	Completeness	Conclusion

Polyhedral Completeness in Intermediate and Modal Logics: Convex Polyhedra

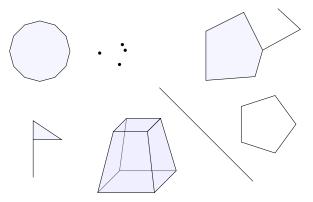
Sam Adam-Day, Nick Bezhanishvili, David Gabelaia, Vincenzo Marra

Logic Algebra and Truth Degrees 2022

5th September 2022

Introduction	Completeness	Conclusion
●0000	00000	00

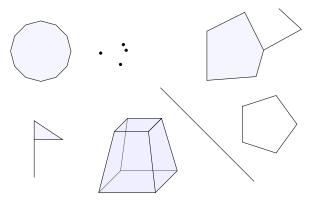
Polyhedra



 Polyhedra can be of any dimension, and need not be convex nor connected.

Introduction	Completeness	Conclusion
●0000	00000	00

Polyhedra



- Polyhedra can be of any dimension, and need not be convex nor connected.
- Our polyhedra are always compact.
- Formally: finite unions of convex hulls of finite sets.

Introduction	Completeness	Conclusion
00000		

Polyhedral Semantics

Definition

Let *P* be a polyhedron. An *open subpolyhedron* of *P* is the complement in *P* of a subpolyhedron. $Sub_o P$ is the set all of open subpolyhedra.

¹N. Bezhanishvili, V. Marra, D. Mcneill and A. Pedrini (2018). 'Tarski's Theorem on Intuitionistic Logic, for Polyhedra'. In: *Annals of Pure and Applied Logic* 169.5, pp. 373–391.

Introduction	Completeness	Conclusion
00000		

Polyhedral Semantics

Definition

Let P be a polyhedron. An open subpolyhedron of P is the complement in P of a subpolyhedron. $Sub_o P$ is the set all of open subpolyhedra.

Theorem (Bezhanishvili, Marra, Mcneill and Pedrini¹)

 $Sub_o P$ is a Heyting algebra.

¹N. Bezhanishvili, V. Marra, D. Mcneill and A. Pedrini (2018). 'Tarski's Theorem on Intuitionistic Logic, for Polyhedra'. In: *Annals of Pure and Applied Logic* 169.5, pp. 373–391.

Introduction	Completeness	Conclusion
0●000	00000	00

Polyhedral Semantics

Definition

Let P be a polyhedron. An open subpolyhedron of P is the complement in P of a subpolyhedron. $Sub_o P$ is the set all of open subpolyhedra.

Theorem (Bezhanishvili, Marra, Mcneill and Pedrini¹) $Sub_o P$ is a Heyting algebra.

Theorem (Bezhanishvili, Marra, Mcneill and Pedrini) Polyhedra provide a complete semantics for IPC.

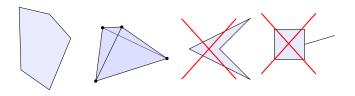
¹N. Bezhanishvili, V. Marra, D. Mcneill and A. Pedrini (2018). 'Tarski's Theorem on Intuitionistic Logic, for Polyhedra'. In: *Annals of Pure and Applied Logic* 169.5, pp. 373–391.

Introduction	Completeness	Conclusion
00000		

Convex Polyhedra

Definition

A polyhedron P is *convex* if whenever $x, y \in P$, the straight line from x to y is also in P.

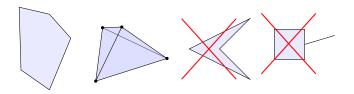


Introduction	Completeness	Conclusion
00000		

Convex Polyhedra

Definition

A polyhedron P is *convex* if whenever $x, y \in P$, the straight line from x to y is also in P.



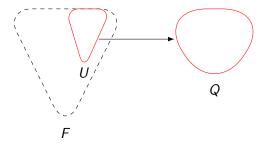
- What is the logic of the class of convex polyhedra?
- We give an axiomatisation.

Introduction	Completeness	Conclusion
000●0	00000	00

Jankov-Fine Formulas

Theorem

For every finite frame Q, there is a formula $\chi(Q)$, the Jankov-Fine formula of Q, such that for any frame F, we have $F \nvDash \chi(Q)$ if and only if there is $U \subseteq F$ upwards closed and a surjective p-morphism $U \to Q$.



Encodes the idea of 'forbidden configurations'.

Introduction	Completeness	Conclusion
00000	00000	00
Main Theorem		

Theorem (Adam-Day, Bezhanishvili, Gabelaia, Marra) The logic of convex polyhedra is axiomatised by:

$$\mathsf{PL} = \mathsf{IPC} + \chi(\diamondsuit) + \chi(\diamondsuit)$$

²M. Zakharyaschev (July 1993). 'A Sufficient Condition for the Finite Model Property of Modal Logics above K4'. In: *Logic Journal of the IGPL* 1.1, pp. 13–21.

Introduction	Completeness	Conclusion
00000	00000	00
Main Theorem		

Theorem (Adam-Day, Bezhanishvili, Gabelaia, Marra) The logic of convex polyhedra is axiomatised by:

$$\mathsf{PL} = \mathsf{IPC} + \chi(\overset{\circ}{\diamond}) + \chi(\overset{\circ}{\diamond})$$

Theorem (Adam-Day, Bezhanishvili, Gabelaia, Marra)

The logic of convex polyhedra of dimensional at most n is axiomatised by:

$$\mathsf{PL}_n = \mathsf{IPC} + \chi \begin{pmatrix} \$ \\ \$ \end{pmatrix}^{n+1} + \chi (\diamondsuit) + \chi (\diamondsuit)$$

²M. Zakharyaschev (July 1993). 'A Sufficient Condition for the Finite Model Property of Modal Logics above K4'. In: *Logic Journal of the IGPL* 1.1, pp. 13–21.

Introduction	Completeness	Conclusion
0000●	00000	00
Main Theorem		

Theorem (Adam-Day, Bezhanishvili, Gabelaia, Marra) The logic of convex polyhedra is axiomatised by:

$$\mathsf{PL} = \mathsf{IPC} + \chi(\overset{\circ}{\varsigma}) + \chi(\overset{\circ}{\varsigma})$$

Theorem (Adam-Day, Bezhanishvili, Gabelaia, Marra)

The logic of convex polyhedra of dimensional at most n is axiomatised by:

$$\mathsf{PL}_n = \mathsf{IPC} + \chi \begin{pmatrix} \$ \\ \frac{1}{2} \end{pmatrix}_{n+1} + \chi (\diamondsuit) + \chi (\diamondsuit)$$

Lemma (Zakharyaschev 1993²)

PL has the finite model property.

²M. Zakharyaschev (July 1993). 'A Sufficient Condition for the Finite Model Property of Modal Logics above K4'. In: *Logic Journal of the IGPL* 1.1, pp. 13–21.

Introduction	Soundness	Completeness	Conclusion
00000	•	00000	00
Soundness			

$\begin{array}{l} \text{Definition} \\ \mathbf{PL}_n = \mathbf{IPC} + \chi \left(\begin{smallmatrix} 8 \\ \frac{1}{8} \end{smallmatrix} \right)_{n+1} + \chi (\begin{smallmatrix} 8 \\ \frac{1}{8} \end{smallmatrix}) + \chi (\begin{smallmatrix} 8 \\ \frac{1}{8} \biggr) + \chi (\begin{smallmatrix} 8 \\ \frac{1}{8}$

Theorem (Soundness)

 PL_n is valid on every convex polyhedron of dimension at most n.

Introduction	Soundness	Completeness	Conclusion
00000	•	00000	00
Soundness			

$\begin{array}{l} \text{Definition} \\ \mathbf{PL}_n = \mathbf{IPC} + \chi \left(\begin{smallmatrix} 8 \\ \frac{1}{8} \end{smallmatrix} \right)_{n+1} + \chi (\begin{smallmatrix} 0 \\ \frac{1}{8} \end{smallmatrix}) + \chi (\begin{smallmatrix} 0 \\ \frac{1}{8} \biggr) + \chi (\begin{smallmatrix} 0 \\ \frac{1}{8}$

Theorem (Soundness)

 PL_n is valid on every convex polyhedron of dimension at most n.

Proof idea.

For $\chi(\circ \otimes \circ)$ we show that no convex polyhedron be partitioned into non-empty sets A, B, C, X such that A, B, C are open subpolyhedra and $X = \overline{A} \cap \overline{B} \cap \overline{C}$.

There is also a combinatorial argument for this fact.

Introduction	Completeness	Conclusion
00000	●0000	00

Completeness: Combinatorial Step I

Theorem (Completeness)

If $\mathbf{PL}_n \nvDash \phi$ then there is P convex, n-dimensional with $P \nvDash \phi$.

The proof has two steps: combinatorial and geometric.

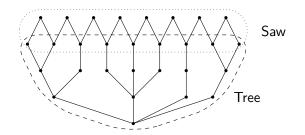
Introduction 00000	Completeness ●0000	Conclusion

Completeness: Combinatorial Step I

Theorem (Completeness)

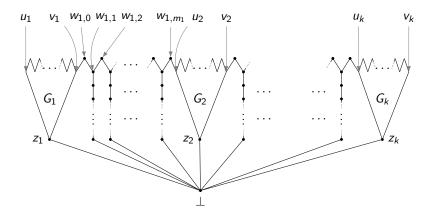
If $\mathbf{PL}_n \nvDash \phi$ then there is P convex, n-dimensional with $P \nvDash \phi$.

- The proof has two steps: combinatorial and geometric.
- First step: give a nice general form for the finite posets of PL_n.
- Each such frame is the p-morphic image of a sawed tree.



Introduction	Completeness	Conclusion
00000	○●○○○	00

Completeness: Combinatorial Step II



Introduction	Completeness	Conclusion
00000	00000	00

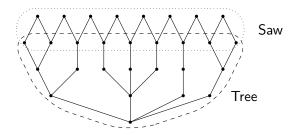
Completeness: Convex Geometric Realisation

Show that every height-n sawed tree has a geometric realisation in a dimension-n convex polyhedron.

Introduction 00000	Completeness 00000	Conclusion

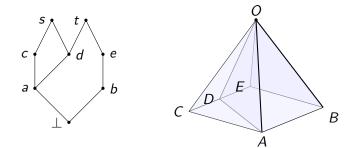
Completeness: Convex Geometric Realisation

- Show that every height-n sawed tree has a geometric realisation in a dimension-n convex polyhedron.
- Use the standard construction to realise the tree part.
- Then realise the top nodes as *n*-dimensional polyhedra to glue things up into a convex polyhedron.



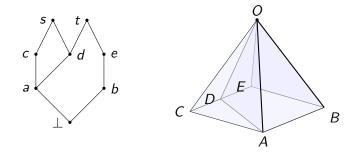
		Completeness	Conclusion
00000	0	00000	00

A 3-dimensional Example



<u> </u>	

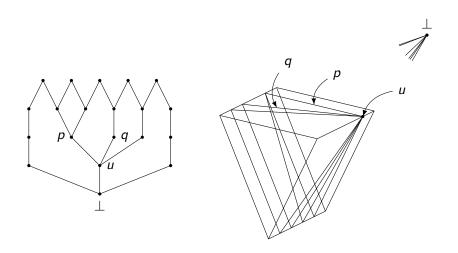
A 3-dimensional Example



 $\begin{array}{ll} \{O\} \mapsto \bot, & OA \setminus \{O\} \mapsto a, & OB \setminus \{O\} \mapsto b, \\ OAC \setminus OA \mapsto c, & OAD \setminus OA \mapsto d, & OBE \setminus OB \mapsto d, \\ OACD \setminus (OAC \cup OAD) \mapsto s, & OABED \setminus (OAD \cup OBE) \mapsto t \end{array}$

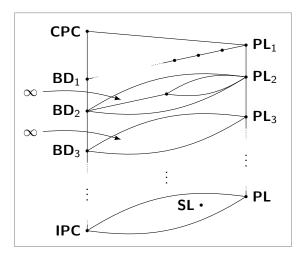
	Completeness	Conclusion
00000	00000	

A 4-dimensional Example



Introduction	Completeness	Conclusion
00000	00000	●0

Conclusion



Thanks for listening!

 Adam-Day, S., N. Bezhanishvili, D. Gabelaia and V. Marra (2021). *Polyhedral completeness of intermediate logics: the Nerve Criterion*. DOI: 10.48550/ARXIV.2112.07518. URL: https://arxiv.org/abs/2112.07518.
Bezhanishvili, N., V. Marra, D. Mcneill and A. Pedrini (2018). 'Tarski's Theorem on Intuitionistic Logic, for Polyhedra'. In: *Annals of Pure and Applied Logic* 169.5, pp. 373–391.
Zakharyaschev, M. (July 1993). 'A Sufficient Condition for the Finite Model Property of Modal Logics above K4'. In: *Logic Journal of the IGPL* 1.1, pp. 13–21.