Gödel temporal logic

Brett McLean

Department of Mathematics: Analysis, Logic and Discrete Mathematics

brett.mclean@ugent.be
(with Juan Pablo Aguilera, Martín Diéguez, and David Fernández-Duque)

Language

\mathcal{L}
Propositional logic:

- Variables p, q, r, \ldots
- Connectives $\wedge, \vee, \Rightarrow, \perp$

Language

\mathcal{L}
Propositional logic:

- Variables p, q, r, \ldots
- Connectives $\wedge, \vee, \Rightarrow, \perp$
- Co-implication \Leftarrow

Modalities:

- Next $O \phi$
- Eventually $\diamond \phi$
- Henceforth $\square \phi$

Language

\mathcal{L}

Propositional logic:

- Variables p, q, r, \ldots
- Connectives $\wedge, \vee, \Rightarrow, \perp$
- Co-implication \Leftarrow

Modalities:

- Next $O \phi$
- Eventually $\diamond \phi$
- Henceforth $\square \phi$
\Leftarrow is not necessary for first part of talk

Real-valued semantics

A flow is a pair $\mathcal{T}=(T, S)$ with $S: T \rightarrow T$.

Real-valued semantics

A flow is a pair $\mathcal{T}=(T, S)$ with $S: T \rightarrow T$.
A real valuation on \mathcal{T} is a $V: \mathcal{L} \times T \rightarrow[0,1]$ such that, for all $t \in T$:

$$
\begin{aligned}
V(\perp, t) & =0 \\
V(\varphi \wedge \psi, t) & =\min \{V(\varphi, t), V(\psi, t)\} \\
V(\varphi V \psi, t) & =\max \{V(\varphi, t), V(\psi, t)\} \\
V(\varphi \Rightarrow \psi, t) & = \begin{cases}1 & \text { if } V(\varphi, t) \leq V(\psi, t) \\
V(\psi, t) & \text { otherwise }\end{cases} \\
V(\varphi \Leftarrow \psi, t) & = \begin{cases}0 & \text { if } V(\varphi, t) \leq V(\psi, t) \\
V(\varphi, t) & \text { otherwise }\end{cases} \\
V(\bigcirc \varphi, t) & =V(\varphi, S(t)) \\
V(\diamond \varphi, t) & =\sup _{n<\omega} V\left(\varphi, S^{n}(t)\right) \\
V(\square \varphi, t) & =\inf _{n<\omega} V\left(\varphi, S^{n}(t)\right)
\end{aligned}
$$

Real-valued semantics

A flow is a pair $\mathcal{T}=(T, S)$ with $S: T \rightarrow T$.
A real valuation on \mathcal{T} is a $V: \mathcal{L} \times T \rightarrow[0,1]$ such that, for all $t \in T$:

$$
\begin{aligned}
V(\perp, t) & =0 \\
V(\varphi \wedge \psi, t) & =\min \{V(\varphi, t), V(\psi, t)\} \\
V(\varphi V \psi, t) & =\max \{V(\varphi, t), V(\psi, t)\} \\
V(\varphi \Rightarrow \psi, t) & = \begin{cases}1 & \text { if } V(\varphi, t) \leq V(\psi, t) \\
V(\psi, t) & \text { otherwise }\end{cases} \\
V(\varphi \Leftarrow \psi, t) & = \begin{cases}0 & \text { if } V(\varphi, t) \leq V(\psi, t) \\
V(\varphi, t) & \text { otherwise }\end{cases} \\
V(\bigcirc \varphi, t) & =V(\varphi, S(t)) \\
V(\diamond \varphi, t) & =\sup _{n<\omega} V\left(\varphi, S^{n}(t)\right) \\
V(\square \varphi, t) & =\inf _{n<\omega} V\left(\varphi, S^{n}(t)\right)
\end{aligned}
$$

A flow equipped with a valuation is a real (Gödel temporal) model.

Kripke semantics

A (Gödel temporal) Kripke frame is an $\mathcal{F}=(W, T, \leq, S)$ where (W, \leq) is a linearly ordered set and (T, S) a flow.

Kripke semantics

A (Gödel temporal) Kripke frame is an $\mathcal{F}=(W, T, \leq, S)$ where (W, \leq) is a linearly ordered set and (T, S) a flow.
A Kripke valuation on \mathcal{F} is a function $\llbracket \cdot \rrbracket: \mathcal{L} \rightarrow 2^{W \times T}$ such that, for each $p \in \mathbb{P}$, the set $\llbracket p \rrbracket$ is downward closed in its first coordinate, and

$$
\begin{aligned}
& \llbracket \perp \rrbracket=\varnothing \\
& \llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\
& \llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \\
& \llbracket \varphi \Rightarrow \psi \rrbracket=\{(w, t) \in W \times T \mid \forall v \leq w((v, t) \in \llbracket \varphi \rrbracket \\
&\quad \text { implies }(v, t) \in \llbracket \psi \rrbracket)\} \\
& \llbracket \varphi \Leftarrow \psi \rrbracket=\{(w, t) \in W \times T \mid \exists v \geq w((v, t) \in \llbracket \varphi \rrbracket \\
&\text { and }(v, t) \notin \llbracket \psi \rrbracket)\} \\
& \llbracket \odot \rrbracket=\left(\operatorname{id}_{w} \times S\right)^{-1} \llbracket \varphi \rrbracket \\
& \llbracket \odot \varphi \rrbracket
\end{aligned}
$$

Kripke semantics

A (Gödel temporal) Kripke frame is an $\mathcal{F}=(W, T, \leq, S)$ where (W, \leq) is a linearly ordered set and (T, S) a flow.
A Kripke valuation on \mathcal{F} is a function $\llbracket \cdot \rrbracket: \mathcal{L} \rightarrow 2^{W \times T}$ such that, for each $p \in \mathbb{P}$, the set $\llbracket p \rrbracket$ is downward closed in its first coordinate, and

$$
\begin{aligned}
& \llbracket \perp \rrbracket=\varnothing \\
& \llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\
& \llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \\
& \llbracket \varphi \Rightarrow \psi \rrbracket=\{(w, t) \in W \times T \mid \forall v \leq w((v, t) \in \llbracket \varphi \rrbracket \\
& \text { implies }(v, t) \in \llbracket \psi \rrbracket)\} \\
& \llbracket \varphi \Leftarrow \psi \rrbracket=\{(w, t) \in W \times T \mid \exists v \geq w((v, t) \in \llbracket \varphi \rrbracket \\
& \text { and }(v, t) \notin \llbracket \psi \rrbracket)\} \\
& \llbracket \circ \varphi \rrbracket=\left(\mathrm{id}_{W} \times S\right)^{-1} \llbracket \varphi \rrbracket \\
& \llbracket \diamond \varphi \rrbracket=\bigcup_{n<\omega}\left(\mathrm{id}_{W} \times S\right)^{-n} \llbracket \varphi \rrbracket \\
& \llbracket \square \varphi \rrbracket=\bigcap_{n<\omega}\left(\mathrm{id}_{W} \times S\right)^{-n} \llbracket \varphi \rrbracket
\end{aligned}
$$

A Kripke frame equipped with a valuation is a (Gödel temporal) Kripke model.

Example

$$
\diamond(p \Rightarrow \bigcirc p)
$$

Example

$$
\diamond(p \Rightarrow O p)
$$

Example

$\diamond(p \Rightarrow \circ p)$

$\diamond(p \Rightarrow O p)$ is falsified

Example

$$
\diamond(p \Rightarrow \bigcirc p)
$$

$\diamond(p \Rightarrow O p)$ is falsified
Requires an infinite model to falsify-no finite model property

Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.

Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:
ϕ satisfiable $\Longleftrightarrow \neg \phi$ falsifiable

Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:
ϕ satisfiable $\Longleftrightarrow \neg \phi$ falsifiable
Falsifiability is also reducible to satisfiability: define $\sim \phi \equiv \top \Leftarrow \phi$, then
ϕ falsifiable $\Longleftrightarrow \sim \phi$ satisfiable

Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:
ϕ satisfiable $\Longleftrightarrow \neg \phi$ falsifiable
Falsifiability is also reducible to satisfiability: define $\sim \phi \equiv \top \Leftarrow \phi$, then
ϕ falsifiable $\Longleftrightarrow \sim \phi$ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are equivalent.

Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:
ϕ satisfiable $\Longleftrightarrow \neg \phi$ falsifiable
Falsifiability is also reducible to satisfiability: define $\sim \phi \equiv \top \Leftarrow \phi$, then
ϕ falsifiable $\Longleftrightarrow \sim \phi$ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of \mathcal{L}-formulas valid on all real models by $\mathrm{GT}_{\mathbb{R}}$. Denote the set of \mathcal{L}-formulas valid on all Kripke models by $\mathrm{GTL}_{\mathrm{K}}$. Then

$$
\mathrm{GTL}_{\mathbb{R}}=\mathrm{GTL}_{\mathrm{K}}
$$

Decidability: quasimodels

Σ a subformula-closed set of formulas (think $\operatorname{sub}(\phi)$ for ϕ we want to decide)

Decidability: quasimodels

Σ a subformula-closed set of formulas (think $\operatorname{sub}(\phi)$ for ϕ we want to decide)

Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma.

Decidability: quasimodels

Σ a subformula-closed set of formulas (think $\operatorname{sub}(\phi)$ for ϕ we want to decide)

Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma. Time can be non-deterministic.

Decidability: quasimodels

Σ a subformula-closed set of formulas
(think $\operatorname{sub}(\phi)$ for ϕ we want to decide)
Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma. Time can be non-deterministic.
$\Phi \subseteq \Sigma$ is a Σ-type if:
(1) $\perp \notin \Sigma$.
(2) If $\varphi \wedge \psi \in \Sigma$, then $\varphi \wedge \psi \in \Phi$ if and only if $\varphi, \psi \in \Phi$.
(3) Similarly for \vee

Decidability: quasimodels

Σ a subformula-closed set of formulas
(think $\operatorname{sub}(\phi)$ for ϕ we want to decide)
Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma. Time can be non-deterministic.
$\phi \subseteq \Sigma$ is a Σ-type if:
(1) $\perp \notin \Sigma$.
(2) If $\varphi \wedge \psi \in \Sigma$, then $\varphi \wedge \psi \in \Phi$ if and only if $\varphi, \psi \in \Phi$.
(3) Similarly for \vee
(9) If $\varphi \Rightarrow \psi \in \Sigma$, then
(1) $\varphi \Rightarrow \psi \in \Phi$ implies that $\varphi \notin \Phi$ or $\psi \in \Phi$,
(2) $\psi \in \Phi$ implies that $\varphi \Rightarrow \psi \in \Phi$.

Decidability: quasimodels

Σ a subformula-closed set of formulas
(think $\operatorname{sub}(\phi)$ for ϕ we want to decide)
Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma. Time can be non-deterministic.
$\Phi \subseteq \Sigma$ is a Σ-type if:
(1) $\perp \notin \Sigma$.
(2) If $\varphi \wedge \psi \in \Sigma$, then $\varphi \wedge \psi \in \Phi$ if and only if $\varphi, \psi \in \Phi$.
(3) Similarly for \vee
(9) If $\varphi \Rightarrow \psi \in \Sigma$, then
(1) $\varphi \Rightarrow \psi \in \Phi$ implies that $\varphi \notin \Phi$ or $\psi \in \Phi$,
(2) $\psi \in \Phi$ implies that $\varphi \Rightarrow \psi \in \Phi$.
(0) If $\varphi \Leftarrow \psi \in \Sigma$, then
(1) $\varphi \Leftarrow \psi \in \Phi$ implies $\varphi \in \Phi$,
(2) $\varphi \in \Phi$ and $\psi \notin \Phi$ implies that $\varphi \Leftarrow \psi \in \Phi$.

Decidability: quasimodels

Σ a subformula-closed set of formulas
(think $\operatorname{sub}(\phi)$ for ϕ we want to decide)
Quasimodels: a type of (subsets-of- Σ)-labelled structure that satisfies a truth lemma. Time can be non-deterministic.
$\Phi \subseteq \Sigma$ is a Σ-type if:
(1) $\perp \notin \Sigma$.
(2) If $\varphi \wedge \psi \in \Sigma$, then $\varphi \wedge \psi \in \Phi$ if and only if $\varphi, \psi \in \Phi$.
(3) Similarly for \vee
(9) If $\varphi \Rightarrow \psi \in \Sigma$, then
(1) $\varphi \Rightarrow \psi \in \Phi$ implies that $\varphi \notin \Phi$ or $\psi \in \Phi$,
(2) $\psi \in \Phi$ implies that $\varphi \Rightarrow \psi \in \Phi$.
(3) If $\varphi \Leftarrow \psi \in \Sigma$, then
(1) $\varphi \Leftarrow \psi \in \Phi$ implies $\varphi \in \Phi$,
(2) $\varphi \in \Phi$ and $\psi \notin \Phi$ implies that $\varphi \Leftarrow \psi \in \Phi$.

The set of Σ-types will be denoted by \mathbb{T}_{Σ}.

Decidability: quasimodels

locally linear: disjoint union of linear posets.

Decidability: quasimodels

locally linear: disjoint union of linear posets.
A Σ-labelled space is a $\mathcal{W}=(W, \leq, \ell)$, where (W, \leq) is locally linear

Decidability: quasimodels

locally linear: disjoint union of linear posets.
A Σ-labelled space is a $\mathcal{W}=(W, \leq, \ell)$, where
(W, \leq) is locally linear
$\ell:(W, \leq) \rightarrow\left(\mathbb{T}_{\Sigma}, \subseteq\right)$ an inversely monotone function

Decidability: quasimodels

locally linear: disjoint union of linear posets.
A Σ-labelled space is a $\mathcal{W}=(W, \leq, \ell)$, where
(W, \leq) is locally linear
$\ell:(W, \leq) \rightarrow\left(\mathbb{T}_{\Sigma}, \subseteq\right)$ an inversely monotone function
such that for all $w \in W$

- whenever $\varphi \Rightarrow \psi \in \Sigma \backslash \ell(w)$, there is $v \leq w$ such that $\varphi \in \ell(v)$ and $\psi \notin \ell(v)$;

Decidability: quasimodels

locally linear: disjoint union of linear posets.
A Σ-labelled space is a $\mathcal{W}=(W, \leq, \ell)$, where
(W, \leq) is locally linear
$\ell:(W, \leq) \rightarrow\left(\mathbb{T}_{\Sigma}, \subseteq\right)$ an inversely monotone function
such that for all $w \in W$

- whenever $\varphi \Rightarrow \psi \in \Sigma \backslash \ell(w)$, there is $v \leq w$ such that $\varphi \in \ell(v)$ and $\psi \notin \ell(v)$;
- whenever $\varphi \Leftarrow \psi \in \ell(w)$, there is $v \geq w$ such that $\varphi \in \ell(v)$ and $\psi \notin \ell(v)$.

Decidability: quasimodels

A convex relation between posets $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ is an $R \subseteq A \times B$ such that: for each $x \in A$ the image set $\{y \in B \mid x R y\}$ is convex with respect to \leq_{B} for each $y \in B$ the preimage set $\{x \in A \mid x R y\}$ is convex w.r.t. \leq_{A}.

Decidability: quasimodels

A convex relation between posets $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ is an $R \subseteq A \times B$ such that: for each $x \in A$ the image set $\{y \in B \mid x R y\}$ is convex with respect to \leq_{B} for each $y \in B$ the preimage set $\{x \in A \mid x R y\}$ is convex w.r.t. \leq_{A}.

The relation R is fully confluent if:
forth-down if $x \leq_{A} x^{\prime} R y^{\prime}$ there is y such that $x R y \leq_{B} y^{\prime}$, forth-up if $x^{\prime} \geq_{A} \times R y$ there is y^{\prime} such that $x^{\prime} R y^{\prime} \geq_{B} y$, back-down if $x^{\prime} R y^{\prime} \geq_{B} y$ there is x such that $x^{\prime} \geq_{A} x R y$, back-up if $x R y \leq_{B} y^{\prime}$ there is x^{\prime} such that $x \leq_{A} x^{\prime} R y^{\prime}$.

Decidability: quasimodels

Let $\Phi, \Psi \in \mathbb{T}_{\Sigma}$. The pair (Φ, Ψ) is sensible if
(1) for all $O \varphi \in \Sigma: O \varphi \in \Phi$ if and only if $\varphi \in \Psi$,
(2) for all $\diamond \varphi \in \Sigma: \diamond \varphi \in \Phi$ if and only if $\varphi \in \Phi$ or $\diamond \varphi \in \Psi$,
(3) for all $\square \varphi \in \Sigma: \quad \square \varphi \in \Phi$ if and only if $\varphi \in \Phi$ and $\square \varphi \in \Psi$.

A pair (w, v) of worlds in a labelled space \mathcal{W} is sensible if $(\ell(w), \ell(v))$ is sensible. A relation $R \subseteq|\mathcal{W}| \times|\mathcal{W}|$ is sensible if every pair in R is sensible.

Decidability: quasimodels

Let $\Phi, \Psi \in \mathbb{T}_{\Sigma}$. The pair (Φ, Ψ) is sensible if
(1) for all $\bigcirc \varphi \in \Sigma: O \varphi \in \Phi$ if and only if $\varphi \in \Psi$,
(2) for all $\diamond \varphi \in \Sigma: \diamond \varphi \in \Phi$ if and only if $\varphi \in \Phi$ or $\diamond \varphi \in \Psi$,
(3) for all $\square \varphi \in \Sigma: \quad \square \varphi \in \Phi$ if and only if $\varphi \in \Phi$ and $\square \varphi \in \Psi$.

A pair (w, v) of worlds in a labelled space \mathcal{W} is sensible if $(\ell(w), \ell(v))$ is sensible. A relation $R \subseteq|\mathcal{W}| \times|\mathcal{W}|$ is sensible if every pair in R is sensible.

A sensible R is ω-sensible if it is serial and

- when $\diamond \varphi \in \ell(w)$, there are $n \geq 0$ and v such that $w R^{n} v$ and $\varphi \in \ell(v)$;
- when $\square \varphi \notin \ell(w)$, there are $n \geq 0$ and v such that $w R^{n} v$ and $\varphi \notin \ell(v)$.

Decidability: quasimodels

Let $\Phi, \Psi \in \mathbb{T}_{\Sigma}$. The pair (Φ, Ψ) is sensible if
(1) for all $\bigcirc \varphi \in \Sigma: O \varphi \in \Phi$ if and only if $\varphi \in \Psi$,
(2) for all $\diamond \varphi \in \Sigma: \diamond \varphi \in \Phi$ if and only if $\varphi \in \Phi$ or $\diamond \varphi \in \Psi$,
(3) for all $\square \varphi \in \Sigma: \quad \square \varphi \in \Phi$ if and only if $\varphi \in \Phi$ and $\square \varphi \in \Psi$.

A pair (w, v) of worlds in a labelled space \mathcal{W} is sensible if $(\ell(w), \ell(v))$ is sensible. A relation $R \subseteq|\mathcal{W}| \times|\mathcal{W}|$ is sensible if every pair in R is sensible.

A sensible R is ω-sensible if it is serial and

- when $\diamond \varphi \in \ell(w)$, there are $n \geq 0$ and v such that $w R^{n} v$ and $\varphi \in \ell(v)$;
- when $\square \varphi \notin \ell(w)$, there are $n \geq 0$ and v such that $w R^{n} v$ and $\varphi \notin \ell(v)$.
A Σ-quasimodel is a Σ-labelled space equipped with a fully confluent, convex, ω-sensible relation.

Decidability: quasimodel \rightarrow model

From a quasimodel \mathcal{Q} and $w \in \mathcal{Q}$ with $\phi \in \Sigma \backslash \ell(w)$: construct a model falsifying ϕ

Decidability: quasimodel \rightarrow model

From a quasimodel \mathcal{Q} and $w \in \mathcal{Q}$ with $\phi \in \Sigma \backslash \ell(w)$: construct a model falsifying ϕ

Build an increasing sequence of grids of \mathcal{Q}-worlds
(starting from w)

Decidability: quasimodel \rightarrow model

From a quasimodel \mathcal{Q} and $w \in \mathcal{Q}$ with $\phi \in \Sigma \backslash \ell(w)$: construct a model falsifying ϕ

Build an increasing sequence of grids of \mathcal{Q}-worlds
(starting from w)
Each extension of the grid removes a 'defect', with every defect eventually removed.

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ : construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\},
$$

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\begin{gathered}
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\}, \\
L(x)=\left\{\ell(y) \mid \pi_{2}(x)=\pi_{2}(y)\right\},
\end{gathered}
$$

where $\pi_{2}: W \times T \rightarrow T$ is the projection $(w, t) \mapsto t$.

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\begin{gathered}
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\}, \\
L(x)=\left\{\ell(y) \mid \pi_{2}(x)=\pi_{2}(y)\right\},
\end{gathered}
$$

where $\pi_{2}: W \times T \rightarrow T$ is the projection $(w, t) \mapsto t$.
Define \sim on $W \times T$ by

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\begin{gathered}
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\} \\
L(x)=\left\{\ell(y) \mid \pi_{2}(x)=\pi_{2}(y)\right\},
\end{gathered}
$$

where $\pi_{2}: W \times T \rightarrow T$ is the projection $(w, t) \mapsto t$.
Define \sim on $W \times T$ by

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Now define a partial order $\leq_{\mathcal{Q}}$ on the equivalence classes $(W \times T) / \sim$ of \sim by

$$
[x] \leq_{\mathcal{Q}}[y] \Longleftrightarrow L(x)=L(y) \text { and } \ell(x) \supseteq \ell(y),
$$

noting that this is well-defined and is indeed a partial order.

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\begin{gathered}
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\} \\
L(x)=\left\{\ell(y) \mid \pi_{2}(x)=\pi_{2}(y)\right\},
\end{gathered}
$$

where $\pi_{2}: W \times T \rightarrow T$ is the projection $(w, t) \mapsto t$.
Define \sim on $W \times T$ by

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Now define a partial order $\leq_{\mathcal{Q}}$ on the equivalence classes $(W \times T) / \sim$ of \sim by

$$
[x] \leq_{\mathcal{Q}}[y] \Longleftrightarrow L(x)=L(y) \text { and } \ell(x) \supseteq \ell(y),
$$

noting that this is well-defined and is indeed a partial order.
Relation $R_{\mathcal{Q}}$ containing all $([(w, t)],[(w, S(t))])$.

Decidability: model \rightarrow finite quasimodel

From a Kripke model \mathcal{X} and $x \in \mathcal{X}$ falsifying ϕ :
construct a finite Σ-quasimodel model 'falsifying' $\phi \quad(\Sigma=\operatorname{sub}(\phi))$
Let $\mathcal{X}=(W, T, \leq, S, \llbracket \cdot \rrbracket)$.
For $x \in W \times T$, define

$$
\begin{gathered}
\ell(x)=\{\psi \in \Sigma \mid x \in \llbracket \psi \rrbracket\} \\
L(x)=\left\{\ell(y) \mid \pi_{2}(x)=\pi_{2}(y)\right\},
\end{gathered}
$$

where $\pi_{2}: W \times T \rightarrow T$ is the projection $(w, t) \mapsto t$.
Define \sim on $W \times T$ by

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Now define a partial order $\leq_{\mathcal{Q}}$ on the equivalence classes $(W \times T) / \sim$ of \sim by

$$
[x] \leq_{\mathcal{Q}}[y] \Longleftrightarrow L(x)=L(y) \text { and } \ell(x) \supseteq \ell(y),
$$

noting that this is well-defined and is indeed a partial order. Relation $R_{\mathcal{Q}}$ containing all $([(w, t)],[(w, S(t))])$. Check everything

PSPACE

The quasimodel we obtained was exponential in size...

PSPACE

The quasimodel we obtained was exponential in size... but of 'height' at most $|\Sigma|+1$.

PSPACE

The quasimodel we obtained was exponential in size...
but of 'height' at most $|\Sigma|+1$.
Extract a 'linear' quasimodel from it (similar to grid/defect technique from before).

PSPACE

The quasimodel we obtained was exponential in size...
but of 'height' at most $|\Sigma|+1$.
Extract a 'linear' quasimodel from it (similar to grid/defect technique from before).

Extract an ultimately periodic ('lasso shaped') quasimodel from it (now similar to proof for linear temporal logic).

PSPACE

The quasimodel we obtained was exponential in size...
but of 'height' at most $|\Sigma|+1$.
Extract a 'linear' quasimodel from it (similar to grid/defect technique from before).

Extract an ultimately periodic ('lasso shaped') quasimodel from it (now similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and component to start loop, checking off defects as they are resolved. If we return to component at start of loop after all defects resolved, then succeed.

PSPACE

The quasimodel we obtained was exponential in size...
but of 'height' at most $|\Sigma|+1$.
Extract a 'linear' quasimodel from it (similar to grid/defect technique from before).

Extract an ultimately periodic ('lasso shaped') quasimodel from it (now similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and component to start loop, checking off defects as they are resolved. If we return to component at start of loop after all defects resolved, then succeed.

Polynomial amount of data: current linear component, component at start of loop, defects remaining, connectivity data. Hence NPSPACE algorithm.

PSPACE

The quasimodel we obtained was exponential in size...
but of 'height' at most $|\Sigma|+1$.
Extract a 'linear' quasimodel from it (similar to grid/defect technique from before).

Extract an ultimately periodic ('lasso shaped') quasimodel from it (now similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and component to start loop, checking off defects as they are resolved. If we return to component at start of loop after all defects resolved, then succeed.

Polynomial amount of data: current linear component, component at start of loop, defects remaining, connectivity data. Hence NPSPACE algorithm.

By Savitch's theorem: problem is PSPACE.

Deductive system

Deductive system

- All (substitution instances of) intuitionistic tautologies

Deductive system

- All (substitution instances of) intuitionistic tautologies
- Axioms and rules of H-B logic (cf. [Rauszer 1974]):

$$
\varphi \Rightarrow(\psi \vee(\varphi \Leftarrow \psi)) \quad \frac{\varphi \Rightarrow \psi}{(\varphi \Leftarrow \theta) \Rightarrow(\psi \Leftarrow \theta)} \quad \frac{\varphi \Rightarrow \psi \vee \gamma}{(\varphi \Leftarrow \psi) \Rightarrow \gamma}
$$

Deductive system

- All (substitution instances of) intuitionistic tautologies
- Axioms and rules of H-B logic (cf. [Rauszer 1974]):

$$
\varphi \Rightarrow(\psi \vee(\varphi \Leftarrow \psi)) \quad \frac{\varphi \Rightarrow \psi}{(\varphi \Leftarrow \theta) \Rightarrow(\psi \Leftarrow \theta)} \quad \frac{\varphi \Rightarrow \psi \vee \gamma}{(\varphi \Leftarrow \psi) \Rightarrow \gamma}
$$

- Linearity axioms: $(\varphi \Rightarrow \psi) \vee(\psi \Rightarrow \varphi) \quad \neg((\varphi \Leftarrow \psi) \wedge(\psi \Leftarrow \varphi))$

Deductive system

- All (substitution instances of) intuitionistic tautologies
- Axioms and rules of H-B logic (cf. [Rauszer 1974]):

$$
\varphi \Rightarrow(\psi \vee(\varphi \Leftarrow \psi)) \quad \frac{\varphi \Rightarrow \psi}{(\varphi \Leftarrow \theta) \Rightarrow(\psi \Leftarrow \theta)} \quad \frac{\varphi \Rightarrow \psi \vee \gamma}{(\varphi \Leftarrow \psi) \Rightarrow \gamma}
$$

- Linearity axioms: $(\varphi \Rightarrow \psi) \vee(\psi \Rightarrow \varphi) \quad \neg((\varphi \Leftarrow \psi) \wedge(\psi \Leftarrow \varphi))$
- Temporal axioms:
- $\neg \bigcirc \perp$
- $\bigcirc(\varphi \vee \psi) \Rightarrow(\circ \varphi \vee \circ \psi)$
- $(\circ \varphi \wedge \bigcirc \psi) \Rightarrow \bigcirc(\varphi \wedge \psi)$
- $\bigcirc(\varphi \Rightarrow \psi) \Leftrightarrow(\bigcirc \varphi \Rightarrow \bigcirc \psi)$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\square \varphi \Rightarrow \square \psi)$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\diamond \varphi \Rightarrow \diamond \psi)$
- $\square \varphi \Rightarrow \varphi \wedge \bigcirc \square \varphi$
- $\varphi \vee \circ \diamond \varphi \Rightarrow \diamond \varphi$
- $\square(\varphi \Rightarrow \bigcirc \varphi) \Rightarrow(\varphi \Rightarrow \square \varphi)$
- $\square(\bigcirc \varphi \Rightarrow \varphi) \Rightarrow(\diamond \varphi \Rightarrow \varphi)$

Deductive system

- All (substitution instances of) intuitionistic tautologies
- Axioms and rules of H-B logic (cf. [Rauszer 1974]):

$$
\varphi \Rightarrow(\psi \vee(\varphi \Leftarrow \psi)) \quad \frac{\varphi \Rightarrow \psi}{(\varphi \Leftarrow \theta) \Rightarrow(\psi \Leftarrow \theta)} \quad \frac{\varphi \Rightarrow \psi \vee \gamma}{(\varphi \Leftarrow \psi) \Rightarrow \gamma}
$$

- Linearity axioms: $(\varphi \Rightarrow \psi) \vee(\psi \Rightarrow \varphi) \quad \neg((\varphi \Leftarrow \psi) \wedge(\psi \Leftarrow \varphi))$
- Temporal axioms:
- $\neg \bigcirc \perp$
- $\bigcirc(\varphi \vee \psi) \Rightarrow(\circ \varphi \vee \bigcirc \psi)$
- $(\circ \varphi \wedge \bigcirc \psi) \Rightarrow \bigcirc(\varphi \wedge \psi)$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\diamond \varphi \Rightarrow \diamond \psi)$
- $\bigcirc(\varphi \Rightarrow \psi) \Leftrightarrow(\bigcirc \varphi \Rightarrow \bigcirc \psi)$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\square \varphi \Rightarrow \square \psi)$
- $\square \varphi \Rightarrow \varphi \wedge \circ \square \varphi$
- $\varphi \vee \circ \diamond \varphi \Rightarrow \diamond \varphi$
- $\square(\varphi \Rightarrow \bigcirc \varphi) \Rightarrow(\varphi \Rightarrow \square \varphi)$
- $\square(\bigcirc \varphi \Rightarrow \varphi) \Rightarrow(\diamond \varphi \Rightarrow \varphi)$
- Back-up confluence axiom: $\bigcirc(\varphi \Leftarrow \psi) \Rightarrow(\bigcirc \varphi \Leftarrow \bigcirc \psi)$

Deductive system

- All (substitution instances of) intuitionistic tautologies
- Axioms and rules of H-B logic (cf. [Rauszer 1974]):

$$
\varphi \Rightarrow(\psi \vee(\varphi \Leftarrow \psi)) \quad \frac{\varphi \Rightarrow \psi}{(\varphi \Leftarrow \theta) \Rightarrow(\psi \Leftarrow \theta)} \quad \frac{\varphi \Rightarrow \psi \vee \gamma}{(\varphi \Leftarrow \psi) \Rightarrow \gamma}
$$

- Linearity axioms: $(\varphi \Rightarrow \psi) \vee(\psi \Rightarrow \varphi) \quad \neg((\varphi \Leftarrow \psi) \wedge(\psi \Leftarrow \varphi))$
- Temporal axioms:
- $\neg \bigcirc \perp$
- $\bigcirc(\varphi \vee \psi) \Rightarrow(\circ \varphi \vee \circ \psi)$
- $(\circ \varphi \wedge \bigcirc \psi) \Rightarrow \bigcirc(\varphi \wedge \psi)$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\diamond \varphi \Rightarrow \diamond \psi)$
- $O(\varphi \Rightarrow \psi) \Leftrightarrow(\bigcirc \varphi \Rightarrow \bigcirc \psi)$
- $\square \varphi \Rightarrow \varphi \wedge \bigcirc \square \varphi$
- $\varphi \vee \circ \diamond \varphi \Rightarrow \diamond \varphi$
- $\square(\varphi \Rightarrow \psi) \Rightarrow(\square \varphi \Rightarrow \square \psi)$
- $\square(\varphi \Rightarrow \bigcirc \varphi) \Rightarrow(\varphi \Rightarrow \square \varphi)$
- $\square(\circ \varphi \Rightarrow \varphi) \Rightarrow(\diamond \varphi \Rightarrow \varphi)$
- Back-up confluence axiom: $\bigcirc(\varphi \Leftarrow \psi) \Rightarrow(\bigcirc \varphi \Leftarrow \bigcirc \psi)$
- Standard modal rules:
- $\frac{\varphi, \varphi \Rightarrow \psi}{\psi}$
- $\frac{\varphi}{O \varphi}$
- $\frac{\varphi}{\square \varphi}$

GTL := formulas generated by deductive system

Completeness: canonical structure

Points are pairs $\Phi=\left(\Phi^{+}, \Phi^{-}\right)$partitioning \mathcal{L} such that for all finite $\Delta^{+} \subseteq \Phi^{+}$and $\Delta^{-} \subseteq \Phi^{-}$

$$
\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right) \notin \mathrm{GTL}
$$

Completeness: canonical structure

Points are pairs $\Phi=\left(\Phi^{+}, \Phi^{-}\right)$partitioning \mathcal{L} such that for all finite $\Delta^{+} \subseteq \Phi^{+}$and $\Delta^{-} \subseteq \Phi^{-}$

$$
\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right) \notin \mathrm{GTL}
$$

$$
\Phi \leq \Psi \text { if and only if } \Phi^{+} \supseteq \Psi^{+}
$$

Completeness: canonical structure

Points are pairs $\Phi=\left(\Phi^{+}, \Phi^{-}\right)$partitioning \mathcal{L} such that for all finite $\Delta^{+} \subseteq \Phi^{+}$and $\Delta^{-} \subseteq \Phi^{-}$

$$
\begin{gathered}
\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right) \notin \mathrm{GTL} \\
\Phi \leq \Psi \text { if and only if } \Phi^{+} \supseteq \Psi^{+}
\end{gathered}
$$

$$
\ell(\Phi)=\Phi
$$

Completeness: canonical structure

Points are pairs $\Phi=\left(\Phi^{+}, \Phi^{-}\right)$partitioning \mathcal{L} such that for all finite $\Delta^{+} \subseteq \Phi^{+}$and $\Delta^{-} \subseteq \Phi^{-}$

$$
\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right) \notin \mathrm{GTL}
$$

$$
\Phi \leq \Psi \text { if and only if } \Phi^{+} \supseteq \Psi^{+}
$$

$$
S(\Phi)=\left(\left\{\varphi \mid \bigcirc \varphi \in \Phi^{+}\right\},\left\{\varphi \mid \bigcirc \varphi \in \Phi^{-}\right\}\right)
$$

Completeness: canonical structure

Points are pairs $\Phi=\left(\Phi^{+}, \Phi^{-}\right)$partitioning \mathcal{L} such that for all finite $\Delta^{+} \subseteq \Phi^{+}$and $\Delta^{-} \subseteq \Phi^{-}$

$$
\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right) \notin \mathrm{GTL}
$$

$$
\Phi \leq \Psi \text { if and only if } \Phi^{+} \supseteq \Psi^{+}
$$

$$
S(\Phi)=\left(\left\{\varphi \mid \bigcirc \varphi \in \Phi^{+}\right\},\left\{\varphi \mid \bigcirc \varphi \in \Phi^{-}\right\}\right)
$$

Verify everything except ω-sensibility.

Completeness: canonical structure \rightarrow quasimodel

Choose $\Sigma \subseteq \mathcal{L}$ finite and subformula closed (e.g. $\operatorname{sub}(\phi))$.

Completeness: canonical structure \rightarrow quasimodel

Choose $\Sigma \subseteq \mathcal{L}$ finite and subformula closed (e.g. $\operatorname{sub}(\phi)$).
Restrict labels to Σ.

Completeness: canonical structure \rightarrow quasimodel

Choose $\Sigma \subseteq \mathcal{L}$ finite and subformula closed (e.g. $\operatorname{sub}(\phi))$.
Restrict labels to Σ.
Same quotient construction as before:

$$
L(x)=\{\ell(y) \mid x \text { and } y \text { in same linear component }\}
$$

Define ~

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Define a partial order \leq on the equivalence classes by

$$
[x] \leq[y] \Longleftrightarrow L(x)=L(y) \text { and } \ell(x) \supseteq \ell(y)
$$

Relation R containing all $([x],[S(x)])$.

Completeness: canonical structure \rightarrow quasimodel

Choose $\Sigma \subseteq \mathcal{L}$ finite and subformula closed (e.g. $\operatorname{sub}(\phi))$.
Restrict labels to Σ.
Same quotient construction as before:

$$
L(x)=\{\ell(y) \mid x \text { and } y \text { in same linear component }\}
$$

Define ~

$$
x \sim y \Longleftrightarrow(\ell(x), L(x))=(\ell(y), L(y))
$$

Define a partial order \leq on the equivalence classes by

$$
[x] \leq[y] \Longleftrightarrow L(x)=L(y) \text { and } \ell(x) \supseteq \ell(y)
$$

Relation R containing all $([x],[S(x)])$.
Check everything except possibly ω-sensibility still holds.

Completeness: canonical structure \rightarrow quasimodel To prove relation R on quotient is ω-sensible:

Completeness: canonical structure \rightarrow quasimodel

To prove relation R on quotient is ω-sensible:
For $\Delta=\left(\Delta^{+}, \Delta^{-}\right)$partitioning Σ, define

$$
\vec{\Delta}=\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right)
$$

—"I'm not above a point of type Δ "

$$
\overleftarrow{\Delta}=\left(\bigwedge \Delta^{+} \Leftarrow \bigvee \Delta^{-}\right)
$$

—"I'm below a point of type Δ "

Completeness: canonical structure \rightarrow quasimodel

To prove relation R on quotient is ω-sensible:
For $\Delta=\left(\Delta^{+}, \Delta^{-}\right)$partitioning Σ, define

$$
\vec{\Delta}=\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right)
$$

—"I'm not above a point of type Δ "

$$
\overleftarrow{\Delta}=\left(\bigwedge \Delta^{+} \Leftarrow \bigvee \Delta^{-}\right)
$$

—"I'm below a point of type Δ "

$$
\chi^{0}(w):=\bigwedge_{\Delta \in L(w)} \sim \vec{\Delta} \wedge \bigwedge_{\Delta \notin L(w)} \neg \overleftarrow{\Delta}
$$

-"I'm in the same linear component as w"

Completeness: canonical structure \rightarrow quasimodel

To prove relation R on quotient is ω-sensible:
For $\Delta=\left(\Delta^{+}, \Delta^{-}\right)$partitioning Σ, define

$$
\vec{\Delta}=\left(\bigwedge \Delta^{+} \Rightarrow \bigvee \Delta^{-}\right)
$$

—"I'm not above a point of type Δ "

$$
\overleftarrow{\Delta}=\left(\bigwedge \Delta^{+} \Leftarrow \bigvee \Delta^{-}\right)
$$

—"I'm below a point of type Δ "

$$
\chi^{0}(w):=\bigwedge_{\Delta \in L(w)} \sim \vec{\Delta} \wedge \bigwedge_{\Delta \notin L(w)} \neg \overleftarrow{\Delta}
$$

-"I'm in the same linear component as w"

$$
\chi^{+}(w)=\overleftarrow{\ell(w)} \wedge \chi^{0}(w)
$$

—"I'm below w"

Completeness: canonical structure \rightarrow quasimodel

To prove:
if all $v \in R^{*}(w)$ have φ in their label then $\square \varphi \in \ell(w)$
: deductions involving $\bigvee_{v \in R^{*}(w)} \chi^{+}(v)$

Completeness: canonical structure \rightarrow quasimodel

To prove:
if all $v \in R^{*}(w)$ have φ in their label then $\square \varphi \in \ell(w)$
: deductions involving $\bigvee_{v \in R^{*}(w)} \chi^{+}(v)$
Similar argument for formulas of form $\diamond \varphi$

References

回 Juan Pablo Aguilera, Martín Diéguez, David Fernández-Duque, and Brett McLean.
Time and Gödel: Fuzzy temporal reasoning in PSPACE.
WoLLIC (to appear) 2022.
嗇 Juan Pablo Aguilera, Martín Diéguez, David Fernández-Duque, and Brett McLean.
A Gödel Calculus for Linear Temporal Logic.
KR 2022.
Recylia Rauszer.
A formalization of the propositional calculus of $\mathrm{H}-\mathrm{B}$ logic.
Studia Logica 33(1):23-34, 1974.

