Bi-intermediate logics of trees and co-trees

Nick Bezhanishvili, Miguel Martins and Tommaso Moraschini

LATD 2022

September 5, 2022

- 1. **bi-IPC**, bi-Heyting algebras and bi-Esakia spaces
- 2. The bi-intuitionistic linear calculus **bi-LC**
- 3. Jankov formulas for bi-Gödel algebras
- 4. Locally tabular extensions of **bi-LC**

Classical and intuitionistic propositional calculus

• **CPC** := classical propositional calculus.

• **IPC** := intuitionistic propositional calculus.

• IPC $\subseteq L \subseteq$ CPC is an intermediate logic.

The lattice $\Lambda(\mathbf{IPC})$ of intermediate logics

• **HA** := the class of Heyting algebras.

• **BA** := the class of Boolean algebras.

non-trivial subvarieties of **HA**

bi-IPC

The bi-intuitionistic propositional calculus **bi-IPC** is obtained by adding the binary connective \leftarrow to the language of **IPC**, eight new axioms, and one additional inference rule.

The negation of a formula φ is defined by $\neg \varphi \coloneqq \varphi \rightarrow \bot$.

The co-negation of a formula φ is defined by $\sim \varphi \coloneqq \top \leftarrow \varphi$.

New axioms

- $p \rightarrow (q \lor (p \leftarrow q))$
- $\neg(p \leftarrow q) \rightarrow (p \rightarrow q)$

New inference rule

• Double negation: "from φ infer $\neg \sim \varphi$ "

• etc

Bi-intuitionistic propositional calculus

The Kripke semantics of **bi-IPC** provides a transparent interpretation of co-implication:

$$\mathfrak{M}, x \models p \leftarrow q \iff \exists y \leq x \ (\mathfrak{M}, y \models p \text{ and } \mathfrak{M}, y \not\models q).$$

• We have **bi-IPC** \subsetneq **CPC**, since

$$(p \leftarrow q) \leftrightarrow (p \land \neg q) \in \mathsf{CPC} \text{ and } p \lor \neg p \notin \mathsf{bi-IPC}$$

• **bi-IPC** $\subseteq L \subseteq$ **CPC** is a bi-intermediate logic.

logics

5/40

Bi-Heyting algebras

Bi-Heyting algebra

A Heyting algebra $\mathfrak{A} = (A, \lor, \land, \rightarrow, \leftarrow, 0, 1)$ equipped with an additional binary operation \leftarrow , satisfying, for all $a, b, c \in A$:

$$a \leftarrow b \leq c \iff a \leq b \lor c.$$

In other words, a Heyting algebra $\mathfrak A$ whose order-dual is also a Heyting algebra.

• **bi-HA** := the class of bi-Heyting algebras = $\{\mathfrak{A} \in \mathbf{bi-HA} : \mathfrak{A} \models \mathbf{bi-IPC}\}$.

• bi-HA
$$\models \varphi \iff$$
 bi-IPC $\vdash \varphi$.

Algebraic completeness of **bi-IPC**

Bi-Esakia space

A topological space $\mathcal{X} = (X, \tau, \leq)$ equipped with a partial order satisfying:

- \mathcal{X} is compact;
- <u>PSA:</u> $\forall x, y \in X (x \leq y \implies \exists U \in ClopUp(\mathcal{X}) (x \in U \text{ and } y \notin U));$
- $\forall U \in Clop(\mathcal{X}) \ (\downarrow U \in Clop(\mathcal{X}));$
- $\forall U \in Clop(\mathcal{X}) \ (\uparrow U \in Clop(\mathcal{X})).$

Bi-Esakia morphisms

Bi-p-morphism

A map between posets $f : (X, \leq) \to (W, \leq)$ satisfying the following conditions:

- Order-preserving: $\forall x, y \in X \ (x \le y \implies f(x) \le f(y));$
- Up: $\forall x \in X, \forall w \in W (f(x) \le w \implies \exists y \in \uparrow x (f(y) = w));$
- <u>Down</u>: $\forall x \in X, \forall w \in W (w \le f(x) \implies \exists y \in \downarrow x (f(y) = w)).$

Bi-Esakia morphism

A continuous bi-p-morphism $f: \mathcal{X} \to \mathcal{Y}$ between bi-Esakia spaces.

Theorem (Esakia)

The categories of bi-Heyting algebras and bi-Esakia spaces are dually equivalent.

- Given $\mathfrak{A} \in \mathsf{bi-HA}$, we call $\mathfrak{A}_* := (Spec(\mathfrak{A}), \tau, \subseteq)$ the bi-Esakia dual of \mathfrak{A} .
- Given a bi-Esakia space \mathcal{X} , we call $\mathcal{X}^* \coloneqq (ClopUp(\mathcal{X}), \cup, \cap, \rightarrow, \leftarrow, \emptyset, X) \in \mathbf{bi-HA}$ the algebraic dual of \mathcal{X} , where

$$U \to V \coloneqq X \setminus \downarrow (U \setminus V) \text{ and } U \leftarrow V \coloneqq \uparrow (U \setminus V).$$

• For all $\mathfrak{A} \in \mathbf{bi}$ -HA and all formulas φ , we have

$$\mathfrak{A}\models\varphi\iff\mathfrak{A}_{*}\models\varphi.$$

The lattice $\Lambda(\mathbf{bi-IPC})$ of bi-intermediate logics

The lattice $\Lambda(\mathbf{bi-IPC})$ of bi-intermediate logics

Wolter's translation

Wolter's translation

The sublattice $\Lambda(L)$

red := $\Lambda(L)$ = the sublattice of consistent extensions of the bi-intermediate logic L.

The bi-intuitionistic linear calculus bi-LC

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by Gödel's prelinearity axiom.

$$\mathsf{bi-LC} := \mathsf{bi-IPC} + (p \to q) \lor (q \to p).$$

bi-LC

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by the Gödel -Dummett axiom.

$$\mathsf{bi-LC} \coloneqq \mathsf{bi-IPC} + (p \rightarrow q) \lor (q \rightarrow p).$$

- LC := IPC + $(p \rightarrow q) \lor (q \rightarrow p)$ has been thoroughly investigated.
- **bi-LC** is the (bi-intuitionistic) logic of co-trees.
- If L ∈ Λ(bi-LC), then in the deductive system ⊢_L, we can reason by reductio ad absurdum, since

$$\Gamma \vdash_L \varphi \iff \Gamma \cup \{ \sim \neg \sim \varphi \} \text{ is inconsistent.}$$

Bi-Gödel algebras

The bi-Heyting algebras axiomatized by **bi-LC** = **bi-IPC** + $(p \rightarrow q) \lor (q \rightarrow p)$.

$$\mathsf{bi} ext{-}\mathsf{GA}\coloneqq\mathsf{V}_{\mathsf{bi} ext{-}\mathsf{LC}}=\{\mathfrak{A}\in\mathsf{bi} ext{-}\mathsf{HA}\colon\mathfrak{A}\models\mathsf{bi} ext{-}\mathsf{LC}\}.$$

bi-GA is a semi-simple discriminator variety with EDPC.

Algebraic completeness of **bi-IPC**

Algebraic completeness of **bi-LC**

In a poset (W, \leq) , sets of the form $\uparrow w := \{u \in W : w \leq u\}$ are called principal upsets.

Co-tree

A poset (W, \leq) with a greatest element, called the co-root, and whose principal upsets are chains.

Co-forest

A disjoint union of co-trees.

The co-forest $\mathfrak{F}=\mathfrak{F}_1 \biguplus \mathfrak{F}_2$

Bi-Gödel algebras and co-forests

Bi-Gödel algebras

The bi-Heyting algebras axiomatized by $bi-LC = bi-IPC + (p \rightarrow q) \lor (q \rightarrow p)$.

$$\mathsf{bi} ext{-}\mathsf{GA} := \mathsf{V}_{\mathsf{bi} ext{-}\mathsf{LC}} = \{\mathfrak{A} \in \mathsf{bi} ext{-}\mathsf{HA} \colon \mathfrak{A} \models \mathsf{bi} ext{-}\mathsf{LC}\}.$$

Theorem

- \mathfrak{A} is a bi-Gödel algebra $\iff \mathfrak{A}_*$ is a bi-Esakia co-forest.
- \mathfrak{A} is a subdirectly irreducible (SI) bi-Gödel algebra $\iff \mathfrak{A}_*$ is a bi-Esakia co-tree.

Theorem

bi-LC has the finite model property, that is, a formula φ is a theorem of **bi-LC** iff φ is valid in all finite (bi-Esakia) co-trees.

The proof of this theorem makes crucial use of the fact that the HA-reduct of bi-GA,

$$\mathsf{GA} := \{\mathfrak{A} \in \mathsf{HA} \colon \mathfrak{A} \models \mathsf{IPC} + (p \to q) \lor (q \to p)\}$$

is locally finite, i.e., that every finitely generated Gödel algebra is finite.

Jankov formulas for bi-Gödel algebras

If $\mathfrak{A} \in \mathbf{bi}$ -GA is finite and SI, then the Jankov formula of \mathfrak{A} encodes the full bi-Heyting structure of \mathfrak{A} .

$$\mathcal{J}(\mathfrak{A}) \coloneqq \neg \sim \Gamma \to \neg \bigwedge \left\{ p_a \leftarrow p_b \colon a, b \in A \text{ and } a \nleq b \right\}$$

$$\begin{split} \Gamma &:= \bigwedge \{ p_{a \lor b} \leftrightarrow (p_a \lor p_b) \colon (a, b) \in A^2 \} \land \bigwedge \{ p_{a \land b} \leftrightarrow (p_a \land p_b) \colon (a, b) \in A^2 \} \land \\ & \bigwedge \{ p_{a \to b} \leftrightarrow (p_a \to p_b) \colon (a, b) \in A^2 \} \land \bigwedge \{ p_{a \leftarrow b} \leftrightarrow (p_a \leftarrow p_b) \colon (a, b) \in A^2 \} \land \\ & \land \{ p_0 \leftrightarrow \bot \} \land \{ p_1 \leftrightarrow \top \}. \end{split}$$

Jankov Lemma

Let $\mathfrak{A}, \mathfrak{B} \in \mathbf{bi}$ -GA. If \mathfrak{A} is finite and SI, then

$$\mathfrak{B}\not\models \mathcal{J}(\mathfrak{A})\iff \mathfrak{A}\in \mathbb{SH}(\mathfrak{B}).$$

Consequently, if \boldsymbol{V} is a variety of bi-Gödel algebras, then

$$\mathbf{V} \not\models \mathcal{J}(\mathfrak{A}) \iff \mathfrak{A} \in \mathbf{V}.$$

In other words, $\mathcal{J}(\mathfrak{A})$ axiomatizes (relative to **bi-LC**) the least variety of bi-Gödel algebras that does not contain \mathfrak{A} .

Splitting logics of $\Lambda(bi-LC)$

Given $L, L' \in \Lambda(\text{bi-LC})$, we call (L, L') a splitting pair for $\Lambda(\text{bi-LC})$ if $\Lambda(\text{bi-LC}) = \uparrow L \uplus \downarrow L'$. In this case, we say that L is a splitting logic of $\Lambda(\text{bi-LC})$.

Splitting Theorem

L is a splitting logic of $\Lambda(bi-LC) \iff L$ is axiomatized by a single Jankov formula.

Theorem

The cardinality of $\Lambda(bi-LC)$ is 2^{\aleph_0} .

This result can be derived from the existence of a countably infinite \leq -antichain of finite co-trees, where

$$\mathfrak{F} \leq \mathfrak{G} \iff \exists f \colon \mathfrak{G} \twoheadrightarrow \mathfrak{F}.$$

Locally tabular extensions of bi-LC

Local tabularity and the finite combs

Locally tabular

A logic $L \in \Lambda(bi-LC)$ is *locally tabular* iff $V_L = \{\mathfrak{A} \in bi-GA : \mathfrak{A} \models L\}$ is *locally finite*, that is, if every finitely generated algebra of V_L is finite.

Local tabularity and the finite combs

Locally tabular

A logic $L \in \Lambda(bi-LC)$ is *locally tabular* if $V_L = \{\mathfrak{A} \in bi-GA : \mathfrak{A} \models L\}$ is *locally finite*, that is, if every finitely generated algebra of V_L is finite.

Finite combs

For each positive $n \in \omega$, we define the *n*-comb as the co-tree $\mathfrak{C}_n := (C_n, \leq_n)$ depicted below.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

Finite combs

For each positive $n \in \omega$, we define the *n*-comb as the co-tree $\mathfrak{C}_n := (C_n, \leq_n)$ depicted below.

Lemma 1

Let $\mathfrak{A} \in \mathbf{bi}$ -GA. For all positive $n \in \omega$, we have

 \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\iff \mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

While the proof of \implies is straightforward, the reverse implication requires a very lengthy and technical proof.

Lemma 2

If a variety $\bm{V}\subseteq \bm{bi}\textbf{-}\bm{G}\bm{A}$ contains all the algebraic duals of the finite combs, then \bm{V} is not locally finite.

We proved that for each positive $n \in \omega$, \mathfrak{C}_n^* is 1-generated as a bi-Gödel algebra.

Since there are arbitrarily large algebraic duals of finite combs contained in V, the 1-generated free V-algebra must be infinite, and therefore V cannot be locally finite.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -**GA**_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

The first step is finding a bound for the depth of \mathfrak{A}_* .

As \mathfrak{A} is an *m*-generated bi-Gödel algebra, there are distinguished upsets of \mathfrak{A}_* , B_1, \ldots, B_{m+1} , such that a bound for the depth of \mathfrak{A}_* can be derived from a bound for the depths of the B_i .

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -**GA**_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

Let $i \leq m+1$ and suppose there exists a chain $a_1 < a_2 < \cdots < a_{n+1} \in B_i$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -GA_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

B_i is a distinguished upset.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -GA_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

 B_i is a distinguished upset.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi-GA}_{SI}$, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -**GA**_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

Therefore, there is no chain of size n + 1 in B_i , i.e., $dp(B_i) \le n$, as desired.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -**GA**_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -GA_{SI}, then

 \mathfrak{A} is *m*-generated and \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\implies |\mathfrak{A}| \leq k(n, m)$.

Lemma 1

Let $\mathfrak{A} \in \mathbf{bi}$ -GA. For all positive $n \in \omega$, we have

 \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\iff \mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -GA_{SI}, then

 \mathfrak{A} is *m*-generated and $\mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*) \implies |\mathfrak{A}| \le k(n, m).$

Lemma 1

Let $\mathfrak{A} \in \mathbf{bi}$ -GA. For all positive $n \in \omega$, we have

 \mathfrak{A}_* does not admit \mathfrak{C}_n as a subposet $\iff \mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

 \implies We prove the contrapositive. Suppose $\mathcal{J}(\mathfrak{C}_n^*) \notin L$, for all positive $n \in \omega$.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

- \implies We prove the contrapositive. Suppose $\mathcal{J}(\mathfrak{C}_n^*) \notin L$, for all positive $n \in \omega$.
- By the Jankov Lemma, we have $\mathfrak{C}_n^* \in \mathbf{V}_L$ for all positive $n \in \omega$.

Jankov Lemma

$$\mathcal{J}(\mathfrak{A}) \notin L \iff \mathbf{V}_L \not\models \mathcal{J}(\mathfrak{A}) \iff \mathfrak{A} \in \mathbf{V}_L$$

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

- \implies We prove the contrapositive. Suppose $\mathcal{J}(\mathfrak{C}_n^*) \notin L$, for all positive $n \in \omega$.
- By the Jankov Lemma, we have $\mathfrak{C}_n^* \in \mathbf{V}_L$ for all positive $n \in \omega$.
- By Lemma 2, V_L is not locally finite, i.e., L is not locally tabular, as desired.

Lemma 2

If a variety $\textbf{V}\subseteq\textbf{bi-GA}$ contains all the algebraic duals of the finite combs, then V is not locally finite.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

 \blacksquare Suppose $\mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_L \models \mathcal{J}(\mathfrak{C}_n^*)$.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

 \blacksquare Suppose $\mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_L \models \mathcal{J}(\mathfrak{C}_n^*)$.

In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_L$ is SI and *m*-generated, then $\mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

Suppose $\mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_L \models \mathcal{J}(\mathfrak{C}_n^*)$.

In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_L$ is SI and *m*-generated, then $\mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

By Lemma 3, $|\mathfrak{A}| \leq k(n, m)$.

Lemma 3

For all positive $n, m \in \omega$, there exists $k(n, m) \in \omega$ such that if $\mathfrak{A} \in \mathbf{bi}$ -**GA**_{SI}, then

 \mathfrak{A} is *m*-generated and $\mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*) \implies |\mathfrak{A}| \le k(n, m).$

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

Suppose $\mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$. By duality, $\mathbf{V}_L \models \mathcal{J}(\mathfrak{C}_n^*)$.

In particular, for each positive $m \in \omega$, if $\mathfrak{A} \in \mathbf{V}_L$ is SI and *m*-generated, then $\mathfrak{A} \models \mathcal{J}(\mathfrak{C}_n^*)$.

By Lemma 3, $|\mathfrak{A}| \leq k(n, m)$. As *m* and \mathfrak{A} were arbitrary, the Theorem below yields that *L* is locally tabular.

Theorem

A variety V (of a finite type) is locally finite iff

 $\forall m \in \omega, \exists k(m) \in \omega, \forall \mathfrak{A} \in \mathbf{V}_{SI} \ (\mathfrak{A} \text{ is m-generated } \Longrightarrow |\mathfrak{A}| \leq k(m)).$

Theorem

If $L \in \Lambda(\text{bi-LC})$, then L is locally tabular $\iff \mathcal{J}(\mathfrak{C}_n^*) \in L$, for some positive $n \in \omega$.

Corollary

If $L \in \Lambda(bi-LC)$, then L is locally tabular $\iff L \nsubseteq Log(Finite combs)$.

Consequently, the logic of the finite combs is the only pre-locally tabular extension of **bi-LC**, i.e., *Log*(Finite combs) is not locally tabular, but all of its proper extensions are so.

LC VS bi-LC

$LC = IPC + (p o q) \lor (q o p)$	$bi-LC = bi-IPC + (p o q) \lor (q o p)$
$\mathfrak{A}\in \mathbf{GA}_{\mathcal{SI}}\iff \mathfrak{A}_{*}$ is a SRC	$\mathfrak{A}\inbi-GA_{Sl}\iff\mathfrak{A}_{*}$ is a co-tree
LC has the FMP	bi-LC has the FMP
LC is locally tabular	bi-LC is not locally tabular
All extensions of LC have the FMP	??
$\Lambda(LC)$ is a chain of order-type $(\omega+1)^\partial$	$\Lambda({\operatorname{{\it bi-LC}}})$ is of size 2^{\aleph_0} and is not a chain

Thank You!