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Classical and intuitionistic propositional calculus

® CPC := classical propositional calculus.

® |PC := intuitionistic propositional calculus.

e |[PC C L C CPC is an intermediate logic.

CPC

IPC

The lattice A(IPC) of
intermediate logics
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Boolean and Heyting algebras

® HA := the class of Heyting algebras.

® BA := the class of Boolean algebras.

HA

BA

The lattice of
non-trivial subvarieties
of HA
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Bi-intuitionistic propositional calculus

The bi-intuitionistic propositional calculus bi-IPC is obtained by adding the binary connective
< to the language of IPC, eight new axioms, and one additional inference rule.

The negation of a formula ¢ is defined by —¢ := ¢ — L.

The co-negation of a formula ¢ is defined by ~¢ := T < ¢.

New axioms New inference rule
* p—(qV(p+q) ® Double negation: “from ¢ infer = ~¢"
* ~(p+gq)—~(p—q)
® etc
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Bi-intuitionistic propositional calculus

The Kripke semantics of bi-IPC provides a transparent interpretation of co-implication:

MxEpeqg = IJy<x(MyEpand My |~ q).

pq

<
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Bi-intermediate logics

® We have bi-IPC C CPC, since

(p+q) < (pA—q) € CPCand pV —p & bi-IPC.

® bi-IPC C L C CPC is a bi-intermediate logic.

CPC

bi-IPC

The lattice A(bi-IPC)
of bi-intermediate
logics
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Bi-Heyting algebras

Bi-Heyting algebra

A Heyting algebra 20 = (A, V, A\, —, 4,0, 1) equipped with an additional binary operation <,
satisfying, for all a, b, c € A:

a<—b<c <« a<bVe.

In other words, a Heyting algebra 2l whose order-dual is also a Heyting algebra.

® bi-HA := the class of bi-Heyting algebras = {2( € bi-HA: 2l |= bi-IPC}.

° bi-HA = ¢ < bi-IPCF} ¢.
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Algebraic completeness of bi-IPC

CPC

bi-IPC

The lattice A(bi-IPC) of
bi-intermediate logics

bi-HA

BA

The lattice of non-trivial
subvarieties of bi-HA
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Bi-Esakia spaces

A topological space X = (X, 7, <) equipped with a partial order satisfying:
® X is compact;
® PSA:Vx,y € X (x £y = 3U € ClopUp(X) (x € U and y ¢ U));
® YU € Clop(X) (JU € Clop(X));

® YU € Clop(X) (tU € Clop(X)).
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Bi-Esakia morphisms

Bi-p-morphism

A map between posets f: (X, <) — (W, <) satisfying the following conditions:

® Order-preserving: Vx,y € X (x <y = f(x) < f(y));

°® Up:Vx e X,VYwe W (f(x) <w = Ty € tx (f(y) = w));

® Down: Vx € X,Vw e W (w < f(x) = Ty € Ix (f(y) =w)).

Bi-Esakia morphism

A continuous bi-p-morphism f: X — ) between bi-Esakia spaces.
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Bi-Esakia duality

Theorem (Esakia)

The categories of bi-Heyting algebras and bi-Esakia spaces are dually equivalent.

® Given 2 € bi-HA, we call 2, := (Spec(2l), T, C) the bi-Esakia dual of 2.

® Given a bi-Esakia space X', we call X* := (ClopUp(X),U,N, —, <, D, X) € bi-HA the
algebraic dual of X', where

U—-V=X\](U\V)and U<+ V:=1(U\V).
® For all 20 € bi-HA and all formulas ¢, we have

A= <= A E=o.
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The lattice A(bi-IPC) of bi-intermediate logics

CPC

bi-IPC
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The lattice A(bi-IPC) of bi-intermediate logics

CPC

bi-IPC
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Wolter's translation

CPC

bi-IPC

The lattice A(bi-IPC) of
bi-intermediate logics

f(CPC)

f(bi-IPC) = Grz.t

The lattice of consistent normal
tense logics containing Grz.t
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Wolter's translation

CPC

bi-IPC

The lattice A(bi-IPC) of
bi-intermediate logics

f(CPC)

f(bi-IPC) = Grz.t

The lattice of consistent normal
tense logics containing Grz.t
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The sublattice A(L)

CPC

bi-IPC

red := A(L) = the sublattice of consistent extensions of the bi-intermediate logic L.
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The bi-intuitionistic linear calculus bi-LC



Bi-intuitionistic linear calculus

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by Gédel's
prelinearity axiom.

bi-LC :=bi-IPC+ (p — q) V (9 — p).

PC

bi-IPC
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Bi-intuitionistic linear calculus

The bi-intuitionistic linear calculus is the bi-intermediate logic axiomatized by the Godel
-Dummett axiom.

bi-LC := bi-IPC+ (p — q) V (9 — p).

® LC:=IPC+ (p— q)V (g — p) has been thoroughly investigated.
® bi-LC is the (bi-intuitionistic) logic of co-trees.
e If L € A(bi-LC), then in the deductive system I, we can reason by reductio ad

absurdum, since
[t ¢ < TU{~ -~} is inconsistent.
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Bi-Godel algebras

Bi-Godel algebras
The bi-Heyting algebras axiomatized by bi-LC = bi-IPC + (p — q) V (g — p).

bi-GA := Vi1 c = {2 € bi-HA: 2 |= bi-LC}.

bi-GA is a semi-simple discriminator variety with EDPC.
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Algebraic completeness of bi-IPC

CPC

bi-IPC

The lattice A(bi-IPC) of
bi-intermediate logics

bi-HA

BA

The lattice of non-trivial
subvarieties of bi-HA
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Algebraic completeness of bi-LC

CPC

bi-LC

The lattice A(bi-LC) of
consistent extensions of bi-LC

bi-GA

BA

The lattice of non-trivial
subvarieties of bi-GA
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Co-trees and co-forests

In a poset (W, <), sets of the form tw = {u € W: w < u} are called principal upsets.

A poset (W, <) with a greatest element, called the co-root, and whose principal upsets are
chains.

r a

w z b

v u c
The co-tree §1 The co-tree 3>
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Co-trees and co-forests

A disjoint union of co-trees.

r a
w 4 b
v u Cc

The co-forest § = §1 Y §2
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Bi-Godel algebras and co-forests

Bi-Godel algebras
The bi-Heyting algebras axiomatized by bi-LC = bi-IPC + (p — q) V (g — p).

bi-GA := Vi1 c = {2 € bi-HA: 2 = bi-LC}.

® A js a bi-Godel algebra <= 2. is a bi-Esakia co-forest.

® 2 js a subdirectly irreducible (S1) bi-Godel algebra <= 2, is a bi-Esakia co-tree.
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Finite model property

bi-LC has the finite model property, that is, a formula ¢ is a theorem of bi-LC iff ¢ is valid in
all finite (bi-Esakia) co-trees.

The proof of this theorem makes crucial use of the fact that the HA-reduct of bi-GA,
GA ={AcHA:AE=IPC+ (p—q)V(g—p)}

is locally finite, i.e., that every finitely generated Godel algebra is finite.
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Jankov formulas for bi-Godel algebras



Jankov formulas

If 2 € bi-GA is finite and SI, then the Jankov formula of 2 encodes the full bi-Heyting
structure of 2.

J@)==-~T ==\ {p pp:abcAandagb}

I':= A{pavs <+ (PaV pp): (a,b) € A2} A N{Panb <> (P2 A py): (a,b) € AL
/\{pa_>b < (pa— pp): (a b) € A2} A /\{pa<_b < (pa < pb): (a,b) € A2IA
Apo L}A{p1 < T}
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Jankov formulas

Jankov Lemma
Let 2, B € bi-GA. If 2 is finite and SI, then

B TR < 2A<cSH(B).
Consequently, if V is a variety of bi-Godel algebras, then
VEITR) < Aec V.

In other words, [J () axiomatizes (relative to bi-LC) the least variety of bi-Godel algebras
that does not contain L.
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Applications of Jankov formulas

Splitting logics of A(bi-LC)

Given L, L' € A(bi-LC), we call (L, L") a splitting pair for A(bi-LC) if A(bi-LC) = LW L.
In this case, we say that L is a splitting logic of A(bi-LC).

CPC

bi-LC
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Applications of Jankov formulas

Splitting Theorem

L is a splitting logic of A(bi-LC) <= L is axiomatized by a single Jankov formula.

CPC

Log(2)

bi-LC + J ()

bi-LC
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Applications of Jankov formulas

The cardinality of A(bi-LC) is 2%,

This result can be derived from the existence of a countably infinite <-antichain of finite
co-trees, where
F<H — If: 6 3.
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Applications of Jankov formulas

T T B
0 ! T, T,
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Locally tabular extensions of bi-LC



Local tabularity and the finite combs

Locally tabular

A logic L € A(bi-LC) is locally tabular iff V| = {2 € bi-GA: 2 = L} is locally finite, that is,
if every finitely generated algebra of V, is finite.
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Local tabularity and the finite combs

Locally tabular

A logic L € A(bi-LC) is locally tabular if V| = {2 € bi-GA: 2 = L} is locally finite, that is,
if every finitely generated algebra of V, is finite.

Finite combs

For each positive n € w, we define the n-comb as the co-tree €, := (C,, <,) depicted below.

Xn

X \o X,

X1
!(:::?\\\- )qé
x|
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

For each positive n € w, we define the n-comb as the co-tree €, := (C,, <,,) depicted below.
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Let 2 € bi-GA. For all positive n € w, we have

2L, does not admit €, as a subposet <= A = J ().

While the proof of = is straightforward, the reverse implication requires a very lengthy and
technical proof.
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If a variety V C bi-GA contains all the algebraic duals of the finite combs, then V is not
locally finite.

We proved that for each positive n € w, € is 1-generated as a bi-Godel algebra.

Since there are arbitrarily large algebraic duals of finite combs contained in V, the 1-generated
free V-algebra must be infinite, and therefore V cannot be locally finite. O
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2l is m-generated and 2, does not admit €, as a subposet = || < k(n, m).

The first step is finding a bound for the depth of 2,.

As 2l is an m-generated bi-Godel algebra, there are distinguished upsets of 2., By, ..., Bmyt1,
such that a bound for the depth of 2{, can be derived from a bound for the depths of the B;.
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For all positive n, m € w, there exists k(n, m) € w such that if 2 € bi-GAg, then

2l is m-generated and 2. does not admit €, as a subposet = || < k(n, m).

Let i < m+ 1 and suppose there exists a chain a; < ap < -+ < apy1 € B;.

dn+1

v

32“‘__..

¥
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For all positive n, m € w, there exists k(n, m) € w such that if 2 € bi-GAg, then

2l is m-generated and 2. does not admit €, as a subposet = || < k(n, m).

B; is a distinguished upset.

an41

v

a
X1 9
al
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For all positive n, m € w, there exists k(n, m) € w such that if 2 € bi-GAg, then

2l is m-generated and 2. does not admit €, as a subposet = || < k(n, m).

B; is a distinguished upset.

dn+1
Xn
dn )</
n
X
a &
X1 8 !
ai )<{
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2 is m-generated and 2L, does not admit €, as a subposet = || < k(n, m).

an+1
Xn

an !
n

Xi .

a. &

X1 9 !

ai X{
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2l is m-generated and 2, does not admit €, as a subposet = || < k(n, m).

Therefore, there is no chain of size n+ 1 in B, i.e., dp(B;) < n, as desired.
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2l is m-generated and 2, does not admit €, as a subposet = || < k(n, m).
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2l is m-generated and 2, does not admit €, as a subposet = || < k(n, m).

Let 2 € bi-GA. For all positive n € w, we have
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For all positive n, m € w, there exists k(n, m) € w such that if A € bi-GAg, then

2l is m-generated and 2 = J7(¢;) = || < k(n, m).

Let 2 € bi-GA. For all positive n € w, we have

2L, does not admit €, as a subposet <= 2 = J(&}).
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

We prove the contrapositive. Suppose J (&%) & L, for all positive n € w.
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

We prove the contrapositive. Suppose J (&%) ¢ L, for all positive n € w.

By the Jankov Lemma, we have €} € V| for all positive n € w.

Jankov Lemma

J(Q()eéL <— VLI;EJ(Q[) <— AeV,
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

We prove the contrapositive. Suppose J (&%) & L, for all positive n € w.
By the Jankov Lemma, we have € € V, for all positive n € w.

By Lemma 2, V, is not locally finite, i.e., L is not locally tabular, as desired. O

If a variety V C bi-GA contains all the algebraic duals of the finite combs, then V is not
locally finite.
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

Suppose J (€}) € L, for some positive n € w. By duality, V; = J(€F).
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

Suppose J (€}) € L, for some positive n € w. By duality, V; = J(€F).

In particular, for each positive m € w, if 2 € V is SI and m-generated, then 2 = 7 (C%).
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

Suppose J (€}) € L, for some positive n € w. By duality, V; = J(€F).
In particular, for each positive m € w, if 2 € V is SI and m-generated, then 2 = 7 (C%).

By Lemma 3, || < k(n, m).

For all positive n, m € w, there exists k(n, m) € w such that if 2 € bi-GAg, then

2 is m-generated and A = J(€,) = |A]| < k(n, m).
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <= J(&}) € L, for some positive n € w.

Suppose J (€}) € L, for some positive n € w. By duality, V; = J(€F).
In particular, for each positive m € w, if 2 € V is SI and m-generated, then 2 = 7 (C%).

By Lemma 3, || < k(n, m). As m and 2l were arbitrary, the Theorem below yields that L is
locally tabular. O

A variety V (of a finite type) is locally finite iff

Vm € w,3k(m) € w, VA € Vg (A is m-generated = |2A| < k(m)).
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A criterion for local tabularity

If L € A(bi-LC), then L is locally tabular <— J(€%) € L, for some positive n € w.

If L € A(bi-LC), then L is locally tabular <= L ¢ Log(Finite combs).

Consequently, the logic of the finite combs is the only pre-locally tabular extension of bi-LC,
i.e., Log(Finite combs) is not locally tabular, but all of its proper extensions are so.
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LC VS bi-LC

LC=IPC+(p—q)V(g—p)

bi-LC = bi-IPC+ (p — q) V (¢ — p)

2 € GAgy <— 2, is a SRC

A € bi-GAg; <= 2, is a co-tree

LC has the FMP

bi-LC has the FMP

LC is locally tabular

bi-LC is not locally tabular

All extensions of LC have the FMP

7

A(LC) is a chain of order-type (w +1)°

A(bi-LC) is of size 2% and is not a chain
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Thank You!
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