of the Bi .
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Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

Let i ≤ m+ 1 and suppose there exists a chain a1 < a2 < · · · < an+1 ∈ Bi .

a1

a2

an

an+1

34/40



Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

Bi is a distinguished upset.

a1
x1

x ′1

a2

an

an+1
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xn
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Lemma 3

Lemma 3
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Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

Therefore, there is no chain of size n+ 1 in Bi , i.e., dp(Bi ) ≤ n, as desired.

35/40



Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

36/40



Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A∗ does not admit Cn as a subposet =⇒ |A| ≤ k(n,m).

Lemma 1

Let A ∈ bi-GA. For all positive n ∈ ω, we have

A∗ does not admit Cn as a subposet ⇐⇒ A |= J (C∗n).

36/40



Lemma 3

Lemma 3

For all positive n,m ∈ ω, there exists k(n,m) ∈ ω such that if A ∈ bi-GASI , then

A is m-generated and A |= J (C∗n) =⇒ |A| ≤ k(n,m).

Lemma 1

Let A ∈ bi-GA. For all positive n ∈ ω, we have

A∗ does not admit Cn as a subposet ⇐⇒ A |= J (C∗n).

36/40



A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.
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A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

=⇒ We prove the contrapositive. Suppose J (C∗n) /∈ L, for all positive n ∈ ω.

By the Jankov Lemma, we have C∗n ∈ VL for all positive n ∈ ω.

Jankov Lemma

J (A) /∈ L ⇐⇒ VL ̸|= J (A) ⇐⇒ A ∈ VL

37/40



A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

=⇒ We prove the contrapositive. Suppose J (C∗n) /∈ L, for all positive n ∈ ω.

By the Jankov Lemma, we have C∗n ∈ VL for all positive n ∈ ω.

By Lemma 2, VL is not locally finite, i.e., L is not locally tabular, as desired.

Lemma 2

If a variety V ⊆ bi-GA contains all the algebraic duals of the finite combs, then V is not
locally finite.
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A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

⇐= Suppose J (C∗n) ∈ L, for some positive n ∈ ω. By duality, VL |= J (C∗n).
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A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

⇐= Suppose J (C∗n) ∈ L, for some positive n ∈ ω. By duality, VL |= J (C∗n).

In particular, for each positive m ∈ ω, if A ∈ VL is SI and m-generated, then A |= J (C∗n).

By Lemma 3, |A| ≤ k(n,m). As m and A were arbitrary, the Theorem below yields that L is
locally tabular.

Theorem

A variety V (of a finite type) is locally finite iff

∀m ∈ ω, ∃k(m) ∈ ω, ∀A ∈ VSI

(
A is m-generated =⇒ |A| ≤ k(m)

)
.
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A criterion for local tabularity

Theorem

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ J (C∗n) ∈ L, for some positive n ∈ ω.

Corollary

If L ∈ Λ(bi-LC), then L is locally tabular ⇐⇒ L ⊈ Log(Finite combs).

Consequently, the logic of the finite combs is the only pre-locally tabular extension of bi-LC,
i.e., Log(Finite combs) is not locally tabular, but all of its proper extensions are so.
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LC VS bi-LC

LC = IPC+ (p → q) ∨ (q → p) bi-LC = bi-IPC+ (p → q) ∨ (q → p)

A ∈ GASI ⇐⇒ A∗ is a SRC A ∈ bi-GASI ⇐⇒ A∗ is a co-tree

LC has the FMP bi-LC has the FMP

LC is locally tabular bi-LC is not locally tabular

All extensions of LC have the FMP ??

Λ(LC) is a chain of order-type (ω + 1)∂ Λ(bi-LC) is of size 2ℵ0 and is not a chain
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