Bi-intermediate logics of trees and co-trees

Nick Bezhanishvili, Miguel Martins and Tommaso Moraschini

LATD 2022

September 5, 2022

Overview

1. bi-IPC, bi-Heyting algebras and bi-Esakia spaces
2. The bi-intuitionistic linear calculus bi-LC
3. Jankov formulas for bi-Gödel algebras
4. Locally tabular extensions of bi-LC

Classical and intuitionistic propositional calculus

- CPC $:=$ classical propositional calculus.
- IPC $:=$ intuitionistic propositional calculus.
- IPC $\subseteq L \subseteq \mathbf{C P C}$ is an intermediate logic.

The lattice Λ (IPC) of intermediate logics

Boolean and Heyting algebras

- HA $:=$ the class of Heyting algebras.
- $\mathbf{B A}:=$ the class of Boolean algebras.

The lattice of non-trivial subvarieties of HA

Bi-intuitionistic propositional calculus

bi-IPC

The bi-intuitionistic propositional calculus bi-IPC is obtained by adding the binary connective \leftarrow to the language of IPC, eight new axioms, and one additional inference rule.

The negation of a formula φ is defined by $\neg \varphi:=\varphi \rightarrow \perp$.
The co-negation of a formula φ is defined by $\sim \varphi:=\top \leftarrow \varphi$.

New axioms

- $p \rightarrow(q \vee(p \leftarrow q))$
- $\neg(p \leftarrow q) \rightarrow(p \rightarrow q)$
- etc

New inference rule

- Double negation: "from φ infer $\neg \sim \varphi$ "

Bi-intuitionistic propositional calculus

The Kripke semantics of bi-IPC provides a transparent interpretation of co-implication:

$$
\mathfrak{M}, x \mid=p \leftarrow q \Longleftrightarrow \exists y \leq x(\mathfrak{M}, y \models p \text { and } \mathfrak{M}, y \not \vDash q)
$$

Bi-intermediate logics

- We have bi-IPC $\subsetneq \mathbf{C P C}$, since

$$
(p \leftarrow q) \leftrightarrow(p \wedge \neg q) \in \mathbf{C P C} \text { and } p \vee \neg p \notin \mathbf{b i - I P C} .
$$

- bi-IPC $\subseteq L \subseteq$ CPC is a bi-intermediate logic.

The lattice Λ (bi-IPC) of bi-intermediate logics

Bi-Heyting algebras

Bi-Heyting algebra

A Heyting algebra $\mathfrak{A}=(A, \vee, \wedge, \rightarrow, \leftarrow, 0,1)$ equipped with an additional binary operation \leftarrow, satisfying, for all $a, b, c \in A$:

$$
a \leftarrow b \leq c \Longleftrightarrow a \leq b \vee c .
$$

In other words, a Heyting algebra \mathfrak{A} whose order-dual is also a Heyting algebra.

- bi-HA $:=$ the class of bi-Heyting algebras $=\{\mathfrak{A} \in \mathbf{b i}-\mathbf{H A}: \mathfrak{A} \models \mathbf{b i}-I P C\}$.
- $\mathbf{b i}-\mathbf{H A} \models \varphi \Longleftrightarrow \mathbf{b i}-\mathbf{I P C} \vdash \varphi$.

Algebraic completeness of bi-IPC

Bi-Esakia spaces

Bi-Esakia space

A topological space $\mathcal{X}=(X, \tau, \leq)$ equipped with a partial order satisfying:

- \mathcal{X} is compact;
- PSA: $\forall x, y \in X(x \not \leq y \Longrightarrow \exists U \in \operatorname{Clop} U p(\mathcal{X})(x \in U$ and $y \notin U))$;
- $\forall U \in \operatorname{Clop}(\mathcal{X})(\downarrow U \in \operatorname{Clop}(\mathcal{X}))$;
- $\forall U \in \operatorname{Clop}(\mathcal{X})(\uparrow U \in \operatorname{Clop}(\mathcal{X}))$.

Bi-Esakia morphisms

Bi-p-morphism

A map between posets $f:(X, \leq) \rightarrow(W, \leq)$ satisfying the following conditions:

- Order-preserving: $\forall x, y \in X(x \leq y \Longrightarrow f(x) \leq f(y))$;
- Up: $\forall x \in X, \forall w \in W(f(x) \leq w \Longrightarrow \exists y \in \uparrow x(f(y)=w))$;
- Down: $\forall x \in X, \forall w \in W(w \leq f(x) \Longrightarrow \exists y \in \downarrow x(f(y)=w))$.

Bi-Esakia morphism

A continuous bi-p-morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ between bi-Esakia spaces.

Bi-Esakia duality

Theorem (Esakia)

The categories of bi-Heyting algebras and bi-Esakia spaces are dually equivalent.

- Given $\mathfrak{A} \in \mathbf{b i}-\mathbf{H A}$, we call $\mathfrak{A}_{*}:=(\operatorname{Spec}(\mathfrak{A}), \tau, \subseteq)$ the bi-Esakia dual of \mathfrak{A}.
- Given a bi-Esakia space \mathcal{X}, we call $\mathcal{X}^{*}:=(\operatorname{Clop} U p(\mathcal{X}), \cup, \cap, \rightarrow, \leftarrow, \varnothing, X) \in \mathbf{b i} \mathbf{H} \mathbf{H}$ the algebraic dual of \mathcal{X}, where

$$
U \rightarrow V:=X \backslash \downarrow(U \backslash V) \text { and } U \leftarrow V:=\uparrow(U \backslash V) .
$$

- For all $\mathfrak{A} \in \mathbf{b i} \mathbf{- H A}$ and all formulas φ, we have

$$
\mathfrak{A} \models \varphi \Longleftrightarrow \mathfrak{A}_{*} \models \varphi
$$

The lattice Λ (bi-IPC) of bi-intermediate logics

The lattice Λ (bi-IPC) of bi-intermediate logics

Wolter's translation

The lattice Λ (bi-IPC) of bi-intermediate logics

The lattice of consistent normal tense logics containing Grz.t

Wolter's translation

The lattice Λ (bi-IPC) of bi-intermediate logics

The lattice of consistent normal tense logics containing Grz.t

The sublattice $\Lambda(L)$

red $:=\Lambda(L)=$ the sublattice of consistent extensions of the bi-intermediate logic L.

The bi-intuitionistic linear calculus bi-LC

Bi-intuitionistic linear calculus

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by Gödel's prelinearity axiom.

$$
\text { bi-LC }:=\mathbf{b i - I P C}+(p \rightarrow q) \vee(q \rightarrow p) .
$$

Bi-intuitionistic linear calculus

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by the Gödel -Dummett axiom.

$$
\mathbf{b i}-\mathrm{LC}:=\mathbf{b i}-\mathrm{IPC}+(p \rightarrow q) \vee(q \rightarrow p)
$$

- LC $:=\mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)$ has been thoroughly investigated.
- bi-LC is the (bi-intuitionistic) logic of co-trees.
- If $L \in \Lambda$ (bi-LC), then in the deductive system \vdash_{L}, we can reason by reductio ad absurdum, since

$$
\Gamma \vdash_{L} \varphi \Longleftrightarrow \Gamma \cup\{\sim \neg \sim \varphi\} \text { is inconsistent. }
$$

Bi-Gödel algebras

Bi-Gödel algebras
The bi-Heyting algebras axiomatized by bi-LC $=\mathbf{b i}-\mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)$.

$$
\mathbf{b i}-\mathbf{G A}:=\mathbf{V}_{\mathbf{b i}-\mathbf{L c}}=\{\mathfrak{A} \in \mathbf{b i}-\mathbf{H A}: \mathfrak{A} \mid=\mathbf{b i}-\mathbf{L C}\} .
$$

bi-GA is a semi-simple discriminator variety with EDPC.

Algebraic completeness of bi-IPC

Algebraic completeness of bi-LC

The lattice Λ (bi-LC) of consistent extensions of bi-LC

BA
The lattice of non-trivial subvarieties of bi-GA

Co-trees and co-forests

In a poset (W, \leq), sets of the form $\uparrow w:=\{u \in W: w \leq u\}$ are called principal upsets.

Co-tree

A poset (W, \leq) with a greatest element, called the co-root, and whose principal upsets are chains.

The co-tree \mathfrak{F}_{1}

The co-tree \mathfrak{F}_{2}

Co-trees and co-forests

Co-forest

A disjoint union of co-trees.

The co-forest $\mathfrak{F}=\mathfrak{F}_{1} \biguplus \mathfrak{F}_{2}$

Bi-Gödel algebras and co-forests

Bi-Gödel algebras

The bi-Heyting algebras axiomatized by bi-LC $=\mathbf{b i} \mathbf{- I P C}+(p \rightarrow q) \vee(q \rightarrow p)$.

$$
\mathbf{b i}-\mathbf{G A}:=\mathbf{V}_{\mathbf{b i}-\mathbf{L c}}=\{\mathfrak{A} \in \mathbf{b i} \mathbf{- H A}: \mathfrak{A} \models \mathbf{b i}-\mathbf{L C}\} .
$$

Theorem

$\bullet \mathfrak{A}$ is a bi-Gödel algebra $\Longleftrightarrow \mathfrak{A}_{*}$ is a bi-Esakia co-forest.

- \mathfrak{A} is a subdirectly irreducible (SI) bi-Gödel algebra $\Longleftrightarrow \mathfrak{A}_{*}$ is a bi-Esakia co-tree.

Finite model property

Theorem

bi-LC has the finite model property, that is, a formula φ is a theorem of $\mathbf{b i}$-LC iff φ is valid in all finite (bi-Esakia) co-trees.

The proof of this theorem makes crucial use of the fact that the HA-reduct of bi-GA,

$$
\mathbf{G A}:=\{\mathfrak{A} \in \mathbf{H A}: \mathfrak{A} \models \mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)\}
$$

is locally finite, i.e., that every finitely generated Gödel algebra is finite.

Jankov formulas for bi-Gödel algebras

Jankov formulas

If $\mathfrak{A} \in \mathbf{b i} \mathbf{- G A}$ is finite and SI , then the Jankov formula of \mathfrak{A} encodes the full bi-Heyting structure of \mathfrak{A}.

$$
\mathcal{J}(\mathfrak{A}):=\neg \sim \Gamma \rightarrow \neg \bigwedge\left\{p_{a} \leftarrow p_{b}: a, b \in A \text { and } a \not \leq b\right\}
$$

$$
\begin{aligned}
\Gamma:= & \bigwedge \\
& \left\{p_{\mathrm{a} \vee b} \leftrightarrow\left(p_{a} \vee p_{b}\right):(a, b) \in A^{2}\right\} \wedge \bigwedge\left\{p_{\mathrm{a} \wedge b} \leftrightarrow\left(p_{a} \wedge p_{b}\right):(a, b) \in A^{2}\right\} \wedge \\
& \bigwedge\left\{p_{a \rightarrow b} \leftrightarrow\left(p_{a} \rightarrow p_{b}\right):(a, b) \in A^{2}\right\} \wedge \bigwedge\left\{p_{a \leftarrow b} \leftrightarrow\left(p_{a} \leftarrow p_{b}\right):(a, b) \in A^{2}\right\} \wedge \\
& \wedge\left\{p_{0} \leftrightarrow \perp\right\} \wedge\left\{p_{1} \leftrightarrow \top\right\} .
\end{aligned}
$$

Jankov formulas

Jankov Lemma

Let $\mathfrak{A}, \mathfrak{B} \in$ bi-GA. If \mathfrak{A} is finite and SI , then

$$
\mathfrak{B} \not \models \mathcal{J}(\mathfrak{A}) \Longleftrightarrow \mathfrak{A} \in \mathbb{S H}(\mathfrak{B}) .
$$

Consequently, if \mathbf{V} is a variety of bi-Gödel algebras, then

$$
\mathbf{V} \not \models \mathcal{J}(\mathfrak{A}) \Longleftrightarrow \mathfrak{A} \in \mathbf{V}
$$

In other words, $\mathcal{J}(\mathfrak{A})$ axiomatizes (relative to bi-LC) the least variety of bi-Gödel algebras that does not contain \mathfrak{A}.

Applications of Jankov formulas

Splitting logics of Λ (bi-LC)

Given $L, L^{\prime} \in \Lambda(\mathbf{b i}-\mathbf{L C})$, we call $\left(L, L^{\prime}\right)$ a splitting pair for $\Lambda(\mathbf{b i - L C})$ if $\Lambda(\mathbf{b i - L C})=\uparrow L \uplus \downarrow L^{\prime}$. In this case, we say that L is a splitting logic of $\Lambda(\mathbf{b i}-\mathbf{L C})$.

Applications of Jankov formulas

Splitting Theorem

L is a splitting logic of $\Lambda(\mathbf{b i}-\mathbf{L C}) \Longleftrightarrow L$ is axiomatized by a single Jankov formula.

Applications of Jankov formulas

Theorem

The cardinality of $\Lambda(\mathbf{b i}-\mathbf{L C})$ is $2^{\aleph_{0}}$.

This result can be derived from the existence of a countably infinite \leq-antichain of finite co-trees, where

$$
\mathfrak{F} \leq \mathfrak{G} \Longleftrightarrow \exists f: \mathfrak{G} \rightarrow \mathfrak{F}
$$

Applications of Jankov formulas

Locally tabular extensions of bi-LC

Local tabularity and the finite combs

Locally tabular

A logic $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$ is locally tabular iff $\mathbf{V}_{L}=\{\mathfrak{A} \in \mathbf{b i}-\mathbf{G A}: \mathfrak{A} \models L\}$ is locally finite, that is, if every finitely generated algebra of \mathbf{V}_{L} is finite.

Local tabularity and the finite combs

Locally tabular

A logic $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$ is locally tabular if $\mathbf{V}_{L}=\{\mathfrak{A} \in \mathbf{b i} \mathbf{- G A}: \mathfrak{A} \models L\}$ is locally finite, that is, if every finitely generated algebra of \mathbf{V}_{L} is finite.

Finite combs

For each positive $n \in \omega$, we define the n-comb as the co-tree $\mathfrak{C}_{n}:=\left(C_{n}, \leq_{n}\right)$ depicted below.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.

Finite combs

For each positive $n \in \omega$, we define the n-comb as the co-tree $\mathfrak{C}_{n}:=\left(C_{n}, \leq_{n}\right)$ depicted below.

Lemma 1

Lemma 1

Let $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A}$. For all positive $n \in \omega$, we have
\mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longleftrightarrow \mathfrak{A} \mid=\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.

While the proof of \Longrightarrow is straightforward, the reverse implication requires a very lengthy and technical proof.

Lemma 2

Lemma 2

If a variety $\mathbf{V} \subseteq$ bi-GA contains all the algebraic duals of the finite combs, then \mathbf{V} is not locally finite.

We proved that for each positive $n \in \omega, \mathfrak{C}_{n}^{*}$ is 1 -generated as a bi-Gödel algebra.
Since there are arbitrarily large algebraic duals of finite combs contained in \mathbf{V}, the 1-generated free \mathbf{V}-algebra must be infinite, and therefore \mathbf{V} cannot be locally finite.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G} \mathbf{A}_{S I}$, then

$$
\mathfrak{A} \text { is m-generated and } \mathfrak{A}_{*} \text { does not admit } \mathfrak{C}_{n} \text { as a subposet } \Longrightarrow|\mathfrak{A}| \leq k(n, m) .
$$

The first step is finding a bound for the depth of \mathfrak{A}_{*}.
As \mathfrak{A} is an m-generated bi-Gödel algebra, there are distinguished upsets of $\mathfrak{A}_{*}, B_{1}, \ldots, B_{m+1}$, such that a bound for the depth of \mathfrak{A}_{*} can be derived from a bound for the depths of the B_{i}.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G} \mathbf{A}_{S I}$, then
\mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Let $i \leq m+1$ and suppose there exists a chain $a_{1}<a_{2}<\cdots<a_{n+1} \in B_{i}$.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G} \mathbf{A}_{S I}$, then
\mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.
B_{i} is a distinguished upset.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G} \mathbf{A}_{S I}$, then
\mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.
B_{i} is a distinguished upset.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G} \mathbf{A}_{S I}$, then \mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A}{ }_{S I}$, then \mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Therefore, there is no chain of size $n+1$ in B_{i}, i.e., $d p\left(B_{i}\right) \leq n$, as desired.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A} A_{S I}$, then
\mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A}{ }_{S I}$, then \mathfrak{A} is m-generated and \mathfrak{A}_{*} does not admit \mathfrak{C}_{n} as a subposet $\Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Lemma 1

Let $\mathfrak{A} \in \mathbf{b i} \mathbf{- G A}$. For all positive $n \in \omega$, we have

$$
\mathfrak{A}_{*} \text { does not admit } \mathfrak{C}_{n} \text { as a subposet } \Longleftrightarrow \mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \text {. }
$$

Lemma 3

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A}{ }_{S I}$, then \mathfrak{A} is m-generated and $\mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

Lemma 1

Let $\mathfrak{A} \in$ bi-GA. For all positive $n \in \omega$, we have

$$
\mathfrak{A}_{*} \text { does not admit } \mathfrak{C}_{n} \text { as a subposet } \Longleftrightarrow \mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \text {. }
$$

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longrightarrow We prove the contrapositive. Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \notin L$, for all positive $n \in \omega$.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longrightarrow We prove the contrapositive. Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \notin L$, for all positive $n \in \omega$. By the Jankov Lemma, we have $\mathfrak{C}_{n}^{*} \in \mathbf{V}_{L}$ for all positive $n \in \omega$.

Jankov Lemma

$$
\mathcal{J}(\mathfrak{A}) \notin L \Longleftrightarrow \mathbf{V}_{L} \not \equiv \mathcal{J}(\mathfrak{A}) \Longleftrightarrow \mathfrak{A} \in \mathbf{V}_{L}
$$

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longrightarrow We prove the contrapositive. Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \notin L$, for all positive $n \in \omega$.
By the Jankov Lemma, we have $\mathfrak{C}_{n}^{*} \in \mathbf{V}_{L}$ for all positive $n \in \omega$.
By Lemma 2, \mathbf{V}_{L} is not locally finite, i.e., L is not locally tabular, as desired.

Lemma 2

If a variety $\mathbf{V} \subseteq$ bi-GA contains all the algebraic duals of the finite combs, then \mathbf{V} is not locally finite.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longleftarrow Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_{L} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longleftarrow Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_{L} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.
In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_{L}$ is SI and m-generated, then $\mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longleftarrow Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_{L} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.
In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_{L}$ is SI and m-generated, then $\mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$. By Lemma 3, $|\mathfrak{A}| \leq k(n, m)$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{b i}-\mathbf{G A} A_{S I}$, then \mathfrak{A} is m-generated and $\mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \Longrightarrow|\mathfrak{A}| \leq k(n, m)$.

A criterion for local tabularity

Theorem

If $L \in \Lambda(\mathbf{b i}-\mathbf{L C})$, then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.
\Longleftarrow Suppose $\mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_{L} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.
In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_{L}$ is SI and m-generated, then $\mathfrak{A} \models \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right)$.
By Lemma 3, $|\mathfrak{A}| \leq k(n, m)$. As m and \mathfrak{A} were arbitrary, the Theorem below yields that L is locally tabular.

Theorem

A variety \mathbf{V} (of a finite type) is locally finite iff

$$
\forall m \in \omega, \exists k(m) \in \omega, \forall \mathfrak{A} \in \mathbf{V}_{S I}(\mathfrak{A} \text { is m-generated } \Longrightarrow|\mathfrak{A}| \leq k(m))
$$

A criterion for local tabularity

Theorem

If $L \in \Lambda$ (bi-LC), then L is locally tabular $\Longleftrightarrow \mathcal{J}\left(\mathfrak{C}_{n}^{*}\right) \in L$, for some positive $n \in \omega$.

Corollary

If $L \in \Lambda$ (bi-LC), then L is locally tabular $\Longleftrightarrow L \nsubseteq \log$ (Finite combs).

Consequently, the logic of the finite combs is the only pre-locally tabular extension of bi-LC, i.e., \log (Finite combs) is not locally tabular, but all of its proper extensions are so.

LC VS bi-LC

$\mathbf{L C}=\mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)$	$\mathbf{b i - L C}=\mathbf{b i - I P C}+(p \rightarrow q) \vee(q \rightarrow p)$
$\mathfrak{A} \in \mathbf{G A}_{S I} \Longleftrightarrow \mathfrak{A}_{*}$ is a SRC	$\mathfrak{A} \in \mathbf{b i - G A} \mathbf{S I}^{\prime} \Longleftrightarrow \mathfrak{A}_{*}$ is a co-tree
$\mathbf{L C}$ has the FMP	$\mathbf{b i - L C}$ has the FMP
$\mathbf{L C}$ is locally tabular	$\mathbf{b i - L C}$ is not locally tabular
All extensions of LC have the FMP	$? ?$
$\Lambda(\mathbf{L C})$ is a chain of order-type $(\omega+1)^{\partial}$	$\Lambda(\mathbf{b i}-\mathbf{L C})$ is of size $2^{\aleph_{0}}$ and is not a chain

Thank You!

