# Nelson conuclei and nuclei: the twist construction beyond involutivity 

Umberto Rivieccio

Departamento de Lógica, Historia y Filosofía de la Ciencia
Universidad Nacional de Educación a Distancia Madrid (Spain)
(joint work with Manuela Busaniche)

## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).


## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).
- Twist-algebras provide convenient representations for:


## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).
- Twist-algebras provide convenient representations for:
- Various classes of bilattices (the factor $\mathbf{L}$ is a lattice).


## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).
- Twist-algebras provide convenient representations for:
- Various classes of bilattices (the factor $\mathbf{L}$ is a lattice).
- (Paraconsistent) Nelson algebras ( $\mathbf{L}$ is a (generalized) Heyting algebra).


## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).
- Twist-algebras provide convenient representations for:
- Various classes of bilattices (the factor $\mathbf{L}$ is a lattice).
- (Paraconsistent) Nelson algebras (L is a (generalized) Heyting algebra).
- Various classes of residuated lattices, e.g. Kalman lattices, Sugihara monoids ( $\mathbf{L}$ is a residuated lattice).


## Twist-algebras

- The twist-algebra construction is used (since at least Kalman in the 1950s) to represent an algebra $\mathbf{A}$ as a subalgebra of a special binary power of some other algebra $\mathbf{L}$ (we'll write $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ ).
- Twist-algebras provide convenient representations for:
- Various classes of bilattices (the factor $\mathbf{L}$ is a lattice).
- (Paraconsistent) Nelson algebras (L is a (generalized) Heyting algebra).
- Various classes of residuated lattices, e.g. Kalman lattices, Sugihara monoids ( $\mathbf{L}$ is a residuated lattice).
- Usually the twist construction produces an algebra $\mathbf{A}$ carrying an involutive negation, but in this talk we'll see how to go beyond the involutive setting.


## Twist-algebras

The involutive case
Let $\mathbf{L}=\langle L ; \wedge, \vee, \rightarrow, 0,1\rangle$ be (e.g.) a Heyting algebra. The full twist-algebra over $\mathbf{L}$ is the algebra $\mathbf{L}^{\bowtie}=\langle L \times L ; \wedge, \vee, \rightarrow, *, \Rightarrow, \sim, 0,1\rangle$ with operations given, for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in L \times L$, by:

$$
\begin{aligned}
\left\langle a_{1}, a_{2}\right\rangle \wedge\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \wedge b_{1}, a_{2} \vee b_{2}\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \vee\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \rightarrow\left\langle b_{1}, b_{2}\right\rangle & =\left\langle a_{1} \rightarrow b_{1}, a_{1} \wedge b_{2}\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle *\left\langle b_{1}, b_{2}\right\rangle & =\left\langle a_{1} \wedge b_{1},\left(a_{1} \rightarrow b_{2}\right) \wedge\left(b_{1} \rightarrow a_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \Rightarrow\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle\left(a_{1} \rightarrow b_{1}\right) \wedge\left(b_{2} \rightarrow a_{2}\right), a_{1} \wedge b_{2}\right\rangle \\
\sim\left\langle a_{1}, a_{2}\right\rangle & :=\left\langle a_{2}, a_{1}\right\rangle \\
1 & :=\langle 1,0\rangle \\
0 & :=\langle 0,1\rangle .
\end{aligned}
$$

A twist-algebra over $\mathbf{L}$ is any subalgebra $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ satisfying $\pi_{1}[A]=L$ and $a_{1} \wedge a_{2}=0$ for all $\left\langle a_{1}, a_{2}\right\rangle \in A$.

## Twist-algebras

The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).


## Twist-algebras

The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).
- The twist construction can be tweaked to obtain representations for other classes of algebras by:


## Twist-algebras

## The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).
- The twist construction can be tweaked to obtain representations for other classes of algebras by:
- Restricting/enlarging the language of $\mathbf{L}$ (e.g. adding an involution, another conjunction, modal operators etc.) or that of $\mathbf{L}^{\bowtie}$.


## Twist-algebras

## The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).
- The twist construction can be tweaked to obtain representations for other classes of algebras by:
- Restricting/enlarging the language of $L$ (e.g. adding an involution, another conjunction, modal operators etc.) or that of $\mathbf{L}^{\bowtie}$.
- Specializing/relaxing equational properties of $\mathbf{L}$ (e.g. taking $\mathbf{L}$ to be a residuated lattice, a Boolean algebra etc.).


## Twist-algebras

## The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).
- The twist construction can be tweaked to obtain representations for other classes of algebras by:
- Restricting/enlarging the language of $\mathbf{L}$ (e.g. adding an involution, another conjunction, modal operators etc.) or that of $\mathbf{L} \bowtie$.
- Specializing/relaxing equational properties of $\mathbf{L}$ (e.g. taking $\mathbf{L}$ to be a residuated lattice, a Boolean algebra etc.).
- Restricting the subsets of $L \times L$ allowed as universes of twist-algebras, e.g., given a lattice filter $F \subseteq L$ and an ideal $I \subseteq L$ :

$$
T w(\mathbf{L}, F, I):=\left\{\left\langle a_{1}, a_{2}\right\rangle \in L \times L: a_{1} \wedge a_{2} \in I, a_{1} \vee a_{2} \in F\right\}
$$

## Twist-algebras

## The involutive case

- A classic result (from the 1970s) on Nelson algebras states that every Nelson algebra is isomorphic to a twist-algebra over a Heyting algebra. This has several applications (subvarieties, congruences, logical calculi etc.).
- The twist construction can be tweaked to obtain representations for other classes of algebras by:
- Restricting/enlarging the language of $\mathbf{L}$ (e.g. adding an involution, another conjunction, modal operators etc.) or that of $\mathbf{L}^{\bowtie}$.
- Specializing/relaxing equational properties of $\mathbf{L}$ (e.g. taking $\mathbf{L}$ to be a residuated lattice, a Boolean algebra etc.).
- Restricting the subsets of $L \times L$ allowed as universes of twist-algebras, e.g., given a lattice filter $F \subseteq L$ and an ideal $I \subseteq L$ :

$$
T w(\mathbf{L}, F, I):=\left\{\left\langle a_{1}, a_{2}\right\rangle \in L \times L: a_{1} \wedge a_{2} \in I, a_{1} \vee a_{2} \in F\right\} .
$$

- In all the above cases, the involutive negation that swaps components remains a key feature of the construction: $\left\langle a_{1}, a_{2}\right\rangle \mapsto\left\langle a_{2}, a_{1}\right\rangle$.


## Twist-algebras

The involutive case: representation of Nelson algebras

A Nelson algebra is a commutative integral bounded residuated lattice $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$ that satisfies:

## Twist-algebras

The involutive case: representation of Nelson algebras

A Nelson algebra is a commutative integral bounded residuated lattice $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$ that satisfies:

- the involutive law:

$$
\sim \sim x=x
$$

where $\sim x:=x \Rightarrow 0$.

- the (Nelson) identity:

$$
(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)=x \Rightarrow y
$$

where $x \rightarrow y:=x \Rightarrow(x \Rightarrow y)$.

## Twist-algebras

The involutive case: representation of Nelson algebras

A Nelson algebra is a commutative integral bounded residuated lattice $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$ that satisfies:

- the involutive law:

$$
\sim \sim x=x
$$

where $\sim x:=x \Rightarrow 0$.

- the (Nelson) identity:

$$
(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)=x \Rightarrow y
$$

where $x \rightarrow y:=x \Rightarrow(x \Rightarrow y)$.
Notice that (Nelson) entails that $\Rightarrow$ is definable in the language $\{\wedge \rightarrow, \sim\}$.

## Twist-algebras

The involutive case: representation of Nelson algebras

For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

we have that:

## Twist-algebras

The involutive case: representation of Nelson algebras

For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

we have that:

- $\mathrm{L}_{\mathrm{A}}:=\langle A ; \wedge, \vee, \rightarrow, 0,1\rangle / \theta$ is a Heyting algebra.


## Twist-algebras

The involutive case: representation of Nelson algebras

For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

we have that:

- $\mathbf{L}_{\mathbf{A}}:=\langle A ; \wedge, \vee, \rightarrow, 0,1\rangle / \theta$ is a Heyting algebra.
- $\mathbf{A}$ embeds into the twist-algebra $\left(\mathbf{L}_{\mathbf{A}}\right)^{\bowtie}$ by the map $a \mapsto\langle a / \theta, \sim a / \theta\rangle$.


## Twist-algebras

The involutive case: representation of Nelson algebras

For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

we have that:

- $\mathbf{L}_{\mathbf{A}}:=\langle A ; \wedge, \vee, \rightarrow, 0,1\rangle / \theta$ is a Heyting algebra.
- $\mathbf{A}$ embeds into the twist-algebra $\left(\mathbf{L}_{\mathbf{A}}\right)^{\bowtie}$ by the map $a \mapsto\langle a / \theta, \sim a / \theta\rangle$.
- $\operatorname{Con}(\mathbf{A}) \cong \operatorname{Con}\left(\mathbf{L}_{\mathbf{A}}\right)$.


## Twist-algebras

The involutive case: representation of Nelson algebras

For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

we have that:

- $\mathbf{L}_{\mathbf{A}}:=\langle A ; \wedge, \vee, \rightarrow, 0,1\rangle / \theta$ is a Heyting algebra.
- $\mathbf{A}$ embeds into the twist-algebra $\left(\mathbf{L}_{\mathbf{A}}\right)^{\bowtie}$ by the map $a \mapsto\langle a / \theta, \sim a / \theta\rangle$.
- $\operatorname{Con}(\mathbf{A}) \cong \operatorname{Con}\left(\mathbf{L}_{\mathbf{A}}\right)$.
- A filter $F \subseteq \mathbf{L}_{\mathbf{A}}$ describes precisely the subalgebras or $\left(\mathbf{L}_{\mathbf{A}}\right)^{\bowtie}$ that are isomorphic to Nelson algebras.


## Twist-algebras

The involutive case: representation of Nelson algebras
For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

## Remark

- The term $x * x$ may be viewed more abstractly as an instance of a unary term $\nu(x)$ satisfying suitable properties.


## Twist-algebras

The involutive case: representation of Nelson algebras
For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

## Remark

- The term $x * x$ may be viewed more abstractly as an instance of a unary term $\nu(x)$ satisfying suitable properties.
- Indeed, on each Nelson algebra A, the map realizing $\nu$ is a special closure operator (a conucleus).


## Twist-algebras

The involutive case: representation of Nelson algebras
For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

## Remark

- The term $x * x$ may be viewed more abstractly as an instance of a unary term $\nu(x)$ satisfying suitable properties.
- Indeed, on each Nelson algebra A, the map realizing $\nu$ is a special closure operator (a conucleus).
- This allows us to define a more general representation for structures $\langle\mathbf{A}, \nu\rangle$, dubbed Nelson conucleus algebras in recent work by Busaniche, Galatos \& Marcos.


## Twist-algebras

The involutive case: representation of Nelson algebras
For every Nelson algebra $\mathbf{A}=\langle A ; \wedge, \vee, *, \Rightarrow, 0,1\rangle$, letting:

$$
\theta:=\{\langle a, b\rangle \in A \times A: a * a=b * b\}
$$

## Remark

- The term $x * x$ may be viewed more abstractly as an instance of a unary term $\nu(x)$ satisfying suitable properties.
- Indeed, on each Nelson algebra A, the map realizing $\nu$ is a special closure operator (a conucleus).
- This allows us to define a more general representation for structures $\langle\mathbf{A}, \nu\rangle$, dubbed Nelson conucleus algebras in recent work by Busaniche, Galatos \& Marcos.
- This path, explored by B., G. \& M. in the involutive setting, appears to be easily generalizable to the non-involutive one (ongoing research).


## Twist-algebras

HOW to drop involutivity

Recent work (by A. Jung, M. Spinks and myself) has shown that the involutivity requirement can be dropped:

- By replacing $\mathbf{L}$ with two algebras $\mathbf{L}_{1}, \mathbf{L}_{2}$ (related by back-and-forth maps).


## Twist-algebras

HOW to drop involutivity

Recent work (by A. Jung, M. Spinks and myself) has shown that the involutivity requirement can be dropped:

- By replacing $\mathbf{L}$ with two algebras $\mathbf{L}_{1}, \mathbf{L}_{2}$ (related by back-and-forth maps).
- As a special case of the former, in some cases $\mathbf{L}_{2}$ may be taken to be the image of $\mathbf{L}_{1}$ by a nucleus operator.
(Today we'll explore the applicability of the latter route.)


## Twist-algebras

WHY to drop involutivity: a motivating example

The domains of positive and negative evidence may not have the same structure. Consider whether a given Turing machine will stop:

## Twist-algebras

WHY to drop involutivity: a motivating example

The domains of positive and negative evidence may not have the same structure. Consider whether a given Turing machine will stop:

- Positive evidence is the observation that the machine has stopped. Until this happens, we do not have any positive evidence, so the lattice of positive evidence has just two elements: "unknown" and "has stopped".


## Twist-algebras

WHY to drop involutivity: a motivating example

The domains of positive and negative evidence may not have the same structure. Consider whether a given Turing machine will stop:

- Positive evidence is the observation that the machine has stopped. Until this happens, we do not have any positive evidence, so the lattice of positive evidence has just two elements: "unknown" and "has stopped".
- Negative evidence should be treated differently, since we cannot observe non-halting behaviour directly. Instead, we employ the lattice of natural numbers together with a top element $T$, where each $n \in \mathbb{N}$ indicates that we have observed that the machine has been running for $n$ steps (or units of time) and has not yet stopped.
The element T means non-termination, but it is an "ideal" value that cannot be observed directly but is the supremum of the infinite set of propositions "has not stopped after $n$ steps".


## Nuclei

## Definition 1

Given an algebra with a bounded meet-semilattice reduct $\langle L ; \leq, \wedge, 0\rangle$, a (dense) nucleus on $L$ is a unary operation $\square$ satisfying:

$$
\begin{aligned}
& \text { (NS1) } x \leq \square x=\square \square x \\
& \text { (NS2) } \square(x \wedge y)=\square x \wedge \square y \\
& \text { (NS3) } \square 0=0 .
\end{aligned}
$$

## Nuclei

## Definition 1

Given an algebra with a bounded meet-semilattice reduct $\langle L ; \leq, \wedge, 0\rangle$, a (dense) nucleus on $L$ is a unary operation $\square$ satisfying:

$$
\begin{aligned}
& \text { (NS1) } x \leq \square x=\square \square x \\
& \text { (NS2) } \square(x \wedge y)=\square x \wedge \square y \\
& \text { (NS3) } \square 0=0 .
\end{aligned}
$$

## Definition 2

Given an algebra with a bounded Hilbert algebra reduct $\langle L ; \rightarrow, 0\rangle$, a (dense) nucleus on $L$ is a unary operation $\square$ satisfying:

$$
\begin{aligned}
& \text { (NH1) } x \rightarrow \square y=\square x \rightarrow \square y \\
& \text { (NH2) } \square 0=0 .
\end{aligned}
$$

Obs.: Definitions 1 and 2 coincide on Heyting algebras and on bounded implicative meet-semilattices.

## Nuclei

Definition 2 can be further generalized as follows:

## Definition 3

Given an algebra with a residuated semigroup reduct $\langle L, *, \backslash, /\rangle$, a nucleus on $L$ is a unary operation $\square$ satisfying:

$$
\begin{aligned}
& \text { (NR1) } x \backslash \square y=\square x \backslash \square y \\
& \text { (NR2) } \square x / y=\square x / \square y .
\end{aligned}
$$

## Non-involutive twist-algebras

Over Heyting algebras
Let $\mathbf{L}=\langle L ; \wedge, \vee, \rightarrow, \square, 0,1\rangle$ be (e.g.) a Heyting algebra with a nucleus. The full twist-algebra over $\mathbf{L}$ is the algebra $\mathbf{L} \bowtie=\langle L \times \square L ; \wedge, \vee, \rightarrow, *, \Rightarrow, \sim, 0,1\rangle$, where $\square L:=\{\square a: a \in L\}$, with operations given, for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in L \times \square L$, by:

$$
\begin{aligned}
\left\langle a_{1}, a_{2}\right\rangle \wedge\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \wedge b_{1}, \square\left(a_{2} \vee b_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \vee\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle *\left\langle b_{1}, b_{2}\right\rangle & =\left\langle a_{1} \wedge b_{1},\left(a_{1} \rightarrow b_{2}\right) \wedge\left(b_{1} \rightarrow a_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \rightarrow\left\langle b_{1}, b_{2}\right\rangle & =\left\langle a_{1} \rightarrow b_{1}, \square\left(a_{1} \wedge b_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \Rightarrow\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle\left(a_{1} \rightarrow b_{1}\right) \wedge\left(b_{2} \rightarrow a_{2}\right), \square\left(a_{1} \wedge b_{2}\right)\right\rangle \\
\sim\left\langle a_{1}, a_{2}\right\rangle & :=\left\langle a_{2}, \square a_{1}\right\rangle \\
1 & :=\langle 1,0\rangle \\
0 & :=\langle 0,1\rangle
\end{aligned}
$$

A twist-algebra over $\mathbf{L}$ is any subalgebra $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ satisfying $\pi_{1}[A]=L$ and $a_{1} \wedge a_{2}=0$ for all $\left\langle a_{1}, a_{2}\right\rangle \in A$.

## Non-involutive twist-algebras

## Over residuated lattices

Let $\mathbf{L}=\langle L, *, \wedge, \vee, \backslash, /, \square, 1\rangle$ be a residuated lattice with a nucleus, and let $\iota \in L$ be an element such that $\square \iota=\iota$. The full twist-algebra over $\mathbf{L}$ is the algebra $\mathbf{L}^{\bowtie}=\langle L \times \square L ; \wedge, \vee, *, \Rightarrow, \Leftarrow, \sim, 1,0\rangle$, where $\square L:=\{\square a: a \in L\}$, with operations given, for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in L \times \square L$, by:

$$
\begin{aligned}
\left\langle a_{1}, a_{2}\right\rangle \wedge\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \wedge b_{1}, \square\left(a_{2} \vee b_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \vee\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} \vee b_{1}, a_{2} \wedge b_{2}\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle *\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle a_{1} * b_{1},\left(b_{2} / a_{1}\right) \wedge\left(b_{1} \backslash a_{2}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \Rightarrow\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle\left(a_{1} \backslash b_{1}\right) \wedge\left(a_{2} / b_{2}\right), \square\left(b_{2} * a_{1}\right)\right\rangle \\
\left\langle a_{1}, a_{2}\right\rangle \Leftarrow\left\langle b_{1}, b_{2}\right\rangle & :=\left\langle\left(a_{1} b_{1}\right) \wedge\left(a_{2} \backslash b_{2}\right), \square\left(b_{1} * a_{2}\right)\right\rangle \\
1 & :=\langle 1, \iota\rangle \\
0 & :=\langle\iota, \square 1\rangle .
\end{aligned}
$$

A twist-algebra over $\mathbf{L}$ is any subalgebra $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ satisfying $\pi_{1}[A]=L$ and $\left(a_{1} * a_{2}\right) \vee\left(a_{2} * a_{1}\right) \leq \iota$ for all $\left\langle a_{1}, a_{2}\right\rangle \in A$.

## Non-involutive twist-algebras

New representations

By means of the preceding constructions we can obtain twist representations for:

- Quasi-Nelson algebras, i.e. commutative integral bounded (not-necessarily involutive) residuated lattices that satisfy the (Nelson) identity.


## Non-involutive twist-algebras

New representations

By means of the preceding constructions we can obtain twist representations for:

- Quasi-Nelson algebras, i.e. commutative integral bounded (not-necessarily involutive) residuated lattices that satisfy the (Nelson) identity.
- Non-involutive Kalman lattices (using the generalized notion of nuclei on residuated lattices).


## Non-involutive twist-algebras

New representations

By means of the preceding constructions we can obtain twist representations for:

- Quasi-Nelson algebras, i.e. commutative integral bounded (not-necessarily involutive) residuated lattices that satisfy the (Nelson) identity.
- Non-involutive Kalman lattices (using the generalized notion of nuclei on residuated lattices).
- Non-involutive N4-lattices.


## Non-involutive twist-algebras

New representations

By means of the preceding constructions we can obtain twist representations for:

- Quasi-Nelson algebras, i.e. commutative integral bounded (not-necessarily involutive) residuated lattices that satisfy the (Nelson) identity.
- Non-involutive Kalman lattices (using the generalized notion of nuclei on residuated lattices).
- Non-involutive N4-lattices.
- Subreducts of the above-mentioned classes of algebras (examples below).


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

- $\{*, \Rightarrow, 0\}$-subreducts of QNAs correspond to twist-algebras over implicative semilattices with a nucleus.


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

- $\{*, \Rightarrow, 0\}$-subreducts of QNAs correspond to twist-algebras over implicative semilattices with a nucleus.
- $\{\wedge, \vee, \sim\}$-subreducts of QNAs correspond to twist-algebras over distributive lattices with a nucleus (a variety dubbed quasi-Kleene lattices).


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

- $\{*, \Rightarrow, 0\}$-subreducts of QNAs correspond to twist-algebras over implicative semilattices with a nucleus.
- $\{\wedge, \vee, \sim\}$-subreducts of QNAs correspond to twist-algebras over distributive lattices with a nucleus (a variety dubbed quasi-Kleene lattices).
- $\{\wedge, \vee, \sim, \neg\}$-subreducts of QNAs (where $\neg x:=x \rightarrow 0$ ) correspond to twist-algebras over pseudo-complemented lattices with a nucleus.


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

- $\{*, \Rightarrow, 0\}$-subreducts of QNAs correspond to twist-algebras over implicative semilattices with a nucleus.
- $\{\wedge, \vee, \sim\}$-subreducts of QNAs correspond to twist-algebras over distributive lattices with a nucleus (a variety dubbed quasi-Kleene lattices).
- $\{\wedge, \vee, \sim, \neg\}$-subreducts of QNAs (where $\neg x:=x \rightarrow 0$ ) correspond to twist-algebras over pseudo-complemented lattices with a nucleus.
- The $\{\rightarrow, \sim\}$-, $\{*, \sim\}$ - and $\{\wedge, *, \Rightarrow, 0\}$-subreducts of QNAs admit similar characterizations.


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

- $\{*, \Rightarrow, 0\}$-subreducts of QNAs correspond to twist-algebras over implicative semilattices with a nucleus.
- $\{\wedge, \vee, \sim\}$-subreducts of QNAs correspond to twist-algebras over distributive lattices with a nucleus (a variety dubbed quasi-Kleene lattices).
- $\{\wedge, \vee, \sim, \neg\}$-subreducts of QNAs (where $\neg x:=x \rightarrow 0$ ) correspond to twist-algebras over pseudo-complemented lattices with a nucleus.
- The $\{\rightarrow, \sim\}$-, $\{*, \sim\}$ - and $\{\wedge, *, \Rightarrow, 0\}$-subreducts of QNAs admit similar characterizations.
- Other subreducts proved to be harder: e.g. $\{\Rightarrow\},\{\Rightarrow, \sim\}$ and the $\{\sim\}$-free subreducts.


## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson
In these new representations the factor algebras may be somewhat exotic, e.g.:

## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson In these new representations the factor algebras may be somewhat exotic, e.g.:

Every $\{\rightarrow, \sim\}$-subreduct of a QNA corresponds to a twist-algebra over an algebra $\mathbf{L}=\langle L ; \odot, \rightarrow, 0,1\rangle$ such that:
(1) $\langle L ; \rightarrow, 0,1\rangle$ is a bounded Hilbert algebra.
(2) $\langle L ; \odot\rangle$ is a commutative semigroup.
(3) The operation $\square x:=x \odot x$ is a dense nucleus on $\langle L ; \rightarrow, 0,1\rangle$.
(4) $x \odot y=x \odot(x \rightarrow y)$.
(5) $\square x \rightarrow(\square y \rightarrow z)=(x \odot y) \rightarrow z$.
(6) $x \odot 0=0$.
(7) $x \odot 1=\square x$.

## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson In these new representations the factor algebras may be somewhat exotic, e.g.:
Every $\{\rightarrow, \sim\}$-subreduct of a QNA corresponds to a twist-algebra over an algebra $\mathbf{L}=\langle L ; \odot, \rightarrow, 0,1\rangle$ such that:
(1) $\langle L ; \rightarrow, 0,1\rangle$ is a bounded Hilbert algebra.
(2) $\langle L ; \odot\rangle$ is a commutative semigroup.
(3) The operation $\square x:=x \odot x$ is a dense nucleus on $\langle L ; \rightarrow, 0,1\rangle$.
(9) $x \odot y=x \odot(x \rightarrow y)$.
(5) $\square x \rightarrow(\square y \rightarrow z)=(x \odot y) \rightarrow z$.
(-) $x \odot 0=0$.
(1) $x \odot 1=\square x$.

Example: on a bounded Hilbert algebra $\langle A ; \rightarrow, 0,1\rangle$, letting $\neg x:=x \rightarrow 0$ and $x \odot y:=\neg(x \rightarrow \neg y)$, we obtain an algebra in the above-defined class (in this case $\square x=\neg \neg x$ ).

## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

In these new representations the factor algebras may be somewhat exotic, e.g.:

## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

In these new representations the factor algebras may be somewhat exotic, e.g.:
Every $\{*, \sim\}$-subreduct of a QNA corresponds to a twist-algebra over an algebra $\mathbf{L}=\langle L ; \wedge, \rightharpoonup, 0,1\rangle$ such that (letting $\square x:=1 \rightharpoonup x$ ):
(1) $\langle L ; \wedge, \square, 0,1\rangle$ is a bounded semilattice with a dense nucleus.
(2) $x \rightharpoonup(y \rightharpoonup z)=(x \wedge y) \rightharpoonup z$.
(3) $x \rightharpoonup(y \wedge z)=(x \rightharpoonup y) \wedge(x \rightharpoonup z)$.
(4) $x \wedge \square y=x \wedge(x \rightharpoonup y)$.
(5) $x \leq y \rightharpoonup z$ if and only if $x \wedge y \leq \square z$.
(6) $x \rightharpoonup y=\square x \rightharpoonup \square y$.

## Non-involutive twist-algebras

New representations: subreducts of quasi-Nelson

In these new representations the factor algebras may be somewhat exotic, e.g.:
Every $\{*, \sim\}$-subreduct of a QNA corresponds to a twist-algebra over an algebra $\mathbf{L}=\langle L ; \wedge, \rightharpoonup, 0,1\rangle$ such that (letting $\square x:=1 \rightharpoonup x$ ):
(1) $\langle L ; \wedge, \square, 0,1\rangle$ is a bounded semilattice with a dense nucleus.
(2) $x \rightharpoonup(y \rightharpoonup z)=(x \wedge y) \rightharpoonup z$.
(3) $x \rightharpoonup(y \wedge z)=(x \rightharpoonup y) \wedge(x \rightharpoonup z)$.
(4) $x \wedge \square y=x \wedge(x \rightharpoonup y)$.
(5) $x \leq y \rightharpoonup z \quad$ if and only if $\quad x \wedge y \leq \square z$.
(6) $x \rightharpoonup y=\square x \rightharpoonup \square y$.

Example: on a pseudo-complemented semilattice $\langle S, \wedge, \neg, 0,1\rangle$, letting $x \rightharpoonup y:=\neg(x \wedge \neg y)$, we obtain an algebra in the above-defined class.

## Non-involutive twist-algebras

Concluding remarks

- QNAs provide a common generalization of Nelson and Heyting algebras.


## Non-involutive twist-algebras

Concluding remarks

- QNAs provide a common generalization of Nelson and Heyting algebras.
- QNAs also arise independently as the class of $(0,1)$-congruence orderable commutative integral bounded residuated lattices.


## Non-involutive twist-algebras

Concluding remarks

- QNAs provide a common generalization of Nelson and Heyting algebras.
- QNAs also arise independently as the class of $(0,1)$-congruence orderable commutative integral bounded residuated lattices.
- Characterizations of subreducts of QNAs specialize to subreducts of Nelson algebras (among which only the 'two-negations' subreducts had been previously characterized, by Sendlewski).


## Non-involutive twist-algebras

Concluding remarks

- QNAs provide a common generalization of Nelson and Heyting algebras.
- QNAs also arise independently as the class of $(0,1)$-congruence orderable commutative integral bounded residuated lattices.
- Characterizations of subreducts of QNAs specialize to subreducts of Nelson algebras (among which only the 'two-negations' subreducts had been previously characterized, by Sendlewski).
- As in the involutive case, some representations - those of type $\operatorname{Tw}(\mathbf{L}, F, I)$ can be upgraded to category equivalences.


## Non-involutive twist-algebras

Concluding remarks

- The non-involutive twist construction provides a new bridge between Nelson-like algebras and other algebras of non-classical logics (Sugihara monoids, WNM-algebras, semi-De Morgan algebras).


## Non-involutive twist-algebras

Concluding remarks

- The non-involutive twist construction provides a new bridge between Nelson-like algebras and other algebras of non-classical logics (Sugihara monoids, WNM-algebras, semi-De Morgan algebras).
- The new representations are very smooth generalizations of their involutive counterparts and have similar applications, but the factor algebras are more exotic classes of 'modal' algebras.


## Non-involutive twist-algebras

Concluding remarks

- The non-involutive twist construction provides a new bridge between Nelson-like algebras and other algebras of non-classical logics (Sugihara monoids, WNM-algebras, semi-De Morgan algebras).
- The new representations are very smooth generalizations of their involutive counterparts and have similar applications, but the factor algebras are more exotic classes of 'modal' algebras.
- The preceding observations suggest that it may be fruitful to further study these modal algebras (e.g., from a universal algebraic and a duality point of view).


## References

- U. R., Fragments of Quasi-Nelson: The Algebraizable Core. LJ-IGPL, 2021, DOI: 10.1093/jigpal/jzab023.
- U. R., Fragments of Quasi-Nelson: Two Negations. Journal of Applied Logic, 7: 499-559, 2020.
- U. R., Representation of De Morgan and (semi-)Kleene lattices. Soft Computing, 24 (12):8685-8716, 2020.
- U. R. and T. Flaminio, Prelinearity in (quasi-)Nelson logic. Fuzzy Sets and Systems, 445:66-89, 2022.
- U. R. and R. Jansana, Quasi-Nelson algebras and fragments. Mathematical Structures in Computer Science, 31:257-285, 2021.


## References

- U. R. and M. Spinks, Quasi-Nelson; or, non-involutive Nelson algebras.

In D. Fazio, A. Ledda, F. Paoli (eds.), Algebraic Perspectives on Substructural Logics (Trends in Logic, 55), pp. 133-168, 2020.

- U. R., P. Maia and A. Jung, Non-involutive twist-structures.

LJ-IGPL (Special issue: Recovery Operators and Logics of Formal Consistency \& Inconsistencies), 28 (5), 2020, pp. 973-999.

- U. R., R. Jansana, and T. Nascimento,

Two dualities for weakly pseudo-complemented quasi-Kleene algebras. In: Lesot M.J. et al. (eds), IPMU 2020, vol. 1239, pp. 634-653.

- U. R. and A. Jung, A duality for two-sorted lattices.

Soft Computing, 25(2), 2021, pp. 851-868.

