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Language

L

Propositional logic:

o Variables p,q,r, ...

o Connectives A,V,=, L

@ Co-implication <
Modalities:

@ Next O¢

o Eventually $¢

@ Henceforth O¢

< is not necessary for first part of talk
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Real-valued semantics

A flow is a pair 7 = (T,S) with S: T — T.

A real valuation on 7 isa V: L x T — [0, 1] such that, for all t € T

V(L,t)
V(e A, t)
V(pV,t)

V(ip=1,t)

V(ip<=1,t)
V(Op,t)
V(Cp,t)
V (O, t)

0
min{V(¢, 1), V(¢, t)}
max{V(p, ), V(¢, 1)}

1 if V(o t) < V(1. t)
{V(w, t) otherwise

0 if V(p,t) < V(1)
{V((p, t) otherwise
V(e, 5(1))
supp<., V (0, S"(1))
infr<o V(p, 5"(1))
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Real-valued semantics

A flow is a pair 7 = (T,S) with S: T — T.

A real valuationon 7 isa V: L x T — [0,1] such that, for all t € T:

V(L,t)
V(e A, t)
V(pV,t)

Vie=1,t)

V(ip<=1,t)
V(Op, t)
V(Cp,t)
V(Op, t)

A flow equipped with a valuation is a real (Godel temporal) model.

0
min{V(¢, 1), V(¢, t)}
max{V(¢, 1), V(¢, 1)}

1 if V(p,t) < V(¥,t)
{V(w, t) otherwise

0 if V(p,t) < V(i,t)
{V((p, t) otherwise
Ve, 5(1))
SuPp<wy V(p; S"(1))
infocw V(p, 57(1))
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Kripke semantics

A (Godel temporal) Kripke frame is an 7 = (W, T, <, S) where
(W, <) is a linearly ordered set and (T,S) a flow.
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Kripke semantics
A (Godel temporal) Kripke frame is an F = (W, T, <,S) where
(W, <) is a linearly ordered set and (T,S) a flow.

A Kripke valuation on F is a function [-] : £ — 2T such that, for
each p € P, the set [p] is downward closed in its first coordinate, and

[L1]
[ A9
[ V]
=]

[ <]
[O¢]

[C¢l
[O¢]

6]

[e] N [¥]

[el U [¥]

{(w,t) e W x T |Vv<w((v,t) € [¢]
implies (v, t) € [¢])}

{(w,t) e W x T |3v>w((v,t)€ [¢]
and (v, t) ¢ [¥])}

(idw x S)~! ¢l

Un<w(idW X 5)—n [[()0]]

Nn<w(idw x 5)7"[¢]
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Kripke semantics

A (Godel temporal) Kripke frame is an F = (W, T, <,S) where
(W, <) is a linearly ordered set and (T,S) a flow.

A Kripke valuation on F is a function [-] : £ — 2T such that, for
each p € P, the set [p] is downward closed in its first coordinate, and

[ = @
[eny] = lelnlvl
[evel = [eluly]
[p=v] = {(w,t) e Wx T |vv<w((v,t) € [¢]

implies (v, t) € [¢])}
lep=v] = {(w,t) e WxT|[3v=>w((v,t)€ [¢]
and (v, t) € [¥])}
[O¢] = (idw x S)™' ]
[Cel Un<w(idw x $)7" [¢]
[Be] = Noco(idw x 5)7" [#]

A Kripke frame equipped with a valuation is a (Godel temporal) Kripke

model.
] 4/19
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O(p=0p)
R
pl Pl |
el p] P
T
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Example
O(p=0p)

O(p=Op) is falsified

p

pl p| |
el Pl Pl
b



Example

O(p=0p)
R
pl o] |
pl pl pP]
T

O(p= Op) is falsified

Requires an infinite model to falsify—no finite model property
(w, ) (-
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Real-Kripke equivalence

As usual, validity and falsifiability are complementary problems.
As usual, satisfiability is reducible to falsifiability:

¢ satisfiable <= —¢ falsifiable
Falsifiability is also reducible to satisfiability: define ~¢ = T < ¢, then

¢ falsifiable <= ~¢ satisfiable

In terms of validity /falsifiability/satisfiability, real and Kripke semantics are
equivalent.

Theorem (Aguilera, Diéguez, Fernandez-Duque, McLean)
Denote the set of L-formulas valid on all real models by GTLg.
Denote the set of L-formulas valid on all Kripke models by GTLxk.
Then
GTLg = GTLk.
] 6/19
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Decidability: quasimodels

Y a subformula-closed set of formulas
(think sub(¢) for ¢ we want to decide)

Quasimodels: a type of (subsets-of-X)-labelled structure that satisfies a
truth lemma. Time can be non-deterministic.
® C ¥ is a Z-type if:
Q L&y,
Q@ If oAy €L, then p A € ®if and only if p, ¢ € ®.
© Similarly for v
Q If p= Y € L, then
@ o= e dimpliesthat p € P or ¢ € P,
@ ¢ € ® implies that p =1 € ©.
Q If o= €L, then
@ p<y € dimplies p € P,
@ pedand ¢ dimplies that p <=1 € O,
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Decidability: quasimodels

Y a subformula-closed set of formulas
(think sub(¢) for ¢ we want to decide)

Quasimodels: a type of (subsets-of-X)-labelled structure that satisfies a
truth lemma. Time can be non-deterministic.
® C ¥ is a Z-type if:

Q L&y,

Q If oAy e X, then p Ay € O if and only if o, € O.

© Similarly for v

Q If o= € X, then

O p=1 € ®implies that o € ® or Y € P,
@ ¢ € ¢ implies that =1 € o.

Q If p<=1y €L, then

O p<=1Y e dimplies p € O,
@ pedand ¢ dimplies that p <=1 € O,

The set of >-types will be denoted by Ty.
] 7/19
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Decidability: quasimodels

locally linear: disjoint union of linear posets.

A Y-labelled space is a W = (W, <, /), where

(W, <) is locally linear

0 (W,<) — (Tx, Q) an inversely monotone function
such that for all w €¢ W

@ whenever p =1 € X\ {(w), there is v < w such that ¢ € ¢(v) and

Y & AU(v);
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Decidability: quasimodels

locally linear: disjoint union of linear posets.

A Y-labelled space is a W = (W, <, /), where

(W, <) is locally linear

0 (W,<) — (Tx, Q) an inversely monotone function
such that for all w €¢ W

@ whenever p =1 € X\ {(w), there is v < w such that ¢ € ¢(v) and
b EEv);
e whenever p <=1 € {(w), there is v > w such that ¢ € {(v) and

b & L(v).
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Decidability: quasimodels

A convex relation between posets (A, <4) and (B,<p)isan RC Ax B
such that:

for each x € A the image set {y € B | x R y} is convex with respect to <g
for each y € B the preimage set {x € A| xR y} is convex w.r.t. <x.
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Decidability: quasimodels

A convex relation between posets (A, <4) and (B,<pg)isan RC Ax B
such that:

for each x € A the image set {y € B | x R y} is convex with respect to <g
for each y € B the preimage set {x € A| x R y} is convex w.r.t. <.

The relation R is fully confluent if:

forth-down if x <4 x’ R y’ there is y such that x Ry <g y/,
forth-up if X’ >4 x R y there is y’ such that X’ Ry’ >pg y,
back-down if x’ Ry’ >g y there is x such that xX’ >, xR y,
back-up if x R y <g y’ there is x’ such that x <, x' R y'.
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Decidability: quasimodels

Let &, W € Ty. The pair (P, V) is sensible if

Q forall OpeX: OCpedifandonlyif eV,

Q forall CpeX: Cpedifandonlyif p € ®or Cp eV,
Q forallOpe)Y: Ope®difandonlyif p e ®and Op € V.

A pair (w, v) of worlds in a labelled space W is sensible if (¢/(w),¢(v)) is
sensible. A relation R C [W)| x |W| is sensible if every pair in R is sensible.
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Q forallOpe)Y: Ope®difandonlyif p e ®and Op € V.
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Decidability: quasimodels

Let &, W € Ty. The pair (P, V) is sensible if
Q forallOpe¥: Cpedifandonlyif p eV,
Q forall CpeX: Cpedifandonlyif p € ®or Cp eV,
Q forallOpe)Y: Ope®difandonlyif p e ®and Op € V.
A pair (w, v) of worlds in a labelled space W is sensible if (¢(w), ¢(v)) is
sensible. A relation R C |[W)| x |[W)| is sensible if every pair in R is sensible.
A sensible R is w-sensible if it is serial and
e when O € ¢(w), there are n > 0 and v such that w R" v and
p € L(v);
e when Oy ¢ ¢(w), there are n > 0 and v such that w R" v and
p & L(v).
A Y -quasimodel is a X-labelled space equipped with a fully confluent,
convex, w-sensible relation.

] 10/19



Decidability: quasimodel — model

From a quasimodel Q and w € Q with ¢ € X\ {(w):
construct a model falsifying ¢
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Decidability: quasimodel — model

From a quasimodel Q and w € Q with ¢ € X\ {(w):
construct a model falsifying ¢

Build an increasing sequence of grids of Q-worlds
(starting from w)

Each extension of the grid removes a ‘defect’, with every defect eventually
removed.

] 11/19
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Decidability: model — finite quasimodel
From a Kripke model X and x € X falsifying ¢:
construct a finite ¥-quasimodel model ‘falsifying’ ¢ (X = sub(¢))
Let X = (W7 T7 §7S7 [H])
For x € W x T, define
U(x)={veX|xe[y]},
L(x) = {l(y) | ma(x) = m2(y)},

where mp: W x T — T is the projection (w,t) — t.
Define ~on W x T by

x~y <= (U(x), L(x)) = (€(y), L(y))-

Now define a partial order <g on the equivalence classes (W x T)/~ of

[x] <o [y] <= L(x) = L(y) and £(x) 2 £(y),
noting that this is well-defined and is indeed a partial order.
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Decidability: model — finite quasimodel

From a Kripke model X and x € X falsifying ¢:
construct a finite ¥-quasimodel model ‘falsifying’ ¢ (X = sub(¢))

Let X = (W, T,<,S, [H])
For x € W x T, define
Ux)={veX|xe[y]},

L(x) = {(y) | ma(x) = ma(y)},
where mp: W x T — T is the projection (w,t) — t.
Define ~on W x T by

X~y = (((x), L(x)) = ((y), L(y))-
Now define a partial order <g on the equivalence classes (W x T)/~ of
[x] <o [yl <= L(x) = L(y) and £(x) 2 £(y),
noting that this is well-defined and is indeed a partial order.
Relation Rg containing all ([(w, t)], [(w, S(t))]).
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Decidability: model — finite quasimodel

From a Kripke model X and x € X falsifying ¢:
construct a finite ¥-quasimodel model ‘falsifying’ ¢ (X = sub(¢))

Let X = (W, T,<,S, [H])
For x € W x T, define
Ux)={veX|xe[y]},

L(x) = {(y) | ma(x) = ma(y)},
where mp: W x T — T is the projection (w,t) — t.
Define ~on W x T by

X~y = (((x), L(x)) = ((y), L(y))-
Now define a partial order <g on the equivalence classes (W x T)/~ of
[x] <o [yl <= L(x) = L(y) and £(x) 2 £(y),
noting that this is well-defined and is indeed a partial order.
Relation Rg containing all ([(w, t)],[(w, S(t))]).  Check everything
] 12/19



PSPACE

The quasimodel we obtained was exponential in size. ..



PSPACE

The quasimodel we obtained was exponential in size. ..

but of ‘height’ at most |X|+ 1.



PSPACE

The quasimodel we obtained was exponential in size. ..

but of ‘height’ at most |X|+ 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

13/19



PSPACE
The quasimodel we obtained was exponential in size. ..
but of ‘height’ at most |X|+ 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

Extract an ultimately periodic (‘lasso shaped’) quasimodel from it (now
similar to proof for linear temporal logic).

13/19



PSPACE

The quasimodel we obtained was exponential in size. ..
but of ‘height’ at most |X| + 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

Extract an ultimately periodic (‘lasso shaped’) quasimodel from it (now
similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and
component to start loop, checking off defects as they are resolved. If we
return to component at start of loop after all defects resolved, then
succeed.

] 13/19



PSPACE

The quasimodel we obtained was exponential in size. ..
but of ‘height’ at most |X| + 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

Extract an ultimately periodic (‘lasso shaped’) quasimodel from it (now
similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and
component to start loop, checking off defects as they are resolved. If we
return to component at start of loop after all defects resolved, then
succeed.

Polynomial amount of data: current linear component, component at start
of loop, defects remaining, connectivity data. Hence NPSPACE algorithm.

] 13/19



PSPACE

The quasimodel we obtained was exponential in size. ..
but of ‘height’ at most |X| + 1.

Extract a ‘linear’ quasimodel from it (similar to grid/defect technique from
before).

Extract an ultimately periodic (‘lasso shaped’) quasimodel from it (now
similar to proof for linear temporal logic).

Non-deterministically guess next linear component (discard previous) and
component to start loop, checking off defects as they are resolved. If we
return to component at start of loop after all defects resolved, then
succeed.

Polynomial amount of data: current linear component, component at start
of loop, defects remaining, connectivity data. Hence NPSPACE algorithm.

By Savitch's theorem: problem is PSPACE.

] 13/19
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@ All (substitution instances of) intuitionistic tautologies
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Deductive system
@ All (substitution instances of) intuitionistic tautologies
@ Axioms and rules of H-B logic (cf. [Rauszer 1974]):

=17 =Y Vy
P WVEEY)  CohsweEn  beu=7
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Deductive system
@ All (substitution instances of) intuitionistic tautologies

@ Axioms and rules of H-B logic (cf. [Rauszer 1974]):
p=1 p=9Vy
AR e e B P
@ Linearity axioms: (¢o=vV)V(Vv=>¢) —((¢<V)A (W <=p))
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Deductive system

All (substitution instances of) intuitionistic tautologies
Axioms and rules of H-B logic (cf. [Rauszer 1974]):
=1 o=V
p={V(p=y
W) Cegswen  bew=a
Linearity axioms: (o= )V (¢ = ) (=) A (YE=p))
Temporal axioms:

@ ol Q@ T(p=v)=(Cp=Y)
@ O(pVy)=(0pVOY) @ Dp=pA0Op
@ (OpNOYP)=0(pAP) @ ©VOOp=2Cp
@ O(p=v) = (0p=0Y) @ DO(p=Op)=(p=0p)
Q@ O(p=v)=(dp=0y) @ DO(0p=¢)=(Cp= )
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Deductive system

All (substitution instances of) intuitionistic tautologies

Axioms and rules of H-B logic (cf. [Rauszer 1974]):

=19 p=YVy
AR e = ) B e
Linearity axioms: (¢ =)V (¥ =) ~((p=v) A (W <y))
Temporal axioms:

@ ol @ O(p=7)= (Cp=0v)
@ O(pVe)=(0pVOy) @ Dp=pA0Op
@ (OpNOYP)=0(pAP) @ ©VOOp=2Cp
@ O(p=7v) = (0p=0v) @ O(p=0p)=(p=0y)
Q@ O(p=v)=(dp=0y) @ DO(0p=¢)=(Cp= )

Back—up confluence axiom: O (¢ <1v)= (Op <= Ov)
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Deductive system
@ All (substitution instances of) intuitionistic tautologies
@ Axioms and rules of H-B logic S/():f. [Rauszer 1975]):
= p=YVy
AR e e B P
@ Linearity axioms: (¢o=vV)V(Vv=>¢) —((¢<V)A (W <=p))
@ Temporal axioms:

@ ol Q@ T(p=v)=(Cp=Y)

@ O(pVy)=(0pVOY) @ TDp=pA0Op

@ (OpNOYP)=0(pAP) @ ©VOOp=3p

@ O(p=v) = (0p=0p) @ O(p=0¢p)=(p=0p)

Q@ O(p=v)=(dp=0y) @ T(Op=¢)=(Cp=9)
@ Back—up confluence axiom: O (p <) = (Op <= Oy)
@ Standard modal rules:

Y, p=1 K2 K2
° (0 ° Op ° Ogp

GTL := formulas generated by deductive system
] 14/19
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Points are pairs ® = (¢, ®7) partitioning £ such that
for all finite AT C & and A~ C ¢~

(ANAT=\/A7)¢gGTL
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for all finite A*Y C ®+ and A~ C &~

(ANaT=\/Aa7)¢GTL
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Completeness: canonical structure

Points are pairs ® = (¢, ®7) partitioning £ such that
for all finite A*Y C ®+ and A~ C &~

(AAT=\/A7)gGTL
® < V if and only if T D Wt
Ue)y=9
S(®)=({ploped}{p|Oped})
Verify everything except w-sensibility.

] 15/19
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Completeness: canonical structure — quasimodel

Choose X C L finite and subformula closed (e.g. sub(¢)).
Restrict labels to X.

Same quotient construction as before:

L(x) ={4(y)| x and y in same linear component }.

Define ~
x~y <= (U(x),L(x)) = (€(y), L(y))-
Define a partial order < on the equivalence classes by
[X] <yl <= L(x) = L(y) and £(x) 2 £(y).
Relation R containing all ([x], [S(x)]).
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Completeness: canonical structure — quasimodel

Choose X C L finite and subformula closed (e.g. sub(¢)).
Restrict labels to 3.
Same quotient construction as before:

L(x) ={4(y) | x and y in same linear component } .

Define ~
xr~y = (U(x),L(x)) = ({y), L(y))-

Define a partial order < on the equivalence classes by
[x] < ly] <= L(x) = L(y) and £(x) 2 £(y).

Relation R containing all ([x], [S(x)]).

Check everything except possibly w-sensibility still holds.
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Completeness: canonical structure — quasimodel
To prove relation R on quotient is w-sensible:

For A = (A™, A7) partitioning ¥, define

A =(A\at=\a)
—"I'm not above a point of type A"

A =(\At<e\/Aa0)

—"I'm below a point of type A"

—"I'm in the same linear component as w"
%
xXH(w) = U(w) Ax(w)

—"I'm below w"
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To prove:

if all v € R*(w) have ¢ in their label
then Oy € ¢(w)

: deductions involving V¢ g« () xT(v)
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Completeness: canonical structure — quasimodel

To prove:

if all v € R*(w) have ¢ in their label
then Oy € ¢(w)

: deductions involving V¢ g« () xT(v)

Similar argument for formulas of form <o
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