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Language

L
Propositional logic:

Variables p, q, r , . . .
Connectives ∧,∨,⇒,⊥

Co-implication ⇐
Modalities:

Next #ϕ
Eventually 3ϕ

Henceforth 2ϕ

⇐ is not necessary for first part of talk
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Real-valued semantics

A flow is a pair T = (T , S) with S : T → T .

A real valuation on T is a V : L × T → [0, 1] such that, for all t ∈ T :

V (⊥, t) = 0
V (φ ∧ ψ, t) = min{V (φ, t),V (ψ, t)}
V (φ ∨ ψ, t) = max{V (φ, t),V (ψ, t)}

V (φ⇒ψ, t) =
{

1 if V (φ, t) ≤ V (ψ, t)
V (ψ, t) otherwise

V (φ⇐ψ, t) =
{

0 if V (φ, t) ≤ V (ψ, t)
V (φ, t) otherwise

V (#φ, t) = V (φ,S(t))
V (3φ, t) = supn<ω V (φ,Sn(t))
V (2φ, t) = infn<ω V (φ,Sn(t))

A flow equipped with a valuation is a real (Gödel temporal) model.
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Kripke semantics
A (Gödel temporal) Kripke frame is an F = (W ,T ,≤,S) where
(W ,≤) is a linearly ordered set and (T , S) a flow.

A Kripke valuation on F is a function J·K : L → 2W ×T such that, for
each p ∈ P, the set JpK is downward closed in its first coordinate, and

J⊥K = ∅
Jφ ∧ ψK = JφK ∩ JψK
Jφ ∨ ψK = JφK ∪ JψK
Jφ⇒ψK = {(w , t) ∈W × T | ∀v ≤ w((v , t) ∈ JφK

implies (v , t) ∈ JψK)}
Jφ⇐ψK = {(w , t) ∈W × T | ∃v ≥ w((v , t) ∈ JφK

and (v , t) /∈ JψK)}
J#φK = (idW × S)−1 JφK
J3φK =

⋃
n<ω(idW × S)−n JφK

J2φK =
⋂

n<ω(idW × S)−n JφK

A Kripke frame equipped with a valuation is a (Gödel temporal) Kripke
model.
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model.

4 / 19



Example
3(p⇒#p)
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...
3(p⇒#p) is falsified
Requires an infinite model to falsify—no finite model property
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Real–Kripke equivalence
As usual, validity and falsifiability are complementary problems.

As usual, satisfiability is reducible to falsifiability:

ϕ satisfiable ⇐⇒ ¬ϕ falsifiable

Falsifiability is also reducible to satisfiability: define ∼ϕ ≡ ⊤⇐ϕ, then

ϕ falsifiable ⇐⇒ ∼ϕ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLR.
Denote the set of L-formulas valid on all Kripke models by GTLK.
Then

GTLR = GTLK.

6 / 19



Real–Kripke equivalence
As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:

ϕ satisfiable ⇐⇒ ¬ϕ falsifiable

Falsifiability is also reducible to satisfiability: define ∼ϕ ≡ ⊤⇐ϕ, then

ϕ falsifiable ⇐⇒ ∼ϕ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLR.
Denote the set of L-formulas valid on all Kripke models by GTLK.
Then

GTLR = GTLK.

6 / 19



Real–Kripke equivalence
As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:

ϕ satisfiable ⇐⇒ ¬ϕ falsifiable

Falsifiability is also reducible to satisfiability: define ∼ϕ ≡ ⊤⇐ϕ, then

ϕ falsifiable ⇐⇒ ∼ϕ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLR.
Denote the set of L-formulas valid on all Kripke models by GTLK.
Then

GTLR = GTLK.

6 / 19



Real–Kripke equivalence
As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:

ϕ satisfiable ⇐⇒ ¬ϕ falsifiable

Falsifiability is also reducible to satisfiability: define ∼ϕ ≡ ⊤⇐ϕ, then

ϕ falsifiable ⇐⇒ ∼ϕ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLR.
Denote the set of L-formulas valid on all Kripke models by GTLK.
Then

GTLR = GTLK.

6 / 19



Real–Kripke equivalence
As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:

ϕ satisfiable ⇐⇒ ¬ϕ falsifiable

Falsifiability is also reducible to satisfiability: define ∼ϕ ≡ ⊤⇐ϕ, then

ϕ falsifiable ⇐⇒ ∼ϕ satisfiable

In terms of validity/falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernández-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLR.
Denote the set of L-formulas valid on all Kripke models by GTLK.
Then

GTLR = GTLK.

6 / 19



Decidability: quasimodels
Σ a subformula-closed set of formulas

(think sub(ϕ) for ϕ we want to decide)

Quasimodels: a type of (subsets-of-Σ)-labelled structure that satisfies a
truth lemma. Time can be non-deterministic.

Φ ⊆ Σ is a Σ-type if:
1 ⊥ ̸∈ Σ.
2 If φ ∧ ψ ∈ Σ, then φ ∧ ψ ∈ Φ if and only if φ,ψ ∈ Φ.
3 Similarly for ∨
4 If φ⇒ψ ∈ Σ, then

1 φ⇒ψ ∈ Φ implies that φ ̸∈ Φ or ψ ∈ Φ,
2 ψ ∈ Φ implies that φ⇒ψ ∈ Φ.

5 If φ⇐ψ ∈ Σ, then
1 φ⇐ψ ∈ Φ implies φ ∈ Φ,
2 φ ∈ Φ and ψ /∈ Φ implies that φ⇐ψ ∈ Φ.

The set of Σ-types will be denoted by TΣ.
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Decidability: quasimodels

locally linear: disjoint union of linear posets.

A Σ-labelled space is a W = (W ,≤, ℓ), where
(W ,≤) is locally linear
ℓ : (W ,≤)→ (TΣ,⊆) an inversely monotone function
such that for all w ∈W

whenever φ⇒ψ ∈ Σ \ ℓ(w), there is v ≤ w such that φ ∈ ℓ(v) and
ψ ̸∈ ℓ(v);
whenever φ⇐ψ ∈ ℓ(w), there is v ≥ w such that φ ∈ ℓ(v) and
ψ ̸∈ ℓ(v).
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Decidability: quasimodels

A convex relation between posets (A,≤A) and (B,≤B) is an R ⊆ A× B
such that:
for each x ∈ A the image set {y ∈ B | x R y} is convex with respect to ≤B
for each y ∈ B the preimage set {x ∈ A | x R y} is convex w.r.t. ≤A.

The relation R is fully confluent if:
forth-down if x ≤A x ′ R y ′ there is y such that x R y ≤B y ′,
forth-up if x ′ ≥A x R y there is y ′ such that x ′ R y ′ ≥B y ,
back-down if x ′ R y ′ ≥B y there is x such that x ′ ≥A x R y ,
back-up if x R y ≤B y ′ there is x ′ such that x ≤A x ′ R y ′.

9 / 19



Decidability: quasimodels

A convex relation between posets (A,≤A) and (B,≤B) is an R ⊆ A× B
such that:
for each x ∈ A the image set {y ∈ B | x R y} is convex with respect to ≤B
for each y ∈ B the preimage set {x ∈ A | x R y} is convex w.r.t. ≤A.

The relation R is fully confluent if:
forth-down if x ≤A x ′ R y ′ there is y such that x R y ≤B y ′,
forth-up if x ′ ≥A x R y there is y ′ such that x ′ R y ′ ≥B y ,
back-down if x ′ R y ′ ≥B y there is x such that x ′ ≥A x R y ,
back-up if x R y ≤B y ′ there is x ′ such that x ≤A x ′ R y ′.

9 / 19



Decidability: quasimodels

Let Φ,Ψ ∈ TΣ. The pair (Φ,Ψ) is sensible if
1 for all #φ ∈ Σ: #φ ∈ Φ if and only if φ ∈ Ψ,
2 for all 3φ ∈ Σ: 3φ ∈ Φ if and only if φ ∈ Φ or 3φ ∈ Ψ,
3 for all 2φ ∈ Σ: 2φ ∈ Φ if and only if φ ∈ Φ and 2φ ∈ Ψ.

A pair (w , v) of worlds in a labelled space W is sensible if (ℓ(w), ℓ(v)) is
sensible. A relation R ⊆ |W|× |W| is sensible if every pair in R is sensible.

A sensible R is ω-sensible if it is serial and
when 3φ ∈ ℓ(w), there are n ≥ 0 and v such that w Rn v and
φ ∈ ℓ(v);
when 2φ /∈ ℓ(w), there are n ≥ 0 and v such that w Rn v and
φ /∈ ℓ(v).

A Σ-quasimodel is a Σ-labelled space equipped with a fully confluent,
convex, ω-sensible relation.
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Decidability: quasimodel → model

From a quasimodel Q and w ∈ Q with ϕ ∈ Σ \ ℓ(w):
construct a model falsifying ϕ

Build an increasing sequence of grids of Q-worlds
(starting from w)

Each extension of the grid removes a ‘defect’, with every defect eventually
removed.
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Decidability: model → finite quasimodel
From a Kripke model X and x ∈ X falsifying ϕ:

construct a finite Σ-quasimodel model ‘falsifying’ ϕ (Σ = sub(ϕ))

Let X = (W ,T ,≤,S, J·K).
For x ∈W × T , define

ℓ(x) = {ψ ∈ Σ | x ∈ JψK} ,

L(x) = {ℓ(y) | π2(x) = π2(y)} ,
where π2 : W × T → T is the projection (w , t) 7→ t.
Define ∼ on W × T by

x ∼ y ⇐⇒ (ℓ(x), L(x)) = (ℓ(y), L(y)).
Now define a partial order ≤Q on the equivalence classes (W × T )/∼ of
∼ by

[x ] ≤Q [y ] ⇐⇒ L(x) = L(y) and ℓ(x) ⊇ ℓ(y),
noting that this is well-defined and is indeed a partial order.
Relation RQ containing all ([(w , t)], [(w , S(t))]). Check everything
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PSPACE
The quasimodel we obtained was exponential in size. . .

but of ‘height’ at most |Σ|+ 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

Extract an ultimately periodic (‘lasso shaped’) quasimodel from it (now
similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and
component to start loop, checking off defects as they are resolved. If we
return to component at start of loop after all defects resolved, then
succeed.

Polynomial amount of data: current linear component, component at start
of loop, defects remaining, connectivity data. Hence NPSPACE algorithm.

By Savitch’s theorem: problem is PSPACE.
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Deductive system

All (substitution instances of) intuitionistic tautologies
Axioms and rules of H-B logic (cf. [Rauszer 1974]):
φ⇒ (ψ ∨ (φ⇐ψ)) φ⇒ψ

(φ⇐ θ)⇒(ψ⇐ θ)
φ⇒ψ ∨ γ

(φ⇐ψ)⇒ γ

Linearity axioms: (φ⇒ψ) ∨ (ψ⇒φ) ¬ ((φ⇐ψ) ∧ (ψ⇐φ))
Temporal axioms:

¬#⊥
# (φ ∨ ψ)⇒ (#φ ∨#ψ)
(#φ ∧#ψ)⇒# (φ ∧ ψ)
# (φ⇒ψ)⇔ (#φ⇒#ψ)
2 (φ⇒ψ)⇒ (2φ⇒2ψ)

2 (φ⇒ψ)⇒ (3φ⇒3ψ)
2φ⇒φ ∧#2φ
φ ∨#3φ⇒3φ

2(φ⇒#φ)⇒(φ⇒2φ)
2(#φ⇒φ)⇒(3φ⇒φ)

Back–up confluence axiom: # (φ⇐ψ)⇒ (#φ⇐#ψ)
Standard modal rules:

φ, φ⇒ψ

ψ

φ

#φ

φ

2φ

GTL := formulas generated by deductive system
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Completeness: canonical structure

Points are pairs Φ = (Φ+,Φ−) partitioning L such that
for all finite ∆+ ⊆ Φ+ and ∆− ⊆ Φ−

(
∧

∆+⇒
∨

∆−) ̸∈ GTL

Φ ≤ Ψ if and only if Φ+ ⊇ Ψ+

ℓ(Φ) = Φ

S(Φ) = ({φ | #φ ∈ Φ+}, {φ | #φ ∈ Φ−})

Verify everything except ω-sensibility.
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Completeness: canonical structure → quasimodel

Choose Σ ⊆ L finite and subformula closed (e.g. sub(ϕ)).

Restrict labels to Σ.

Same quotient construction as before:

L(x) = {ℓ(y) | x and y in same linear component } .

Define ∼
x ∼ y ⇐⇒ (ℓ(x), L(x)) = (ℓ(y), L(y)).

Define a partial order ≤ on the equivalence classes by

[x ] ≤ [y ] ⇐⇒ L(x) = L(y) and ℓ(x) ⊇ ℓ(y).

Relation R containing all ([x ], [S(x)]).

Check everything except possibly ω-sensibility still holds.
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Relation R containing all ([x ], [S(x)]).

Check everything except possibly ω-sensibility still holds.
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Completeness: canonical structure → quasimodel
To prove relation R on quotient is ω-sensible:

For ∆ = (∆+,∆−) partitioning Σ, define
−→
∆ = (

∧
∆+⇒

∨
∆−)

—“I’m not above a point of type ∆”
←−
∆ = (

∧
∆+⇐

∨
∆−)

—“I’m below a point of type ∆”

χ0(w) :=
∧

∆∈L(w)
∼
−→
∆ ∧

∧
∆/∈L(w)

¬
←−
∆

—“I’m in the same linear component as w”

χ+(w) =
←−−
ℓ(w) ∧ χ0(w)

—“I’m below w”
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Completeness: canonical structure → quasimodel

To prove:
if all v ∈ R∗(w) have φ in their label
then 2φ ∈ ℓ(w)

: deductions involving
∨

v∈R∗(w) χ
+(v)

Similar argument for formulas of form 3φ
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