Degrees of FMP in extensions of bi-intuitionistic logic

Anton Chernev

LATD 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Degrees of incompleteness

Purpose: "measuring" the gap between Kripke completeness and Kripke incompleteness.

Definition (Fine, 1974)

Given a normal modal logic L, we define the degree of incompleteness of L to be the number (cardinality) of normal modal logics with the same Kripke frames.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Degrees of incompleteness

Purpose: "measuring" the gap between Kripke completeness and Kripke incompleteness.

Definition (Fine, 1974)

Given a normal modal logic L, we define the degree of incompleteness of L to be the number (cardinality) of normal modal logics with the same Kripke frames.

Main result:

Theorem (Blok, 1978)

In the lattice of normal modal logics, every logic has degree of incompleteness 1 or $2^{\aleph_0}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Also known as Blok's dichotomy.

Idea: measure the failure of the finite model property (FMP) in a similar way.

Introduced by G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021.

Definition

Given a logic L, which is an extension of L', we define the degree of FMP of L relative to L' to be the number (cardinality) of extensions of L' with the same finite Kripke frames as L.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recent results

- (G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021)
 - ► Relative to K, the degree of FMP is either 1 or 2^{ℵ0}.
 - Relative to K4, for every κ ≤ ℵ₀ or κ = 2^{ℵ₀} we can find a variety with degree of FMP κ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The latter holds also for S4 and IPC.

Recent results

- (G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021)
 - ► Relative to K, the degree of FMP is either 1 or 2^{ℵ0}.
 - Relative to K4, for every κ ≤ ℵ₀ or κ = 2^{ℵ₀} we can find a variety with degree of FMP κ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The latter holds also for S4 and IPC.

Question: what about bi-intuitionistic logic bi-IPC?

The logic bi-IPC

The logic **bi-IPC** is a conservative extension of **IPC** with an additional connective \leftarrow .

The set of validities in intuitionistic Kripke models, where \leftarrow is interpreted as follows:

$$M, x \Vdash \varphi \leftarrow \psi \iff \exists y \leq x \ (M, y \vDash \varphi \text{ and } M, y \nvDash \psi).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The logic bi-IPC

The logic **bi-IPC** is a conservative extension of **IPC** with an additional connective \leftarrow .

The set of validities in intuitionistic Kripke models, where \leftarrow is interpreted as follows:

$$M, x \Vdash \varphi \leftarrow \psi \iff \exists y \leq x \ (M, y \vDash \varphi \text{ and } M, y \nvDash \psi).$$

Thus \leftarrow is dual to \rightarrow , which is interpreted as:

$$M, x \Vdash \varphi \to \psi \iff \forall y \ge x (M, y \nvDash \varphi \text{ or } M, y \vDash \psi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The problem in algebraic terms

Algebraic semantics for **bi-IPC**: the variety bi-HA of bi-Heyting algebras.

The algebra $\langle A, 1, 0, \wedge, \vee, \rightarrow, \leftarrow \rangle$ is a bi-Heyting algebra when:

- $(A, 0, 1, \land, \lor, \rightarrow)$ is a Heyting algebra and
- $(A, 1, 0, \lor, \land, \leftarrow)$ is a Heyting algebra.

The problem in algebraic terms

Algebraic semantics for **bi-IPC**: the variety bi-HA of bi-Heyting algebras.

The algebra $\langle A,1,0,\wedge,\vee,\rightarrow,\leftarrow\rangle$ is a bi-Heyting algebra when:

- $(A, 0, 1, \land, \lor, \rightarrow)$ is a Heyting algebra and
- $(A, 1, 0, \lor, \land, \leftarrow)$ is a Heyting algebra.

We have an algebraic counterpart of the notion degree of FMP.

Definition

Given a variety U, which is a subvariety of a variety V, we define the degree of FMP of U relative to V to be the number (cardinality) of subvarieties of V with the same finite algebras as U.

Degrees of FMP relative to HA

We work towards characterising degrees of FMP relative to bi-HA by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each $\kappa \leq \aleph_0$, we can construct a variety $V \subseteq$ HA with degree of FMP κ . These varieties are constructed inside the Kuznetsov-Gerčiu variety KG.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We work towards characterising degrees of FMP relative to bi-HA by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each $\kappa \leq \aleph_0$, we can construct a variety $V \subseteq$ HA with degree of FMP κ .

These varieties are constructed inside the Kuznetsov-Gerčiu variety KG.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.

Degrees of FMP relative to HA, continued

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.

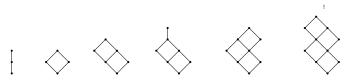


Figure: Some 1-generated Heyting algebras

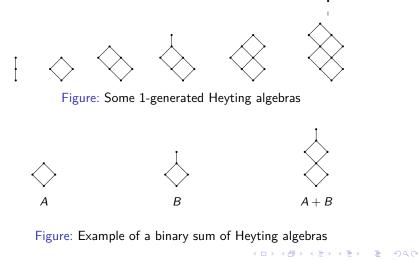
・ロト ・ 同ト ・ ヨト ・ ヨト

э

Degrees of FMP relative to HA, continued

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.



Contributions

Define a bi-Heyting counterpart of KG, which we call bi-KG.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Describe all subdirectly irreducible members of bi-KG and prove that bi-KG is semi-simple.
- Characterise subvarieties of bi-KG with the FMP.
- Find all degrees of FMP in bi-KG.

We use the same generators, but this time in the bi-Heyting signature.

Definition

Let \mathcal{G} be the class of finite sums of 1-generated Heyting algebras equipped with the \leftarrow operation. Define:

bi-KG $\coloneqq \mathbb{V}(\mathcal{G})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Subdirectly irreducible members of bi-KG

Idea: use Jónsson's Lemma.

Theorem

Let V be a congruence-distributive variety such that $V = \mathbb{V}(\mathcal{K})$ for some class \mathcal{K} . Then $V_{SI} \subseteq \mathbb{HSP}_U(\mathcal{K})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Subdirectly irreducible members of bi-KG

Idea: use Jónsson's Lemma.

Theorem

Let V be a congruence-distributive variety such that $V = \mathbb{V}(\mathcal{K})$ for some class \mathcal{K} . Then $V_{SI} \subseteq \mathbb{HSP}_U(\mathcal{K})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can we find $SP_U(G)$, i.e., the universal class generated by G?

Finding the universal class of ${\cal G}$

Fact: $\mathbb{SP}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G} .

Finding the universal class of ${\mathcal G}$

Fact: $\mathbb{SP}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G} .

Key observation: two-element anti-chains in members of \mathcal{G} have a particular local structure that can be described with universal sentences.

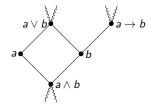
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finding the universal class of ${\mathcal G}$

Fact: $\mathbb{SP}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G} .

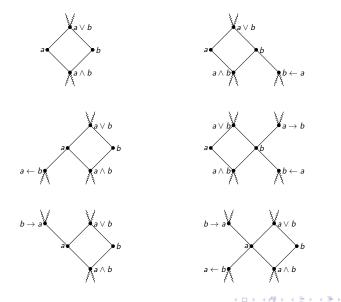
Key observation: two-element anti-chains in members of \mathcal{G} have a particular local structure that can be described with universal sentences.

Example of a local anti-chain pattern:



Finding the universal class of \mathcal{G} , continued

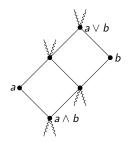
Other possible patterns:

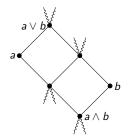


≡ ∽ へ (~

Finding the universal class of \mathcal{G} , continued

Last patterns:



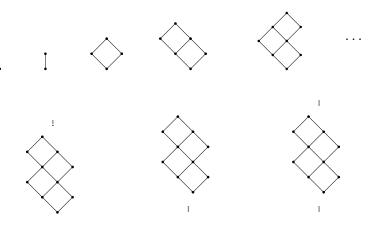


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The universal class of ${\cal G}$

Theorem

The class $SP_U(G)$ consists of sums of the following prime algebras:

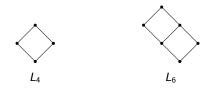


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

Semi-simplicity of bi-KG

By Jónsson's Lemma and the description of $SP_U(G)$:

$$\mathsf{bi}\text{-}\mathsf{KG}_{\mathcal{SI}} = \mathbb{SP}_{\mathcal{U}}(\mathcal{G}) \setminus \{L_4, L_6\} = \mathsf{bi}\text{-}\mathsf{KG}_{\mathcal{S}}$$

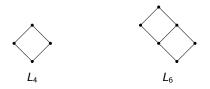


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Semi-simplicity of bi-KG

By Jónsson's Lemma and the description of $SP_U(G)$:

$$\mathsf{bi}\text{-}\mathsf{KG}_{\mathit{SI}} = \mathbb{SP}_{\mathit{U}}(\mathcal{G}) \setminus \{\mathit{L}_{\mathsf{4}}, \mathit{L}_{\mathsf{6}}\} = \mathsf{bi}\text{-}\mathsf{KG}_{\mathit{S}}$$



Theorem

The variety bi-KG is semi-simple. Consequently, every subvariety of bi-KG is determined by its finitely generated simple members.

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem

We have $A \in \mathbb{SP}_U(\mathcal{K})$ if and only if $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$.

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K} .

Theorem

We have $A \in \mathbb{SP}_U(\mathcal{K})$ if and only if $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$.

In our case this leads to:

Theorem If $\{A\} \cup \mathcal{K}$ is a class of finitely generated simple bi-KG algebras, then $A \in \mathbb{V}(\mathcal{K})$ if and only if $A \stackrel{loc}{\hookrightarrow} \mathcal{K}$.

(日)((1))

Some notation:

• FGS(V) is the class of finitely generated simple algebras in V.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

FinS(V) is the class of finite simple algebras in V.

Some notation:

FGS(V) is the class of finitely generated simple algebras in V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• FinS(V) is the class of finite simple algebras in V.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in FGS(V)$ implies $A \stackrel{loc}{\hookrightarrow} FinS(V)$.

Some notation:

- FGS(V) is the class of finitely generated simple algebras in V.
- ► *FinS*(*V*) is the class of finite simple algebras in *V*.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in FGS(V)$ implies $A \stackrel{loc}{\hookrightarrow} FinS(V)$.

The property $A \stackrel{loc}{\hookrightarrow} FinS(V)$ is equivalent to the existence of certain finite algebras called *m*-compressions, where $m \in \mathbb{N}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some notation:

- FGS(V) is the class of finitely generated simple algebras in V.
- ► *FinS*(*V*) is the class of finite simple algebras in *V*.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in FGS(V)$ implies $A \stackrel{loc}{\hookrightarrow} FinS(V)$.

The property $A \stackrel{loc}{\hookrightarrow} FinS(V)$ is equivalent to the existence of certain finite algebras called *m*-compressions, where $m \in \mathbb{N}$.

Theorem

A variety $V \subseteq$ bi-KG has the FMP if and only if for every $A \in FGS(V)$ and $m \in \mathbb{N}$, there exists an m-compression of A in V.

Example of an *m*-compression

An 8-compression of A

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Corollaries of the FMP theorem

Corollary

The variety bi-KG has the FMP.

Corollary

The variety generated by the bi-Heyting Rieger-Nishimura lattice lacks the FMP.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Degrees of FMP relative to bi-KG

We have a dichotomy-style characterisation of degrees of FMP relative to bi-KG.

Theorem

Relative to bi-KG, all possible degrees of FMP are 1 and 2^{\aleph_0} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have a dichotomy-style characterisation of degrees of FMP relative to bi-KG.

Theorem

Relative to bi-KG, all possible degrees of FMP are 1 and 2^{\aleph_0} .

Note: stark contrast with KG, where every degree $\kappa \leq \aleph_0$ exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof idea for the degrees of FMP characterisation

Find a variety with degree of FMP 1 relative to bi-KG.
Relative to itself, bi-KG has degree of FMP 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof idea for the degrees of FMP characterisation

- 1. Find a variety with degree of FMP 1 relative to bi-KG.
 - Relative to itself, bi-KG has degree of FMP 1.
- 2. Find a variety with degree of FMP greater than 1.
 - Relative to bi-KG, the variety generated by the bi-Heyting Rieger-Nishimura lattice has degree of FMP greater that 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof idea for the degrees of FMP characterisation

- 1. Find a variety with degree of FMP 1 relative to bi-KG.
 - Relative to itself, bi-KG has degree of FMP 1.
- 2. Find a variety with degree of FMP greater than 1.
 - Relative to bi-KG, the variety generated by the bi-Heyting Rieger-Nishimura lattice has degree of FMP greater that 1.
- 3. Prove that every variety with degree of FMP relative to bi-KG greater than 1 has degree of FMP 2^{\aleph_0} .
 - Given a variety V with degree of FMP greater than 1, build continuum many varieties with the same finite algebras as V.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Constructing continuum many varieties

Without loss of generality, there exists $A \in FGS(V)$ with $A \xrightarrow{loc} FinS(V)$.

Constructing continuum many varieties

Without loss of generality, there exists $A \in FGS(V)$ with $A \xrightarrow{loc} FinS(V)$.

Thus A is infinite, i.e., A "contains" at least one infinite prime summand.

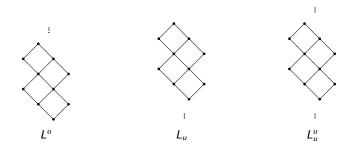


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constructing continuum many varieties

Without loss of generality, there exists $A \in FGS(V)$ with $A \xrightarrow{loc} FinS(V)$.

Thus A is infinite, i.e., A "contains" at least one infinite prime summand.

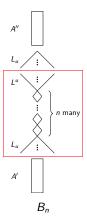


Suppose A contains L_u (the other cases are symmetric).

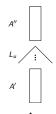
Constructing continuum many varieties, continued

Thus we have $A = A' + L_u + A''$. Define for every $n \in \mathbb{N}$:

$$B_n \coloneqq A' + L_u + \sum_{i \in \{1, \dots, n\}} L_4 + L^u + L_u + A''.$$



(日) (四) (日) (日) (日)



Α

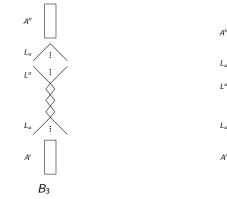
Constructing continuum many varieties, continued For every $I \subseteq \mathbb{N}$, define:

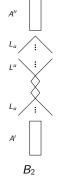
 $V_I := \mathbb{V}(\{B_i \mid i \in I\} \cup FinS(V)).$

Constructing continuum many varieties, continued For every $I \subseteq \mathbb{N}$, define:

$$V_I := \mathbb{V}(\{B_i \mid i \in I\} \cup FinS(V)).$$

In order to show that $V_I \neq V_J$ for $I \neq J$, it suffices to show $B_n \xrightarrow{loc} B_m$ for $n \neq m$.





Directions for future work

- Characterisation of degrees of FMP in bi-HA.
- Adapting ideas from bi-intuitionistic logic to study degrees of FMP in temporal logic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)