Finite Characterisations of Modal Formulas

Balder ten Cate and Raoul Koudijs

ILLC Amsterdam

LATD 2022 & MOSAIC Kick-Off

Motivation

We will investigate **learnability**¹ for fragments of classical modal logic, motivated by applications in description logics and database theory.

¹More specifically, Angluin's model of exact learnability with membership queries.

Motivation

We will investigate **learnability**¹ for fragments of classical modal logic, motivated by applications in description logics and database theory.

The problem is to 'reverse engineer' the model class $mod(\varphi)$ of some formula φ using positive and negative examples, i.e. models and non-models of φ , respectively.

¹More specifically, Angluin's model of exact learnability with membership queries.

Motivation

We will investigate **learnability**¹ for fragments of classical modal logic, motivated by applications in description logics and database theory.

The problem is to 'reverse engineer' the model class $mod(\varphi)$ of some formula φ using positive and negative examples, i.e. models and non-models of φ , respectively.

In the literature, learnability has been studied for (unions of) conjunctive queries (ten Cate & Dalmau, 2021), XML twig-queries (Staworko & Wieczorek, 2012), LTL (Wolter, Zakharyaschev et al., 2022).

¹More specifically, Angluin's model of exact learnability with membership queries.

Finite Characterisations

Under this learning framework, a formula φ is learnable iff there exists a finite set of positive and negative examples characterising φ . If we want to show *polynomial* learnability, we do need to go into operational details.

Finite Characterisations

Under this learning framework, a formula φ is learnable iff there exists a finite set of positive and negative examples characterising φ . If we want to show *polynomial* learnability, we do need to go into operational details.

Let \mathcal{L} be a set of modal formulas. A pointed Kripke model M, s is a Kripke model M = (W, R, V) together with a state $s \in W$.

Finite Characterisations

Under this learning framework, a formula φ is learnable iff there exists a finite set of positive and negative examples characterising φ . If we want to show *polynomial* learnability, we do need to go into operational details.

Let \mathcal{L} be a set of modal formulas. A pointed Kripke model M, s is a Kripke model M = (W, R, V) together with a state $s \in W$.

Definition (Finite Characterisations)

A **finite characterisation** of a formula $\varphi \in \mathcal{L}$ w.r.t \mathcal{L} is a pair of *finite* sets of *finite* pointed models (E^+, E^-) such that:

- (i) φ fits (E^+, E^-) i.e. $E, e \models \varphi$ and $E', e' \not\models \varphi$ for all $(E, e) \in E^+$ and $(E', e') \in E^-$
- (ii) φ is the only formula from \mathcal{L} up to equivalence which fits (E^+, E^-) . That is, if $\psi \in \mathcal{L}$ fits (E^+, E^-) then $\varphi \equiv \psi$.

Theorem

The full modal language is not finitely characterisable.

Theorem

The full modal language is not finitely characterisable.

Proof.

It suffices to give one counterexample, say $\Diamond p$. Suppose that it has a finite characterisation (E^+,E^-) , and let n be strictly greater than the maximum height of models in $E^+ \cup E^-$, where the height is defined as the length of the longest directed path.

Theorem

The full modal language is not finitely characterisable.

Proof.

It suffices to give one counterexample, say $\Diamond p$. Suppose that it has a finite characterisation (E^+,E^-) , and let n be strictly greater than the maximum height of models in $E^+ \cup E^-$, where the height is defined as the length of the longest directed path. Observe that:

$$E, e \models \Box^{n+1} \bot \land \Diamond^n \top \text{ iff } height(E, e) = n$$

Theorem

The full modal language is not finitely characterisable.

Proof.

It suffices to give one counterexample, say $\Diamond p$. Suppose that it has a finite characterisation (E^+,E^-) , and let n be strictly greater than the maximum height of models in $E^+ \cup E^-$, where the height is defined as the length of the longest directed path. Observe that:

$$E, e \models \Box^{n+1} \bot \land \Diamond^n \top$$
 iff $height(E, e) = n$

Hence $\varphi := \Diamond p \lor (\Box^{n+1} \bot \land \Diamond^n \top)$ fits E^- by choice of n and thus fits (E^+, E^-) by properties of \lor .

Theorem

The full modal language is not finitely characterisable.

Proof.

It suffices to give one counterexample, say $\Diamond p$. Suppose that it has a finite characterisation (E^+,E^-) , and let n be strictly greater than the maximum height of models in $E^+ \cup E^-$, where the height is defined as the length of the longest directed path. Observe that:

$$E, e \models \Box^{n+1} \bot \land \Diamond^n \top$$
 iff $height(E, e) = n$

Hence $\varphi := \Diamond p \lor (\Box^{n+1} \bot \land \Diamond^n \top)$ fits E^- by choice of n and thus fits (E^+, E^-) by properties of \lor . Yet $\varphi \not\equiv \Diamond p$ because the n-length path with empty valuation is a model of $\varphi \land \neg \Diamond p$.

Theorem

The full modal language is not finitely characterisable.

Proof.

It suffices to give one counterexample, say $\Diamond p$. Suppose that it has a finite characterisation (E^+,E^-) , and let n be strictly greater than the maximum height of models in $E^+ \cup E^-$, where the height is defined as the length of the longest directed path. Observe that:

$$E, e \models \Box^{n+1} \bot \land \Diamond^n \top$$
 iff $height(E, e) = n$

Hence $\varphi:=\Diamond p\vee (\Box^{n+1}\bot\wedge\Diamond^n\top)$ fits E^- by choice of n and thus fits (E^+,E^-) by properties of \vee . Yet $\varphi\not\equiv\Diamond p$ because the n-length path with empty valuation is a model of $\varphi\wedge\neg\Diamond p$.

Actually, **no** formula is characterisable w.r.t. the full language.

A normal modal logic L is finitely characterisable if every modal formula has a fin. characterisation consisting only of models based on L-frames. Then the previous theorem says that K is not finitely characterisable.

A normal modal logic L is finitely characterisable if every modal formula has a fin. characterisation consisting only of models based on L-frames. Then the previous theorem says that K is not finitely characterisable.

This can be seen as a starting observations that motivates two questions:

A normal modal logic L is finitely characterisable if every modal formula has a fin. characterisation consisting only of models based on L-frames. Then the previous theorem says that K is not finitely characterisable.

This can be seen as a starting observations that motivates two questions:

Which normal modal logics are finitely characterisable?

A normal modal logic L is finitely characterisable if every modal formula has a fin. characterisation consisting only of models based on L-frames. Then the previous theorem says that K is not finitely characterisable.

This can be seen as a starting observations that motivates two questions:

- Which normal modal logics are finitely characterisable?
- Which fragments of the modal language are finitely characterisable? (no restriction on the frame class)

Learnable Normal Modal Logics are Rare

Theorem

A normal modal logic L is finitely characterisable iff it is locally tabular

Learnable Normal Modal Logics are Rare

Theorem

A normal modal logic L is finitely characterisable iff it is locally tabular

Proof.

 (\leftarrow) If L is loc. tab. then it has fmp and only finitely many $\varphi_1, \ldots, \varphi_n$ up to \equiv_L . Then each $(\varphi_i \land \neg \varphi_j) \lor (\neg \varphi_i \land \varphi_j)$ for $i \neq j$ is sat. on a finite model $E_{i,j}$ based on an L-frame. This gives a fin. char for each φ_i .

Learnable Normal Modal Logics are Rare

Theorem

A normal modal logic L is finitely characterisable iff it is locally tabular

Proof.

 (\leftarrow) If L is loc. tab. then it has fmp and only finitely many $\varphi_1, \ldots, \varphi_n$ up to \equiv_L . Then each $(\varphi_i \land \neg \varphi_j) \lor (\neg \varphi_i \land \varphi_j)$ for $i \neq j$ is sat. on a finite model $E_{i,j}$ based on an L-frame. This gives a fin. char for each φ_i .

(
ightarrow) If L is fin. char. then \bot has a fin. char. (E^+,E^-) based on L-frames. Note that E^+ is empty so every sat. formula must be satisfied at some $(E,e)\in E^-$. If there would be infinitely many pairwise L-inequivalent formulas then cofinitely many of them $\varphi_0,\varphi_1,\ldots$ would have to be true on the same subset of E^- , and hence $(\varphi_i \land \neg \varphi_j) \lor (\neg \varphi_i \land \neg \varphi_j)$ would be unsatisfiable by properties of E^- , contradicting the fact that $\varphi_i \not\equiv_L \varphi_j$. \Box

Modal Fragments

Definition (Modal Fragments)

For a set of connectives $C \subseteq \{\Box, \Diamond, \land, \lor, \top, \bot\}$, let \mathcal{L}_C be the set of modal formulas built from literals in \Pr using only connectives from C. Further, let $\mathcal{L}^+, \mathcal{L}^-$ denote the set of positive, resp. negative \mathcal{L} -formulas.

 $^{^{2}}$ In fact, the frame language (full language over empty \Pr) is not characterisable. See

Modal Fragments

Definition (Modal Fragments)

For a set of connectives $C \subseteq \{\Box, \Diamond, \land, \lor, \top, \bot\}$, let \mathcal{L}_C be the set of modal formulas built from literals in \Pr using only connectives from C. Further, let $\mathcal{L}^+, \mathcal{L}^-$ denote the set of positive, resp. negative \mathcal{L} -formulas.

Since the height formulas $\Box^{n+1}\bot \wedge \Diamond^n \top$ are expressible in $\mathcal{L}^+_{\Box,\Diamond,\wedge,\vee,\top,\bot}$, it follows that this fragment is not characterisable.² However, recent results on unions of conjunctive queries imply that $\mathcal{L}^+_{\Diamond,\wedge,\vee}$ is characterisable.

 $^{^2}$ In fact, the frame language (full language over empty \Pr) is not characterisable. So

Modal Fragments

Definition (Modal Fragments)

For a set of connectives $C \subseteq \{\Box, \Diamond, \land, \lor, \top, \bot\}$, let \mathcal{L}_C be the set of modal formulas built from literals in \Pr using only connectives from C. Further, let $\mathcal{L}^+, \mathcal{L}^-$ denote the set of positive, resp. negative \mathcal{L} -formulas.

Since the height formulas $\Box^{n+1}\bot \wedge \Diamond^n \top$ are expressible in $\mathcal{L}^+_{\Box,\Diamond,\wedge,\vee,\top,\bot}$, it follows that this fragment is not characterisable.² However, recent results on unions of conjunctive queries imply that $\mathcal{L}^+_{\Diamond,\wedge,\vee}$ is characterisable.

Our main result is that $\mathcal{L}_{\square,\lozenge,\wedge,\vee}^+$ is finitely characterisable, and this is essentially the largest characterisable (and thus learnable) fragment.

 $^{^{2}}$ In fact, the frame language (full language over empty \Pr) is not characterisable.

Kurtonina and de Rijke have semantically characterised $\mathcal{L}_{\square, \lozenge, \land, \lor, \top, \bot}^+$ as being preserved under (directed) *simulations*, a weakening of bisimulations were the atomic clause becomes directed.

Kurtonina and de Rijke have semantically characterised $\mathcal{L}_{\Box,\Diamond,\wedge,\vee,\top,\perp}^+$ as being preserved under (directed) *simulations*, a weakening of bisimulations were the atomic clause becomes directed.

We define a further weakening that semantically characterises $\mathcal{L}^+_{\square,\lozenge,\wedge,\vee}$ Let $\circlearrowright_{\emptyset}$ denote the loop-model with empty valuation, and dually \circlearrowright_{\Pr} is the loop-model with full valuation. Observe:

Kurtonina and de Rijke have semantically characterised $\mathcal{L}_{\square, \lozenge, \land, \lor, \top, \bot}^+$ as being preserved under (directed) *simulations*, a weakening of bisimulations were the atomic clause becomes directed.

We define a further weakening that semantically characterises $\mathcal{L}^+_{\square,\lozenge,\wedge,\vee}$ Let $\circlearrowright_{\emptyset}$ denote the loop-model with empty valuation, and dually \circlearrowright_{\Pr} is the loop-model with full valuation. Observe:

$$\circlearrowright_{\emptyset} \not\models \text{ all } \varphi \in \mathcal{L}_{\square,\lozenge,\wedge,\vee}^+, \quad \circlearrowright_{\Pr} \models \text{ all } \varphi \in \mathcal{L}_{\square,\lozenge,\wedge,\vee}^+$$

Kurtonina and de Rijke have semantically characterised $\mathcal{L}_{\Box,\Diamond,\wedge,\vee,\top,\perp}^+$ as being preserved under (directed) *simulations*, a weakening of bisimulations were the atomic clause becomes directed.

We define a further weakening that semantically characterises $\mathcal{L}^+_{\square,\lozenge,\wedge,\vee}$ Let $\circlearrowright_{\emptyset}$ denote the loop-model with empty valuation, and dually \circlearrowright_{\Pr} is the loop-model with full valuation. Observe:

$$\circlearrowright_{\emptyset} \not\models \text{ all } \varphi \in \mathcal{L}_{\square,\lozenge,\wedge,\vee}^+, \quad \circlearrowright_{\Pr} \models \text{ all } \varphi \in \mathcal{L}_{\square,\lozenge,\wedge,\vee}^+$$

It follows that all $\mathcal{L}^+_{\square, \lozenge, \wedge, \vee}$ -formulas are satisfiable, and none are valid.

Weak Simulations

Definition (Weak Simulations)

A **weak simulation** between two pointed models (M, s), (M', s') is a relation $Z \subseteq M \times M'$ such that for all $(t, t') \in Z$:

```
(atom) M, t \models p implies M', t' \models p

(forth') If Rtu, either M, u \leftrightarrow \bigcirc_{\emptyset} or \exists u' s.t. Rt'u' and (u, u') \in Z

(back') If Rt'u', either M', u' \leftrightarrow \bigcirc_{\Pr} or \exists u s.t. Rtu and (u, u') \in Z
```

Weak Simulations

Definition (Weak Simulations)

A **weak simulation** between two pointed models (M, s), (M', s') is a relation $Z \subseteq M \times M'$ such that for all $(t, t') \in Z$:

```
(atom) M, t \models p implies M', t' \models p

(forth') If Rtu, either M, u \leftrightarrow \bigcirc_{\emptyset} or \exists u' s.t. Rt'u' and (u, u') \in Z

(back') If Rt'u', either M', u' \leftrightarrow \bigcirc_{\Pr} or \exists u s.t. Rtu and (u, u') \in Z
```

Theorem (van Benthem Characterisation)

 $\mathcal{L}_{\square,\lozenge,\wedge,\vee}^+$ is the weak simulation-preserved fragment of FO.

Generalised Splittings

The class of pointed Kripke models with weak simulations as morphisms forms a category wSim (not a lattice). There is a tight correspondence between fin, char. w.r.t. $\mathcal{L}_{\square,\Diamond,\wedge,\vee}^+$ and 'generalised splittings' of wSim.

Generalised Splittings

The class of pointed Kripke models with weak simulations as morphisms forms a category wSim (not a lattice). There is a tight correspondence between fin, char. w.r.t. $\mathcal{L}^+_{\square,\Diamond,\wedge,\vee}$ and 'generalised splittings' of wSim.

Definition (Generalised Splitting \rightarrow not dualities!)

A generalised splitting of a category \mathbb{C} is a pair $(\mathcal{F}, \mathcal{D})$ of finite sets of objects in \mathbb{C} such that for every object E, either:

- \bigcirc $\exists F \in \mathcal{F}$ such that $F \to E$ or
- \bigcirc $\exists D \in \mathcal{D}$ such that $E \to D$

where the 'or' is exclusive. In other words, the upset $\bigcup_{F \in \mathcal{F}} (F \to)$ and downset $\bigcap_{D\in\mathcal{D}}(\to D)$ partitions or 'splits' \mathbb{C} in two.

Generalised Splittings

The class of pointed Kripke models with weak simulations as morphisms forms a category wSim (not a lattice). There is a tight correspondence between fin, char. w.r.t. $\mathcal{L}_{\square,\lozenge,\wedge,\vee}^+$ and 'generalised splittings' of wSim.

Definition (Generalised Splitting \rightarrow not dualities!)

A **generalised splitting** of a category \mathbb{C} is a pair $(\mathcal{F}, \mathcal{D})$ of finite sets of objects in \mathbb{C} such that for every object E, either:

- $oldsymbol{1} \exists F \in \mathcal{F} \text{ such that } F \to E \text{ or }$
- ② $\exists D \in \mathcal{D}$ such that $E \to D$

where the 'or' is exclusive. In other words, the upset $\bigcup_{F \in \mathcal{F}} (F \to)$ and downset $\bigcap_{D \in \mathcal{D}} (\to D)$ partitions or 'splits' \mathbb{C} in two.

Theorem

If $\varphi \in \mathcal{L}^+_{\square, \lozenge, \wedge, \vee}$ fits a gen.splitting $(\mathcal{F}, \mathcal{D})$ of wSim then $(\mathcal{F}^+, \mathcal{D}^-)$ is a finite characterisation of φ w.r.t. $\mathcal{L}^+_{\square, \lozenge, \wedge, \vee}$.

So the proof of our main result boils down to providing a construction for computing, for each $\varphi \in \mathcal{L}_{\square, \Diamond, \wedge, \vee}^+$, a gen. splitting in *wSim* that φ fits.

So the proof of our main result boils down to providing a construction for computing, for each $\varphi \in \mathcal{L}_{\square \lozenge \lozenge \lozenge \lor}^+$, a gen. splitting in wSim that φ fits.

To this end, we heavily exploit an interesting symmetry of *wSim* that flips the valuations in a Kripke model. This allows us to define the negative examples in terms of the positive ones.

So the proof of our main result boils down to providing a construction for computing, for each $\varphi \in \mathcal{L}_{\square \land \land \lor}^+$, a gen. splitting in wSim that φ fits.

To this end, we heavily exploit an interesting symmetry of wSim that flips the valuations in a Kripke model. This allows us to define the negative examples in terms of the positive ones.

$$\mathbb{E}_p := \left(\left\{ \begin{array}{c} \downarrow \\ p \end{array} \right\},$$

So the proof of our main result boils down to providing a construction for computing, for each $\varphi \in \mathcal{L}_{\square, \Diamond, \wedge, \vee}^+$, a gen. splitting in *wSim* that φ fits.

To this end, we heavily exploit an interesting symmetry of *wSim* that flips the valuations in a Kripke model. This allows us to define the negative examples in terms of the positive ones.

$$\mathbb{E}_p := \left(\left\{ \begin{array}{c} p & & & & \\ p & & & \\ \end{array} \right\}, \left\{ \begin{array}{c} \Pr - \{p\} & & \\ \end{array} \right\} \right)$$

Examples

$$\neg\Box(p\lor q)\equiv\Diamond(\neg p\land \neg q)\quad\Longrightarrow\quad$$

$$E_{\square(pee q)}^+ = \left\{ullet \ , \ igg| egin{array}{c} p \ , \ p \ \end{array} \ , \ \end{array}
ight.
ight.$$

$$E_{\square(p\vee q)}^+ = \left\{ egin{array}{c} \bullet \ , & & & \\ & &$$

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

• By flipping the positive and negative examples, if $\mathcal L$ is characterisable so is $\{\neg\varphi\mid\varphi\in\mathcal L\}$

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

- By flipping the positive and negative examples, if $\mathcal L$ is characterisable so is $\{\neg\varphi\mid\varphi\in\mathcal L\}$
- Our results extend to some uniform fragments, where variables can either occur only positively or only negatively.

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

- By flipping the positive and negative examples, if $\mathcal L$ is characterisable so is $\{\neg\varphi\mid\varphi\in\mathcal L\}$
- Our results extend to some uniform fragments, where variables can either occur only positively or only negatively.
- Poly-modal generalisations straightforwardly follow 'pointwise'.

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

- By flipping the positive and negative examples, if \mathcal{L} is characterisable so is $\{\neg \varphi \mid \varphi \in \mathcal{L}\}$
- Our results extend to some uniform fragments, where variables can either occur only positively or only negatively.
- Poly-modal generalisations straightforwardly follow 'pointwise'.

Open Questions:

 Our learning algorithm is non-elementary, with a matching non-elementary lower bound. If we lose \vee , does the fragment $\mathcal{L}_{\square \land \land}^+$ become polynomially learnable?

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

- By flipping the positive and negative examples, if \mathcal{L} is characterisable so is $\{\neg \varphi \mid \varphi \in \mathcal{L}\}$
- Our results extend to some uniform fragments, where variables can either occur only positively or only negatively.
- Poly-modal generalisations straightforwardly follow 'pointwise'.

Open Questions:

- Our learning algorithm is non-elementary, with a matching non-elementary lower bound. If we lose \vee , does the fragment $\mathcal{L}_{\square \, \wedge \wedge}^+$ become polynomially learnable?
- wSim is not a lattice but does it have multi-products and -coproducts given some kind of bisimulations products?

The take-away message is (i) almost any kind of negation makes learning impossible and that (ii) we can go beyond purely existential formulas.

Corollaries:

- By flipping the positive and negative examples, if \mathcal{L} is characterisable so is $\{\neg \varphi \mid \varphi \in \mathcal{L}\}$
- Our results extend to some uniform fragments, where variables can either occur only positively or only negatively.
- Poly-modal generalisations straightforwardly follow 'pointwise'.

Open Questions:

- Our learning algorithm is non-elementary, with a matching non-elementary lower bound. If we lose \vee , does the fragment $\mathcal{L}_{\square \, \wedge \wedge}^+$ become polynomially learnable?
- wSim is not a lattice but does it have multi-products and -coproducts given some kind of bisimulations products?
- Characterising modal formulas under the intuitionistic semantics?

Thanks for your attention!