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Degrees of FMP in extensions of bi-intuitionistic
logic

Anton Chernev

LATD 2022
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Degrees of incompleteness

Purpose: “measuring” the gap between Kripke completeness and
Kripke incompleteness.
Definition (Fine, 1974)
Given a normal modal logic L, we define the degree of
incompleteness of L to be the number (cardinality) of normal
modal logics with the same Kripke frames.

Main result:
Theorem (Blok, 1978)
In the lattice of normal modal logics, every logic has degree of
incompleteness 1 or 2ℵ0 .

Also known as Blok’s dichotomy.
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Degrees of FMP

Idea: measure the failure of the finite model property (FMP) in a
similar way.

Introduced by G. Bezhanishvili, N. Bezhanishvili, T. Moraschini,
2021.
Definition
Given a logic L, which is an extension of L′, we define the degree
of FMP of L relative to L′ to be the number (cardinality) of
extensions of L′ with the same finite Kripke frames as L.
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Recent results

(G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021)
▶ Relative to K, the degree of FMP is either 1 or 2ℵ0 .
▶ Relative to K4, for every κ ≤ ℵ0 or κ = 2ℵ0 we can find a

variety with degree of FMP κ.
▶ The latter holds also for S4 and IPC.

Question: what about bi-intuitionistic logic bi-IPC?
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The logic bi-IPC

The logic bi-IPC is a conservative extension of IPC with an
additional connective ←.

The set of validities in intuitionistic Kripke models, where ← is
interpreted as follows:

M, x ⊩ ϕ← ψ ⇐⇒ ∃y ≤ x (M, y ⊨ ϕ and M, y ⊭ ψ).

Thus ← is dual to →, which is interpreted as:

M, x ⊩ ϕ→ ψ ⇐⇒ ∀y ≥ x (M, y ⊭ ϕ or M, y ⊨ ψ).
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The problem in algebraic terms

Algebraic semantics for bi-IPC: the variety bi-HA of bi-Heyting
algebras.

The algebra ⟨A, 1, 0,∧,∨,→,←⟩ is a bi-Heyting algebra when:
▶ (A, 0, 1,∧,∨,→) is a Heyting algebra and
▶ (A, 1, 0,∨,∧,←) is a Heyting algebra.

We have an algebraic counterpart of the notion degree of FMP.
Definition
Given a variety U, which is a subvariety of a variety V, we define
the degree of FMP of U relative to V to be the number
(cardinality) of subvarieties of V with the same finite algebras as U.
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Degrees of FMP relative to HA

We work towards characterising degrees of FMP relative to bi-HA
by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each κ ≤ ℵ0, we can construct a variety
V ⊆ HA with degree of FMP κ.
These varieties are constructed inside the Kuznetsov-Gerčiu variety
KG.

Definition
We define KG to be the variety generated by all finite sums of
1-generated Heyting algebras.
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Degrees of FMP relative to HA

We work towards characterising degrees of FMP relative to bi-HA
by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each κ ≤ ℵ0, we can construct a variety
V ⊆ HA with degree of FMP κ.
These varieties are constructed inside the Kuznetsov-Gerčiu variety
KG.
Definition
We define KG to be the variety generated by all finite sums of
1-generated Heyting algebras.
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Degrees of FMP relative to HA, continued
Definition
We define KG to be the variety generated by all finite sums of
1-generated Heyting algebras.

...

Figure: Some 1-generated Heyting algebras

A B A + B

Figure: Example of a binary sum of Heyting algebras
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Degrees of FMP relative to HA, continued
Definition
We define KG to be the variety generated by all finite sums of
1-generated Heyting algebras.

...

Figure: Some 1-generated Heyting algebras

A B A + B

Figure: Example of a binary sum of Heyting algebras
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Contributions

▶ Define a bi-Heyting counterpart of KG, which we call bi-KG.
▶ Describe all subdirectly irreducible members of bi-KG and

prove that bi-KG is semi-simple.
▶ Characterise subvarieties of bi-KG with the FMP.
▶ Find all degrees of FMP in bi-KG.
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Defining bi-KG

We use the same generators, but this time in the bi-Heyting
signature.
Definition
Let G be the class of finite sums of 1-generated Heyting algebras
equipped with the ← operation. Define:

bi-KG := V(G).
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Subdirectly irreducible members of bi-KG

Idea: use Jónsson’s Lemma.
Theorem
Let V be a congruence-distributive variety such that V = V(K) for
some class K. Then VSI ⊆ HSPU(K).

Can we find SPU(G), i.e., the universal class generated by G?
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Subdirectly irreducible members of bi-KG

Idea: use Jónsson’s Lemma.
Theorem
Let V be a congruence-distributive variety such that V = V(K) for
some class K. Then VSI ⊆ HSPU(K).

Can we find SPU(G), i.e., the universal class generated by G?
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Finding the universal class of G

Fact: SPU(G) consists of the algebras that satisfy all universal
sentences true in members of G.

Key observation: two-element anti-chains in members of G have a
particular local structure that can be described with universal
sentences.

Example of a local anti-chain pattern:

a ∨ b

a b

a ∧ b

a→ b
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Finding the universal class of G

Fact: SPU(G) consists of the algebras that satisfy all universal
sentences true in members of G.
Key observation: two-element anti-chains in members of G have a
particular local structure that can be described with universal
sentences.

Example of a local anti-chain pattern:

a ∨ b

a b

a ∧ b
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Finding the universal class of G, continued
Other possible patterns:

a ∨ b

a b

a ∧ b

a ∨ b

a b

a ∧ b b← a

a ∨ b

a b

a ∧ ba← b

a ∨ b

a b

a ∧ b

a→ b

b← a

a ∨ b

a b

a ∧ b

b→ a a ∨ b

a b

a ∧ b

b→ a

a← b
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Finding the universal class of G, continued

Last patterns:

a

a ∧ b

b

a ∨ b

b

a ∧ b

a

a ∨ b
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The universal class of G

Theorem
The class SPU(G) consists of sums of the following prime algebras:

. . .

...

...

...

...
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Semi-simplicity of bi-KG

By Jónsson’s Lemma and the description of SPU(G):

bi-KGSI = SPU(G) \ {L4, L6} = bi-KGS

L4 L6

Theorem
The variety bi-KG is semi-simple. Consequently, every subvariety of
bi-KG is determined by its finitely generated simple members.
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Semi-simplicity of bi-KG

By Jónsson’s Lemma and the description of SPU(G):

bi-KGSI = SPU(G) \ {L4, L6} = bi-KGS

L4 L6

Theorem
The variety bi-KG is semi-simple. Consequently, every subvariety of
bi-KG is determined by its finitely generated simple members.
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Local embeddability

We can determine membership to subvarieties of bi-KG using local
embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A.
If A is an algebra and K is a class of algebras, we write A loc

↪→ K if
every local subgraph of A embeds into a member of K.

Theorem
We have A ∈ SPU(K) if and only if A loc

↪→ K.

In our case this leads to:
Theorem
If {A} ∪ K is a class of finitely generated simple bi-KG algebras,
then A ∈ V(K) if and only if A loc

↪→ K.
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The FMP in bi-KG

Some notation:
▶ FGS(V) is the class of finitely generated simple algebras in V.
▶ FinS(V) is the class of finite simple algebras in V.

A variety V ⊆ bi-KG has the FMP precisely when A ∈ FGS(V)
implies A loc

↪→ FinS(V).
The property A loc

↪→ FinS(V) is equivalent to the existence of certain
finite algebras called m-compressions, where m ∈ N.
Theorem
A variety V ⊆ bi-KG has the FMP if and only if for every
A ∈ FGS(V) and m ∈ N, there exists an m-compression of A in V.
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▶ FGS(V) is the class of finitely generated simple algebras in V.
▶ FinS(V) is the class of finite simple algebras in V.

A variety V ⊆ bi-KG has the FMP precisely when A ∈ FGS(V)
implies A loc

↪→ FinS(V).
The property A loc

↪→ FinS(V) is equivalent to the existence of certain
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Example of an m-compression

...

A An 8-compression of A
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Corollaries of the FMP theorem

Corollary
The variety bi-KG has the FMP.

Corollary
The variety generated by the bi-Heyting Rieger-Nishimura lattice
lacks the FMP.
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Degrees of FMP relative to bi-KG

We have a dichotomy-style characterisation of degrees of FMP
relative to bi-KG.
Theorem
Relative to bi-KG, all possible degrees of FMP are 1 and 2ℵ0 .

Note: stark contrast with KG, where every degree κ ≤ ℵ0 exists.
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Degrees of FMP relative to bi-KG

We have a dichotomy-style characterisation of degrees of FMP
relative to bi-KG.
Theorem
Relative to bi-KG, all possible degrees of FMP are 1 and 2ℵ0 .

Note: stark contrast with KG, where every degree κ ≤ ℵ0 exists.
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Proof idea for the degrees of FMP characterisation

1. Find a variety with degree of FMP 1 relative to bi-KG.
▶ Relative to itself, bi-KG has degree of FMP 1.

2. Find a variety with degree of FMP greater than 1.
▶ Relative to bi-KG, the variety generated by the bi-Heyting

Rieger-Nishimura lattice has degree of FMP greater that 1.
3. Prove that every variety with degree of FMP relative to bi-KG

greater than 1 has degree of FMP 2ℵ0 .
▶ Given a variety V with degree of FMP greater than 1, build

continuum many varieties with the same finite algebras as V.
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Constructing continuum many varieties

Without loss of generality, there exists A ∈ FGS(V) with
A�

�loc
↪→FinS(V).

Thus A is infinite, i.e., A ”contains” at least one infinite prime
summand.

...

Lu

...
Lu

...

...
Lu

u

Suppose A contains Lu (the other cases are symmetric).
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Constructing continuum many varieties, continued
Thus we have A = A′ + Lu + A′′.
Define for every n ∈ N:

Bn := A′ + Lu +Σi∈{1,...,n}L4 + Lu + Lu + A′′.

A′

Lu

A′′

A

A′

Lu

n many

Lu

Lu

A′′

Bn
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Constructing continuum many varieties, continued
For every I ⊆ N, define:

VI := V({Bi | i ∈ I} ∪ FinS(V)).

In order to show that VI ̸= VJ for I ̸= J, it suffices to show
Bn�

�loc
↪→Bm for n ̸= m.

A′

Lu

Lu

Lu

A′′

B3

A′

Lu

Lu

Lu

A′′

B2
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Constructing continuum many varieties, continued
For every I ⊆ N, define:

VI := V({Bi | i ∈ I} ∪ FinS(V)).
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Directions for future work

▶ Characterisation of degrees of FMP in bi-HA.
▶ Adapting ideas from bi-intuitionistic logic to study degrees of

FMP in temporal logic.
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Thank you!


