Degrees of FMP in extensions of bi-intuitionistic logic

Anton Chernev

LATD 2022

Degrees of incompleteness

Purpose: "measuring" the gap between Kripke completeness and Kripke incompleteness.
Definition (Fine, 1974)
Given a normal modal logic L, we define the degree of incompleteness of L to be the number (cardinality) of normal modal logics with the same Kripke frames.

Degrees of incompleteness

Purpose: "measuring" the gap between Kripke completeness and Kripke incompleteness.
Definition (Fine, 1974)
Given a normal modal logic L, we define the degree of incompleteness of L to be the number (cardinality) of normal modal logics with the same Kripke frames.

Main result:
Theorem (Blok, 1978)
In the lattice of normal modal logics, every logic has degree of incompleteness 1 or $2^{\aleph_{0}}$.

Also known as Blok's dichotomy.

Degrees of FMP

Idea: measure the failure of the finite model property (FMP) in a similar way.

Introduced by G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021.

Definition

Given a logic L, which is an extension of L^{\prime}, we define the degree of FMP of L relative to L^{\prime} to be the number (cardinality) of extensions of L^{\prime} with the same finite Kripke frames as L.

Recent results

(G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021)

- Relative to K, the degree of FMP is either 1 or $2^{\aleph_{0}}$.
- Relative to K4, for every $\kappa \leq \aleph_{0}$ or $\kappa=2^{\aleph_{0}}$ we can find a variety with degree of FMP κ.
- The latter holds also for S4 and IPC.

Recent results

(G. Bezhanishvili, N. Bezhanishvili, T. Moraschini, 2021)

- Relative to K, the degree of FMP is either 1 or $2^{\aleph_{0}}$.
- Relative to K4, for every $\kappa \leq \aleph_{0}$ or $\kappa=2^{\aleph_{0}}$ we can find a variety with degree of FMP κ.
- The latter holds also for S4 and IPC.

Question: what about bi-intuitionistic logic bi-IPC?

The logic bi-IPC

The logic bi-IPC is a conservative extension of IPC with an additional connective \leftarrow.

The set of validities in intuitionistic Kripke models, where \leftarrow is interpreted as follows:

$$
M, x \Vdash \varphi \leftarrow \psi \Longleftrightarrow \exists y \leq x(M, y \vDash \varphi \text { and } M, y \not \models \psi) .
$$

The logic bi-IPC

The logic bi-IPC is a conservative extension of IPC with an additional connective \leftarrow.

The set of validities in intuitionistic Kripke models, where \leftarrow is interpreted as follows:

$$
M, x \Vdash \varphi \leftarrow \psi \Longleftrightarrow \exists y \leq x(M, y \vDash \varphi \text { and } M, y \not \models \psi) .
$$

Thus \leftarrow is dual to \rightarrow, which is interpreted as:

$$
M, x \Vdash \varphi \rightarrow \psi \Longleftrightarrow \forall y \geq x(M, y \not \models \varphi \text { or } M, y \vDash \psi) .
$$

The problem in algebraic terms

Algebraic semantics for bi-IPC: the variety bi-HA of bi-Heyting algebras.

The algebra $\langle A, 1,0, \wedge, \vee, \rightarrow, \leftarrow\rangle$ is a bi-Heyting algebra when:

- $(A, 0,1, \wedge, \vee, \rightarrow)$ is a Heyting algebra and
- $(A, 1,0, \vee, \wedge, \leftarrow)$ is a Heyting algebra.

The problem in algebraic terms

Algebraic semantics for bi-IPC: the variety bi-HA of bi-Heyting algebras.

The algebra $\langle A, 1,0, \wedge, \vee, \rightarrow, \leftarrow\rangle$ is a bi-Heyting algebra when:

- $(A, 0,1, \wedge, \vee, \rightarrow)$ is a Heyting algebra and
- $(A, 1,0, \vee, \wedge, \leftarrow)$ is a Heyting algebra.

We have an algebraic counterpart of the notion degree of FMP.

Definition

Given a variety U, which is a subvariety of a variety V, we define the degree of FMP of U relative to V to be the number (cardinality) of subvarieties of V with the same finite algebras as U.

Degrees of FMP relative to HA

We work towards characterising degrees of FMP relative to bi-HA by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each $\kappa \leq \aleph_{0}$, we can construct a variety $V \subseteq$ HA with degree of FMP κ.
These varieties are constructed inside the Kuznetsov-Gerčiu variety KG.

Degrees of FMP relative to HA

We work towards characterising degrees of FMP relative to bi-HA by borrowing ideas from the characterisation relative to HA.

Relative to HA: for each $\kappa \leq \aleph_{0}$, we can construct a variety $V \subseteq$ HA with degree of FMP κ.
These varieties are constructed inside the Kuznetsov-Gerčiu variety KG.

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.

Degrees of FMP relative to HA, continued

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.

Figure: Some 1-generated Heyting algebras

Degrees of FMP relative to HA, continued

Definition

We define KG to be the variety generated by all finite sums of 1-generated Heyting algebras.

Figure: Some 1-generated Heyting algebras

$A+B$
Figure: Example of a binary sum of Heyting algebras

Contributions

- Define a bi-Heyting counterpart of KG, which we call bi-KG.
- Describe all subdirectly irreducible members of bi-KG and prove that bi-KG is semi-simple.
- Characterise subvarieties of bi-KG with the FMP.
- Find all degrees of FMP in bi-KG.

Defining bi-KG

We use the same generators, but this time in the bi-Heyting signature.

Definition

Let \mathcal{G} be the class of finite sums of 1-generated Heyting algebras equipped with the \leftarrow operation. Define:

$$
\text { bi-KG }:=\mathbb{V}(\mathcal{G})
$$

Subdirectly irreducible members of bi-KG

Idea: use Jónsson's Lemma.
Theorem
Let V be a congruence-distributive variety such that $V=\mathbb{V}(\mathcal{K})$ for some class \mathcal{K}. Then $V_{S I} \subseteq \mathbb{H S P}_{U}(\mathcal{K})$.

Subdirectly irreducible members of bi-KG

Idea: use Jónsson's Lemma.
Theorem
Let V be a congruence-distributive variety such that $V=\mathbb{V}(\mathcal{K})$ for some class \mathcal{K}. Then $V_{S I} \subseteq \mathbb{H S P}_{U}(\mathcal{K})$.

Can we find $\mathbb{S P}_{U}(\mathcal{G})$, i.e., the universal class generated by \mathcal{G} ?

Finding the universal class of \mathcal{G}

Fact: $\mathbb{S P}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G}.

Finding the universal class of \mathcal{G}

Fact: $\mathbb{S P}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G}.
Key observation: two-element anti-chains in members of \mathcal{G} have a particular local structure that can be described with universal sentences.

Finding the universal class of \mathcal{G}

Fact: $\mathbb{S P}_{U}(\mathcal{G})$ consists of the algebras that satisfy all universal sentences true in members of \mathcal{G}.
Key observation: two-element anti-chains in members of \mathcal{G} have a particular local structure that can be described with universal sentences.

Example of a local anti-chain pattern:

Finding the universal class of \mathcal{G}, continued
Other possible patterns:

Finding the universal class of \mathcal{G}, continued

Last patterns:

The universal class of \mathcal{G}

Theorem
The class $\mathbb{S P}_{U}(\mathcal{G})$ consists of sums of the following prime algebras:

Semi-simplicity of bi-KG

By Jónsson's Lemma and the description of $\mathbb{S P}_{U}(\mathcal{G})$:

$$
{\operatorname{bi}-K G_{S I}}=\mathbb{S P}_{U}(\mathcal{G}) \backslash\left\{L_{4}, L_{6}\right\}=\mathrm{bi}^{-K G_{S}}
$$

L_{4}

Semi-simplicity of bi-KG

By Jónsson's Lemma and the description of $\mathbb{S P}_{U}(\mathcal{G})$:

$$
\mathrm{bi}^{-K G_{S I}}=\mathbb{S P}_{U}(\mathcal{G}) \backslash\left\{L_{4}, L_{6}\right\}=\mathrm{bi}^{-K G_{S}}
$$

Theorem
The variety bi-KG is semi-simple. Consequently, every subvariety of bi-KG is determined by its finitely generated simple members.

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K}.

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K}.
Theorem
We have $A \in \mathbb{S P}_{U}(\mathcal{K})$ if and only if $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$.

Local embeddability

We can determine membership to subvarieties of bi-KG using local embeddability.

A local subgraph of an algebra A is a finite partial subalgebra of A. If A is an algebra and \mathcal{K} is a class of algebras, we write $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$ if every local subgraph of A embeds into a member of \mathcal{K}.

Theorem

We have $A \in \mathbb{S P}_{U}(\mathcal{K})$ if and only if $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$.

In our case this leads to:
Theorem
If $\{A\} \cup \mathcal{K}$ is a class of finitely generated simple bi-KG algebras, then $A \in \mathbb{V}(\mathcal{K})$ if and only if $A \stackrel{\text { loc }}{\hookrightarrow} \mathcal{K}$.

The FMP in bi-KG

Some notation:

- $F G S(V)$ is the class of finitely generated simple algebras in V.
- FinS (V) is the class of finite simple algebras in V.

The FMP in bi-KG

Some notation:

- $F G S(V)$ is the class of finitely generated simple algebras in V.
- FinS (V) is the class of finite simple algebras in V.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in F G S(V)$ implies $A \xrightarrow{\text { loc }} \operatorname{FinS}(V)$.

The FMP in bi-KG

Some notation:

- $F G S(V)$ is the class of finitely generated simple algebras in V.
- FinS (V) is the class of finite simple algebras in V.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in F G S(V)$ implies $A \stackrel{\text { loc }}{\hookrightarrow} \operatorname{FinS}(V)$.
The property $A \stackrel{\text { loc }}{\hookrightarrow} \operatorname{Fin} S(V)$ is equivalent to the existence of certain finite algebras called m-compressions, where $m \in \mathbb{N}$.

The FMP in bi-KG

Some notation:

- $F G S(V)$ is the class of finitely generated simple algebras in V.
- FinS (V) is the class of finite simple algebras in V.

A variety $V \subseteq$ bi-KG has the FMP precisely when $A \in F G S(V)$ implies $A \xrightarrow{\text { loc }} \operatorname{FinS}(V)$.
The property $A \stackrel{\text { loc }}{\hookrightarrow} \operatorname{Fin} S(V)$ is equivalent to the existence of certain finite algebras called m-compressions, where $m \in \mathbb{N}$.

Theorem
A variety $V \subseteq$ bi-KG has the FMP if and only if for every
$A \in F G S(V)$ and $m \in \mathbb{N}$, there exists an m-compression of A in V.

Example of an m-compression

An 8-compression of A

Corollaries of the FMP theorem

Corollary
The variety bi-KG has the FMP.

Corollary
The variety generated by the bi-Heyting Rieger-Nishimura lattice lacks the FMP.

Degrees of FMP relative to bi-KG

We have a dichotomy-style characterisation of degrees of FMP relative to bi-KG.

Theorem
Relative to bi-KG, all possible degrees of FMP are 1 and $2^{\aleph_{0}}$.

Degrees of FMP relative to bi-KG

We have a dichotomy-style characterisation of degrees of FMP relative to bi-KG.

Theorem
Relative to bi-KG, all possible degrees of FMP are 1 and $2^{\aleph_{0}}$.

Note: stark contrast with KG , where every degree $\kappa \leq \aleph_{0}$ exists.

Proof idea for the degrees of FMP characterisation

1. Find a variety with degree of FMP 1 relative to bi-KG.

- Relative to itself, bi-KG has degree of FMP 1.

Proof idea for the degrees of FMP characterisation

1. Find a variety with degree of FMP 1 relative to bi-KG.

- Relative to itself, bi-KG has degree of FMP 1.

2. Find a variety with degree of FMP greater than 1.

- Relative to bi-KG, the variety generated by the bi-Heyting Rieger-Nishimura lattice has degree of FMP greater that 1.

Proof idea for the degrees of FMP characterisation

1. Find a variety with degree of FMP 1 relative to bi-KG.

- Relative to itself, bi-KG has degree of FMP 1.

2. Find a variety with degree of FMP greater than 1.

- Relative to bi-KG, the variety generated by the bi-Heyting Rieger-Nishimura lattice has degree of FMP greater that 1.

3. Prove that every variety with degree of FMP relative to bi-KG greater than 1 has degree of FMP $2^{\aleph_{0}}$.

- Given a variety V with degree of FMP greater than 1 , build continuum many varieties with the same finite algebras as V.

Constructing continuum many varieties

Without loss of generality, there exists $A \in F G S(V)$ with A $\stackrel{\text { lot }}{\rightarrow} \operatorname{FinS}(V)$.

Constructing continuum many varieties

Without loss of generality, there exists $A \in F G S(V)$ with $A \stackrel{\text { lok }}{\rightarrow} F i n S(V)$.
Thus A is infinite, i.e., A "contains" at least one infinite prime summand.

Constructing continuum many varieties

Without loss of generality, there exists $A \in F G S(V)$ with $A \stackrel{\text { lok }}{\rightarrow} \operatorname{FinS}(V)$.
Thus A is infinite, i.e., A "contains" at least one infinite prime summand.

L^{u}

Suppose A contains L_{u} (the other cases are symmetric).

Constructing continuum many varieties, continued

Thus we have $A=A^{\prime}+L_{u}+A^{\prime \prime}$.
Define for every $n \in \mathbb{N}$:

$$
B_{n}:=A^{\prime}+L_{u}+\Sigma_{i \in\{1, \ldots, n\}} L_{4}+L^{u}+L_{u}+A^{\prime \prime} .
$$

Constructing continuum many varieties, continued

For every $I \subseteq \mathbb{N}$, define:

$$
V_{I}:=\mathbb{V}\left(\left\{B_{i} \mid i \in I\right\} \cup \operatorname{FinS}(V)\right) .
$$

Constructing continuum many varieties, continued

For every $I \subseteq \mathbb{N}$, define:

$$
V_{I}:=\mathbb{V}\left(\left\{B_{i} \mid i \in I\right\} \cup \operatorname{FinS}(V)\right) .
$$

In order to show that $V_{I} \neq V_{J}$ for $I \neq J$, it suffices to show
$B_{n} \stackrel{\text { lok }}{\rightarrow} B_{m}$ for $n \neq m$.

Directions for future work

- Characterisation of degrees of FMP in bi-HA.
- Adapting ideas from bi-intuitionistic logic to study degrees of FMP in temporal logic.

Thank you!

