One-sorted Program Algebras¹

I. Sedlár and J.J. Wannenburg

Institute of Computer Science of the Czech Academy of Sciences

LATD September 2022

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

¹This work was carried out within the project *Supporting the internationalization of the Institute of Computer Science of the Czech Academy of Sciences* (no. CZ.02.2.69/0.0/0.0/18_053/0017594), funded by the Operational Programme Research, Development and Education of the Ministry of Education, Youth and Sports of the Czech Republic. The project is co-funded by the EU.

Kleene algebra

Definition

A Kleene algebra [Koz94] is a structure $\mathscr{K} = (K, \lor, \cdot, *, 1, 0)$ such that

- $(K, \lor, \cdot, 1, 0)$ is an *idempotent semiring*, i.e.,
 - $\ \ \, (K,\cdot,1) \text{ is a monoid,} \\$
 - $(K, \lor, 0)$ is an idempotent commutative monoid (hence, a join-semilattice),
 - $x(y \lor z) = xy \lor xz$, $(y \lor z)x = yx \lor zx$, and
 - x0 = 0 = 0x, and
- $*: K \to K$ such that

 $1 \lor a \lor a^*a^* \leq a^* \qquad ax \leq x \, \Rightarrow \, a^*x \leq x \qquad xa \leq x \, \Rightarrow \, xa^* \leq x$

Examples: Kleene algebras of regular languages, Kleene algebra of paths...

Examples

Example

The relational Kleene algebra over a set X is $\mathscr{R}(X) = (2^{X \times X}, \cup, \circ, *, \mathrm{id}, \emptyset);$

• denotes composition, and

•
$$R^* = \bigcup_{i>0} R^i$$
, where $R^0 = \text{id}$ and $R^{i+1} = R \circ R^i$.

Example

The tropical Kleene algebra is defined over $0 > -1 > -2 > \cdots > -\omega$, where

- + is multiplication,
- 0 is the *multiplicative* unit, and

 $-\omega$ the \vee unit.

Kleene algebra with tests

Definition

A Kleene algebra with tests [Koz97] is $\mathscr{B} = (K, B, \lor, \cdot, *, 1, 0, \overline{})$ where

 $\blacksquare~(K,\vee,\cdot,^*,1,0)$ is a Kleene algebra

$$\blacksquare B \subseteq K$$

• $(B, \lor, \cdot, \bar{}, 1, 0)$ is a Boolean algebra.

Prop. Every KA is a KAT, where the test subalgebra is $B = \{0, 1\}$.

Examples

Example

The relational KAT over a set X is $\mathscr{R}(X)$ together with the Boolean test subalgebra 2^{id} .

Prop. [KS97] The equational theory of KAT is identical with the equational theory of rKAT.

Example

The only possible test subalgebra of the tropical Kleene algebra is $\{-\omega, 0\}$.

Propositional while programs

Tests $\beta := \mathbf{b} \mid \overline{\beta} \mid \beta \land \beta \mid \beta \lor \beta$

Programs $\pi := \text{skip} \mid p \mid \pi; \pi \mid \text{if } \beta \text{ then } \pi \text{ else } \pi \mid \text{while } \beta \text{ do } \pi$

In KAT:

$$\begin{aligned} \mathbf{skip} &:= b \lor \bar{b} \\ \text{if } b \text{ then } p \text{ else } q &:= (bp) \lor (\bar{b}q) \\ \text{while } b \text{ do } p &:= (bp)^* \bar{b} \end{aligned}$$

Partial correctness: bp = bpc.

Kleene algebra with domain

Definition

A Kleene algebra with domain [DS11] is $\mathscr{D} = (K, \lor, \cdot, *, 1, 0, d)$ where $d: K \to K$ such that:

$$\begin{aligned} x &= d(x)x\\ d(xy) &= d(xd(y))\\ d(x) &\leq 1\\ d(0) &= 0\\ d(x \lor y) &= d(x) \lor d(y) \end{aligned}$$

(Similarly codomain c with $x \leq xc(x)$ and c(xy) = c(c(x)y).)

Prop. $(d(K), \lor, \cdot, 1, 0)$ and $(c(K), \lor, \cdot, 1, 0)$ are bounded distr. lattices. **Open Prob.** When is $(d(K), \lor, \cdot, 1, 0)$ a Heyting algebra?

Example

Example

Extend a relational Kleene algebra with

$$d(R) = \{ (s, s) \mid \exists t.(s, t) \in R \}.$$

Intuitively, d(x) should be the least left preserver of x under 1:

$$\text{if } y \le 1, \text{ then } x \le yx \iff d(x) \le y$$
 (1)

The equational theory of domain semirings (delete * and the corresponding axioms from KAD) coincides with the equational theory of relation algebras in the signature $(\cup, \circ, \emptyset, \text{id}, d)$ [McL20].

Open Prob. What about the full signature with *?

Kleene algebra with antidomain

Definition

A Kleene algebra with antidomain [DS11] is $\mathscr{A} = (K, \lor, \cdot, *, 1, 0, a)$ where $a : K \to K$ such that

 $\begin{aligned} a(x)x &= 0\\ a(xy) &= a(xa^2(y))\\ a^2(x) \lor a(x) &= 1 \end{aligned}$

A domain operation is then defined by $d(x) := a^2(x)$.

Prop. $(d(K), \lor, \cdot, 1, 0)$ is a Boolean algebra where a(x) is the complement of $x \in d(K)$.

Thm. The domain subalgebra of a KAAD is the maximal Boolean subalgebra of the semiring of elements $x \leq 1$.

Kleene algebra with (anti)domain

Example

Take a relational Kleene algebra and define

$$a(R) = \{(s,s) \mid \neg \exists t.(s,t) \in R\},\$$

then a(a(R)) = d(R).

- The equational theory of relation algebras in the $(\circ, a, \emptyset, id)$ signature has been finitely axiomatized by equations [Hol97]
- The equational theory of KAAD is EXPTIME [MS06]
- **Thm.** The equational theory of KAAD with **-continuity* and *seperability* is EXPTIME-complete

Conj. The equational theory of KAAD coincides with that of rKAAD and the class above

Problem

However: Prop. Some finite KA cannot be extended with a domain operation.

The culprit is the locality axiom d(xy) = d(xd(y)).

Can one find a one-sorted alternative ALT to KAT that satisfies

- **1** ALT expands Kleene algebras by additional operations t and t'.
- 2 Every Kleene algebra extends to an ALT.
- 3 The test algebra $t(\mathscr{A})$ need not be the maximal Boolean subalgebra of elements $x \leq 1$.
- 4 The equational theory of KAT embeds into the equational theory of ALT.

One-sorted Kleene algebras with tests

Definition

A KAt is $\mathscr{K} = (K, \lor, \cdot, ^*, 1, 0, t, t')$ where $t, t' : K \to K$ such that

$$t(0) = 0 \tag{2}$$

$$t(1) = 1 \tag{3}$$

$$t(t(x) \lor t(y)) = t(x) \lor t(y) \tag{4}$$

$$t(t(x)t(y)) = t(x)t(y)$$
(5)

$$t(x)t(x) = t(x) \tag{6}$$

$$t(x) \le 1 \tag{7}$$

$$1 \le t'(t(x)) \lor t(x) \tag{8}$$

$$t'(t(x)) t(x) \le 0 \tag{9}$$

$$t'(t(x)) = t(t'(t(x)))$$
 (10)

Examples

Example

Relational Kleene algebra with t := d and t' = a.

Theorem 1

Every KAT
$$\mathscr{K} = (K, B, \lor, \cdot, *, 1, 0, \overline{})$$
 expands to a KAt $\mathscr{K} = (K, \lor, \cdot, *, 1, 0, t, t')$, i.e., $B = t(K)$.

In particular, we take

$$t(x) = \begin{cases} x & \text{if } x \in B \\ 1 & \text{otherwise.} \end{cases} \quad t'(x) = \begin{cases} \bar{x} & \text{if } x \in B \\ x & \text{otherwise.} \end{cases}$$

Prop. Every Kleene algebra extends to a KAt, so KAt is a conservative extension of KAt.

I. Sedlár and J.J. Wannenburg (ICS CAS)

Embedding result

Theorem 2

We show that equational theory of KAT embeds into the equational theory of ALT provided that

- ALT expands Kleene algebras by additional operations t and t'.
- The test algebras $t(\mathscr{A})$ is a Boolean algebra for each ALT \mathscr{A} .
- Every KAT expands to an ALT.

Proof sketch.

$$Tr(p_n) = x_{2n}, Tr(b_n) = t(x_{2n+1}), Tr(\overline{b}) = t'(Tr(b));$$

 Tr commutes with 1, 0, \cdot , \vee and *.

If KAT $\not\models p \approx q$, which give rise to an expansion. Conversely, each ALT induces a Boolean algebra of tests, and hence a KAT.

Prop. The equational theory of KAT embeds into that of KAt.

So, KAt exhibits all the required properties (1-4).

Embedding result 2

Theorem 3

We show that equational theory of KAT embeds into the equational theory of ALT provided that

- ALT expands Kleene algebras by additional operations t and t'.
- The test algebras $t(\mathscr{A})$ is a Boolean algebra for each ALT \mathscr{A} .
- Every relational KAT expands to an ALT.

Proof sketch.

As before ...

If KAT $\not\models p \approx q$, then $p \approx q$ fails in an rKAT, which gives rise to an expansion. Conversely, each ALT induces a Boolean algebra of tests, and hence a KAT.

Prop. The equational theory of KAT embeds into that of KAD, but properties 2 and 3 fail.

strong KAt

Extending KAt with all of the following axioms retains properties (1-4)

$$t(x \lor y) = t(x) \lor t(y) \tag{11}$$

$$x \le t(x)x \tag{12}$$

$$t(t(x)y) \le t(x) \tag{13}$$

$$t(xy) \le t(xt(y)) \tag{14}$$

(11) entails that t is monotonic; (12) says that t(x) is a left preserver of x; (13) entails that t(x) is the *least* left preserver among tests;

(14) is called sublocality, and we can not add the reverse inequality.

One operation

Definition

In [AGS16] a 1KAT is $\mathscr{K} = (K, \lor, \cdot, *, 1, 0, a)$ where $a : K \to K$ such that

$$a^2(1) = 1$$
 (15)

$$a^{2}(a^{2}(x) a^{2}(y)) = a^{2}(y) a^{2}(x)$$
(16)

$$a(x) a^2(x) = 0$$
(17)

$$a(x) \lor a(y) = a(a^2(x) a^2(y))$$
 (18)

- A 1KAT is a KAt where t' = a and $t = a^2$
- 1KAT satisfies the conditions of Theorem 2
- 1KAT has properties 1-4

Residuated program algebras

Definition

A residuated KAt $\mathscr{P} = (K, \lor, \cdot, \rightarrow, \leftarrow, ^*, 1, 0, t)$ is a strong KAt (ignoring the t' axioms) that is extended with residuals for \cdot satisfying

$$t(x \to y) \le x \to xt(y) \tag{19}$$

$$1 \le t(x) \lor (t(x) \to 0).$$
⁽²⁰⁾

One can define $t'(x) := t(x \to 0)$, to obtain a KAt reduct.

Prop.: Every relational KAT expands to a residuated KAt, so the equational theory of KAT embeds into that of residuated KAt.

Another result: The substructural logic of partial correctness by Kozen and Tiuryn [KT03] embeds into *-continuous residuated KAt expanded by *e* such that $t(x) \le y \iff x \le e(y)$.

References I

Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth. Building program construction and verification tools from algebraic principles. *Formal Aspects of Computing*, 28(2):265–293, April 2016.

Jules Desharnais and Georg Struth. Internal axioms for domain semirings. Science of Computer Programming, 76(3):181–203, March 2011.

Marco Hollenberg.

An Equational Axiomatization of Dynamic Negation and Relational Composition.

Journal of Logic, Language and Information, 6(4):381-401, October 1997.

D. Kozen.

A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and Computation, 110(2):366–390, May 1994.

Dexter Kozen.

Kleene algebra with tests.

ACM Transactions on Programming Languages and Systems, 19(3):427–443, May 1997.

Dexter Kozen and Frederick Smith.

Kleene algebra with tests: Completeness and decidability.

In Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Dirk Dalen, and Marc Bezem, editors, *Computer Science Logic*, volume 1258, pages 244–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

References II

Dexter Kozen and Jerzy Tiuryn.

Substructural logic and partial correctness.

ACM Transactions on Computational Logic, 4(3):355–378, July 2003.

Brett McLean.

Free Kleene algebras with domain.

Journal of Logical and Algebraic Methods in Programming, 117:100606, December 2020.

Bernhard Möller and Georg Struth.

Algebras of modal operators and partial correctness.

Theoretical Computer Science, 351(2):221–239, February 2006.